llvm-6502/include/llvm/Support/Allocator.h
Argyrios Kyrtzidis 7f9a887d3f [BumpPtrAllocator] Move DefaultSlabAllocator to a member of BumpPtrAllocator, instead of a static variable.
The problem with having DefaultSlabAllocator being a global static is that it is undefined if BumpPtrAllocator
will be usable during global initialization because it is not guaranteed that DefaultSlabAllocator will be
initialized before BumpPtrAllocator is created and used.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189433 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-28 01:02:21 +00:00

246 lines
7.8 KiB
C++

//===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MallocAllocator and BumpPtrAllocator interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ALLOCATOR_H
#define LLVM_SUPPORT_ALLOCATOR_H
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
namespace llvm {
template <typename T> struct ReferenceAdder { typedef T& result; };
template <typename T> struct ReferenceAdder<T&> { typedef T result; };
class MallocAllocator {
public:
MallocAllocator() {}
~MallocAllocator() {}
void Reset() {}
void *Allocate(size_t Size, size_t /*Alignment*/) { return malloc(Size); }
template <typename T>
T *Allocate() { return static_cast<T*>(malloc(sizeof(T))); }
template <typename T>
T *Allocate(size_t Num) {
return static_cast<T*>(malloc(sizeof(T)*Num));
}
void Deallocate(const void *Ptr) { free(const_cast<void*>(Ptr)); }
void PrintStats() const {}
};
/// MemSlab - This structure lives at the beginning of every slab allocated by
/// the bump allocator.
class MemSlab {
public:
size_t Size;
MemSlab *NextPtr;
};
/// SlabAllocator - This class can be used to parameterize the underlying
/// allocation strategy for the bump allocator. In particular, this is used
/// by the JIT to allocate contiguous swathes of executable memory. The
/// interface uses MemSlab's instead of void *'s so that the allocator
/// doesn't have to remember the size of the pointer it allocated.
class SlabAllocator {
public:
virtual ~SlabAllocator();
virtual MemSlab *Allocate(size_t Size) = 0;
virtual void Deallocate(MemSlab *Slab) = 0;
};
/// MallocSlabAllocator - The default slab allocator for the bump allocator
/// is an adapter class for MallocAllocator that just forwards the method
/// calls and translates the arguments.
class MallocSlabAllocator : public SlabAllocator {
/// Allocator - The underlying allocator that we forward to.
///
MallocAllocator Allocator;
public:
MallocSlabAllocator() : Allocator() { }
virtual ~MallocSlabAllocator();
virtual MemSlab *Allocate(size_t Size) LLVM_OVERRIDE;
virtual void Deallocate(MemSlab *Slab) LLVM_OVERRIDE;
};
/// BumpPtrAllocator - This allocator is useful for containers that need
/// very simple memory allocation strategies. In particular, this just keeps
/// allocating memory, and never deletes it until the entire block is dead. This
/// makes allocation speedy, but must only be used when the trade-off is ok.
class BumpPtrAllocator {
BumpPtrAllocator(const BumpPtrAllocator &) LLVM_DELETED_FUNCTION;
void operator=(const BumpPtrAllocator &) LLVM_DELETED_FUNCTION;
/// SlabSize - Allocate data into slabs of this size unless we get an
/// allocation above SizeThreshold.
size_t SlabSize;
/// SizeThreshold - For any allocation larger than this threshold, we should
/// allocate a separate slab.
size_t SizeThreshold;
/// \brief the default allocator used if one is not provided
MallocSlabAllocator DefaultSlabAllocator;
/// Allocator - The underlying allocator we use to get slabs of memory. This
/// defaults to MallocSlabAllocator, which wraps malloc, but it could be
/// changed to use a custom allocator.
SlabAllocator &Allocator;
/// CurSlab - The slab that we are currently allocating into.
///
MemSlab *CurSlab;
/// CurPtr - The current pointer into the current slab. This points to the
/// next free byte in the slab.
char *CurPtr;
/// End - The end of the current slab.
///
char *End;
/// BytesAllocated - This field tracks how many bytes we've allocated, so
/// that we can compute how much space was wasted.
size_t BytesAllocated;
/// AlignPtr - Align Ptr to Alignment bytes, rounding up. Alignment should
/// be a power of two. This method rounds up, so AlignPtr(7, 4) == 8 and
/// AlignPtr(8, 4) == 8.
static char *AlignPtr(char *Ptr, size_t Alignment);
/// StartNewSlab - Allocate a new slab and move the bump pointers over into
/// the new slab. Modifies CurPtr and End.
void StartNewSlab();
/// DeallocateSlabs - Deallocate all memory slabs after and including this
/// one.
void DeallocateSlabs(MemSlab *Slab);
template<typename T> friend class SpecificBumpPtrAllocator;
public:
BumpPtrAllocator(size_t size = 4096, size_t threshold = 4096);
BumpPtrAllocator(size_t size, size_t threshold, SlabAllocator &allocator);
~BumpPtrAllocator();
/// Reset - Deallocate all but the current slab and reset the current pointer
/// to the beginning of it, freeing all memory allocated so far.
void Reset();
/// Allocate - Allocate space at the specified alignment.
///
void *Allocate(size_t Size, size_t Alignment);
/// Allocate space, but do not construct, one object.
///
template <typename T>
T *Allocate() {
return static_cast<T*>(Allocate(sizeof(T),AlignOf<T>::Alignment));
}
/// Allocate space for an array of objects. This does not construct the
/// objects though.
template <typename T>
T *Allocate(size_t Num) {
return static_cast<T*>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
}
/// Allocate space for a specific count of elements and with a specified
/// alignment.
template <typename T>
T *Allocate(size_t Num, size_t Alignment) {
// Round EltSize up to the specified alignment.
size_t EltSize = (sizeof(T)+Alignment-1)&(-Alignment);
return static_cast<T*>(Allocate(Num * EltSize, Alignment));
}
void Deallocate(const void * /*Ptr*/) {}
unsigned GetNumSlabs() const;
void PrintStats() const;
/// Compute the total physical memory allocated by this allocator.
size_t getTotalMemory() const;
};
/// SpecificBumpPtrAllocator - Same as BumpPtrAllocator but allows only
/// elements of one type to be allocated. This allows calling the destructor
/// in DestroyAll() and when the allocator is destroyed.
template <typename T>
class SpecificBumpPtrAllocator {
BumpPtrAllocator Allocator;
public:
SpecificBumpPtrAllocator(size_t size = 4096, size_t threshold = 4096)
: Allocator(size, threshold) {}
SpecificBumpPtrAllocator(size_t size, size_t threshold,
SlabAllocator &allocator)
: Allocator(size, threshold, allocator) {}
~SpecificBumpPtrAllocator() {
DestroyAll();
}
/// Call the destructor of each allocated object and deallocate all but the
/// current slab and reset the current pointer to the beginning of it, freeing
/// all memory allocated so far.
void DestroyAll() {
MemSlab *Slab = Allocator.CurSlab;
while (Slab) {
char *End = Slab == Allocator.CurSlab ? Allocator.CurPtr :
(char *)Slab + Slab->Size;
for (char *Ptr = (char*)(Slab+1); Ptr < End; Ptr += sizeof(T)) {
Ptr = Allocator.AlignPtr(Ptr, alignOf<T>());
if (Ptr + sizeof(T) <= End)
reinterpret_cast<T*>(Ptr)->~T();
}
Slab = Slab->NextPtr;
}
Allocator.Reset();
}
/// Allocate space for a specific count of elements.
T *Allocate(size_t num = 1) {
return Allocator.Allocate<T>(num);
}
};
} // end namespace llvm
inline void *operator new(size_t Size, llvm::BumpPtrAllocator &Allocator) {
struct S {
char c;
union {
double D;
long double LD;
long long L;
void *P;
} x;
};
return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
offsetof(S, x)));
}
inline void operator delete(void *, llvm::BumpPtrAllocator &) {}
#endif // LLVM_SUPPORT_ALLOCATOR_H