mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-09 10:31:14 +00:00
da5f3a3ca5
Summary: This change splits `makeICmpRegion` into `makeAllowedICmpRegion` and `makeSatisfyingICmpRegion` with slightly different contracts. The first one is useful for determining what values some expression //may// take, given that a certain `icmp` evaluates to true. The second one is useful for determining what values are guaranteed to //satisfy// a given `icmp`. Reviewers: nlewycky Reviewed By: nlewycky Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D8345 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232575 91177308-0d34-0410-b5e6-96231b3b80d8
279 lines
10 KiB
C++
279 lines
10 KiB
C++
//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Represent a range of possible values that may occur when the program is run
|
|
// for an integral value. This keeps track of a lower and upper bound for the
|
|
// constant, which MAY wrap around the end of the numeric range. To do this, it
|
|
// keeps track of a [lower, upper) bound, which specifies an interval just like
|
|
// STL iterators. When used with boolean values, the following are important
|
|
// ranges: :
|
|
//
|
|
// [F, F) = {} = Empty set
|
|
// [T, F) = {T}
|
|
// [F, T) = {F}
|
|
// [T, T) = {F, T} = Full set
|
|
//
|
|
// The other integral ranges use min/max values for special range values. For
|
|
// example, for 8-bit types, it uses:
|
|
// [0, 0) = {} = Empty set
|
|
// [255, 255) = {0..255} = Full Set
|
|
//
|
|
// Note that ConstantRange can be used to represent either signed or
|
|
// unsigned ranges.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_CONSTANTRANGE_H
|
|
#define LLVM_IR_CONSTANTRANGE_H
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
|
|
namespace llvm {
|
|
|
|
/// This class represents a range of values.
|
|
///
|
|
class ConstantRange {
|
|
APInt Lower, Upper;
|
|
|
|
// If we have move semantics, pass APInts by value and move them into place.
|
|
typedef APInt APIntMoveTy;
|
|
|
|
public:
|
|
/// Initialize a full (the default) or empty set for the specified bit width.
|
|
///
|
|
explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);
|
|
|
|
/// Initialize a range to hold the single specified value.
|
|
///
|
|
ConstantRange(APIntMoveTy Value);
|
|
|
|
/// @brief Initialize a range of values explicitly. This will assert out if
|
|
/// Lower==Upper and Lower != Min or Max value for its type. It will also
|
|
/// assert out if the two APInt's are not the same bit width.
|
|
ConstantRange(APIntMoveTy Lower, APIntMoveTy Upper);
|
|
|
|
/// Produce the smallest range such that all values that may satisfy the given
|
|
/// predicate with any value contained within Other is contained in the
|
|
/// returned range. Formally, this returns a superset of
|
|
/// 'union over all y in Other . { x : icmp op x y is true }'. If the exact
|
|
/// answer is not representable as a ConstantRange, the return value will be a
|
|
/// proper superset of the above.
|
|
///
|
|
/// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
|
|
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
|
|
const ConstantRange &Other);
|
|
|
|
/// Produce the largest range such that all values in the returned range
|
|
/// satisfy the given predicate with all values contained within Other.
|
|
/// Formally, this returns a subset of
|
|
/// 'intersection over all y in Other . { x : icmp op x y is true }'. If the
|
|
/// exact answer is not representable as a ConstantRange, the return value
|
|
/// will be a proper subset of the above.
|
|
///
|
|
/// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
|
|
static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
|
|
const ConstantRange &Other);
|
|
|
|
/// Return the lower value for this range.
|
|
///
|
|
const APInt &getLower() const { return Lower; }
|
|
|
|
/// Return the upper value for this range.
|
|
///
|
|
const APInt &getUpper() const { return Upper; }
|
|
|
|
/// Get the bit width of this ConstantRange.
|
|
///
|
|
uint32_t getBitWidth() const { return Lower.getBitWidth(); }
|
|
|
|
/// Return true if this set contains all of the elements possible
|
|
/// for this data-type.
|
|
///
|
|
bool isFullSet() const;
|
|
|
|
/// Return true if this set contains no members.
|
|
///
|
|
bool isEmptySet() const;
|
|
|
|
/// Return true if this set wraps around the top of the range.
|
|
/// For example: [100, 8).
|
|
///
|
|
bool isWrappedSet() const;
|
|
|
|
/// Return true if this set wraps around the INT_MIN of
|
|
/// its bitwidth. For example: i8 [120, 140).
|
|
///
|
|
bool isSignWrappedSet() const;
|
|
|
|
/// Return true if the specified value is in the set.
|
|
///
|
|
bool contains(const APInt &Val) const;
|
|
|
|
/// Return true if the other range is a subset of this one.
|
|
///
|
|
bool contains(const ConstantRange &CR) const;
|
|
|
|
/// If this set contains a single element, return it, otherwise return null.
|
|
///
|
|
const APInt *getSingleElement() const {
|
|
if (Upper == Lower + 1)
|
|
return &Lower;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return true if this set contains exactly one member.
|
|
///
|
|
bool isSingleElement() const { return getSingleElement() != nullptr; }
|
|
|
|
/// Return the number of elements in this set.
|
|
///
|
|
APInt getSetSize() const;
|
|
|
|
/// Return the largest unsigned value contained in the ConstantRange.
|
|
///
|
|
APInt getUnsignedMax() const;
|
|
|
|
/// Return the smallest unsigned value contained in the ConstantRange.
|
|
///
|
|
APInt getUnsignedMin() const;
|
|
|
|
/// Return the largest signed value contained in the ConstantRange.
|
|
///
|
|
APInt getSignedMax() const;
|
|
|
|
/// Return the smallest signed value contained in the ConstantRange.
|
|
///
|
|
APInt getSignedMin() const;
|
|
|
|
/// Return true if this range is equal to another range.
|
|
///
|
|
bool operator==(const ConstantRange &CR) const {
|
|
return Lower == CR.Lower && Upper == CR.Upper;
|
|
}
|
|
bool operator!=(const ConstantRange &CR) const {
|
|
return !operator==(CR);
|
|
}
|
|
|
|
/// Subtract the specified constant from the endpoints of this constant range.
|
|
ConstantRange subtract(const APInt &CI) const;
|
|
|
|
/// \brief Subtract the specified range from this range (aka relative
|
|
/// complement of the sets).
|
|
ConstantRange difference(const ConstantRange &CR) const;
|
|
|
|
/// Return the range that results from the intersection of
|
|
/// this range with another range. The resultant range is guaranteed to
|
|
/// include all elements contained in both input ranges, and to have the
|
|
/// smallest possible set size that does so. Because there may be two
|
|
/// intersections with the same set size, A.intersectWith(B) might not
|
|
/// be equal to B.intersectWith(A).
|
|
///
|
|
ConstantRange intersectWith(const ConstantRange &CR) const;
|
|
|
|
/// Return the range that results from the union of this range
|
|
/// with another range. The resultant range is guaranteed to include the
|
|
/// elements of both sets, but may contain more. For example, [3, 9) union
|
|
/// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
|
|
/// in either set before.
|
|
///
|
|
ConstantRange unionWith(const ConstantRange &CR) const;
|
|
|
|
/// Return a new range in the specified integer type, which must
|
|
/// be strictly larger than the current type. The returned range will
|
|
/// correspond to the possible range of values if the source range had been
|
|
/// zero extended to BitWidth.
|
|
ConstantRange zeroExtend(uint32_t BitWidth) const;
|
|
|
|
/// Return a new range in the specified integer type, which must
|
|
/// be strictly larger than the current type. The returned range will
|
|
/// correspond to the possible range of values if the source range had been
|
|
/// sign extended to BitWidth.
|
|
ConstantRange signExtend(uint32_t BitWidth) const;
|
|
|
|
/// Return a new range in the specified integer type, which must be
|
|
/// strictly smaller than the current type. The returned range will
|
|
/// correspond to the possible range of values if the source range had been
|
|
/// truncated to the specified type.
|
|
ConstantRange truncate(uint32_t BitWidth) const;
|
|
|
|
/// Make this range have the bit width given by \p BitWidth. The
|
|
/// value is zero extended, truncated, or left alone to make it that width.
|
|
ConstantRange zextOrTrunc(uint32_t BitWidth) const;
|
|
|
|
/// Make this range have the bit width given by \p BitWidth. The
|
|
/// value is sign extended, truncated, or left alone to make it that width.
|
|
ConstantRange sextOrTrunc(uint32_t BitWidth) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from an addition of a value in this range and a value in \p Other.
|
|
ConstantRange add(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from a subtraction of a value in this range and a value in \p Other.
|
|
ConstantRange sub(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from a multiplication of a value in this range and a value in \p Other,
|
|
/// treating both this and \p Other as unsigned ranges.
|
|
ConstantRange multiply(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from a signed maximum of a value in this range and a value in \p Other.
|
|
ConstantRange smax(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from an unsigned maximum of a value in this range and a value in \p Other.
|
|
ConstantRange umax(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from an unsigned division of a value in this range and a value in
|
|
/// \p Other.
|
|
ConstantRange udiv(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from a binary-and of a value in this range by a value in \p Other.
|
|
ConstantRange binaryAnd(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from a binary-or of a value in this range by a value in \p Other.
|
|
ConstantRange binaryOr(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting
|
|
/// from a left shift of a value in this range by a value in \p Other.
|
|
/// TODO: This isn't fully implemented yet.
|
|
ConstantRange shl(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range representing the possible values resulting from a
|
|
/// logical right shift of a value in this range and a value in \p Other.
|
|
ConstantRange lshr(const ConstantRange &Other) const;
|
|
|
|
/// Return a new range that is the logical not of the current set.
|
|
///
|
|
ConstantRange inverse() const;
|
|
|
|
/// Print out the bounds to a stream.
|
|
///
|
|
void print(raw_ostream &OS) const;
|
|
|
|
/// Allow printing from a debugger easily.
|
|
///
|
|
void dump() const;
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
|
|
CR.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|