mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
dad20b2ae2
Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
877 lines
28 KiB
C++
877 lines
28 KiB
C++
//===-- llvm/Metadata.h - Metadata definitions ------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// @file
|
|
/// This file contains the declarations for metadata subclasses.
|
|
/// They represent the different flavors of metadata that live in LLVM.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_METADATA_H
|
|
#define LLVM_IR_METADATA_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/MetadataTracking.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <type_traits>
|
|
|
|
namespace llvm {
|
|
class LLVMContext;
|
|
class Module;
|
|
template<typename ValueSubClass, typename ItemParentClass>
|
|
class SymbolTableListTraits;
|
|
|
|
|
|
enum LLVMConstants : uint32_t {
|
|
DEBUG_METADATA_VERSION = 2 // Current debug info version number.
|
|
};
|
|
|
|
/// \brief Root of the metadata hierarchy.
|
|
///
|
|
/// This is a root class for typeless data in the IR.
|
|
class Metadata {
|
|
friend class ReplaceableMetadataImpl;
|
|
|
|
/// \brief RTTI.
|
|
const unsigned char SubclassID;
|
|
|
|
protected:
|
|
/// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
|
|
bool IsDistinctInContext : 1;
|
|
// TODO: expose remaining bits to subclasses.
|
|
|
|
unsigned short SubclassData16;
|
|
unsigned SubclassData32;
|
|
|
|
public:
|
|
enum MetadataKind {
|
|
GenericMDNodeKind,
|
|
MDNodeFwdDeclKind,
|
|
ConstantAsMetadataKind,
|
|
LocalAsMetadataKind,
|
|
MDStringKind
|
|
};
|
|
|
|
protected:
|
|
Metadata(unsigned ID)
|
|
: SubclassID(ID), IsDistinctInContext(false), SubclassData16(0),
|
|
SubclassData32(0) {}
|
|
~Metadata() {}
|
|
|
|
/// \brief Store this in a big non-uniqued untyped bucket.
|
|
bool isStoredDistinctInContext() const { return IsDistinctInContext; }
|
|
|
|
/// \brief Default handling of a changed operand, which asserts.
|
|
///
|
|
/// If subclasses pass themselves in as owners to a tracking node reference,
|
|
/// they must provide an implementation of this method.
|
|
void handleChangedOperand(void *, Metadata *) {
|
|
llvm_unreachable("Unimplemented in Metadata subclass");
|
|
}
|
|
|
|
public:
|
|
unsigned getMetadataID() const { return SubclassID; }
|
|
|
|
/// \brief User-friendly dump.
|
|
void dump() const;
|
|
void print(raw_ostream &OS) const;
|
|
void printAsOperand(raw_ostream &OS, bool PrintType = true,
|
|
const Module *M = nullptr) const;
|
|
};
|
|
|
|
#define HANDLE_METADATA(CLASS) class CLASS;
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
|
|
MD.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// \brief Metadata wrapper in the Value hierarchy.
|
|
///
|
|
/// A member of the \a Value hierarchy to represent a reference to metadata.
|
|
/// This allows, e.g., instrinsics to have metadata as operands.
|
|
///
|
|
/// Notably, this is the only thing in either hierarchy that is allowed to
|
|
/// reference \a LocalAsMetadata.
|
|
class MetadataAsValue : public Value {
|
|
friend class ReplaceableMetadataImpl;
|
|
friend class LLVMContextImpl;
|
|
|
|
Metadata *MD;
|
|
|
|
MetadataAsValue(Type *Ty, Metadata *MD);
|
|
~MetadataAsValue();
|
|
|
|
public:
|
|
static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
|
|
static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
|
|
Metadata *getMetadata() const { return MD; }
|
|
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == MetadataAsValueVal;
|
|
}
|
|
|
|
private:
|
|
void handleChangedMetadata(Metadata *MD);
|
|
void track();
|
|
void untrack();
|
|
};
|
|
|
|
/// \brief Shared implementation of use-lists for replaceable metadata.
|
|
///
|
|
/// Most metadata cannot be RAUW'ed. This is a shared implementation of
|
|
/// use-lists and associated API for the two that support it (\a ValueAsMetadata
|
|
/// and \a TempMDNode).
|
|
class ReplaceableMetadataImpl {
|
|
friend class MetadataTracking;
|
|
|
|
public:
|
|
typedef MetadataTracking::OwnerTy OwnerTy;
|
|
|
|
private:
|
|
SmallDenseMap<void *, OwnerTy, 4> UseMap;
|
|
|
|
public:
|
|
~ReplaceableMetadataImpl() {
|
|
assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
|
|
}
|
|
|
|
/// \brief Replace all uses of this with MD.
|
|
///
|
|
/// Replace all uses of this with \c MD, which is allowed to be null.
|
|
void replaceAllUsesWith(Metadata *MD);
|
|
|
|
/// \brief Resolve all uses of this.
|
|
///
|
|
/// Resolve all uses of this, turning off RAUW permanently. If \c
|
|
/// ResolveUsers, call \a GenericMDNode::resolve() on any users whose last
|
|
/// operand is resolved.
|
|
void resolveAllUses(bool ResolveUsers = true);
|
|
|
|
private:
|
|
void addRef(void *Ref, OwnerTy Owner);
|
|
void dropRef(void *Ref);
|
|
void moveRef(void *Ref, void *New, const Metadata &MD);
|
|
|
|
static ReplaceableMetadataImpl *get(Metadata &MD);
|
|
};
|
|
|
|
/// \brief Value wrapper in the Metadata hierarchy.
|
|
///
|
|
/// This is a custom value handle that allows other metadata to refer to
|
|
/// classes in the Value hierarchy.
|
|
///
|
|
/// Because of full uniquing support, each value is only wrapped by a single \a
|
|
/// ValueAsMetadata object, so the lookup maps are far more efficient than
|
|
/// those using ValueHandleBase.
|
|
class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
|
|
friend class ReplaceableMetadataImpl;
|
|
friend class LLVMContextImpl;
|
|
|
|
Value *V;
|
|
|
|
protected:
|
|
ValueAsMetadata(LLVMContext &Context, unsigned ID, Value *V)
|
|
: Metadata(ID), V(V) {
|
|
assert(V && "Expected valid value");
|
|
}
|
|
~ValueAsMetadata() {}
|
|
|
|
public:
|
|
static ValueAsMetadata *get(Value *V);
|
|
static ConstantAsMetadata *getConstant(Value *C) {
|
|
return cast<ConstantAsMetadata>(get(C));
|
|
}
|
|
static LocalAsMetadata *getLocal(Value *Local) {
|
|
return cast<LocalAsMetadata>(get(Local));
|
|
}
|
|
|
|
static ValueAsMetadata *getIfExists(Value *V);
|
|
static ConstantAsMetadata *getConstantIfExists(Value *C) {
|
|
return cast_or_null<ConstantAsMetadata>(getIfExists(C));
|
|
}
|
|
static LocalAsMetadata *getLocalIfExists(Value *Local) {
|
|
return cast_or_null<LocalAsMetadata>(getIfExists(Local));
|
|
}
|
|
|
|
Value *getValue() const { return V; }
|
|
Type *getType() const { return V->getType(); }
|
|
LLVMContext &getContext() const { return V->getContext(); }
|
|
|
|
static void handleDeletion(Value *V);
|
|
static void handleRAUW(Value *From, Value *To);
|
|
|
|
protected:
|
|
/// \brief Handle collisions after \a Value::replaceAllUsesWith().
|
|
///
|
|
/// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
|
|
/// \a Value gets RAUW'ed and the target already exists, this is used to
|
|
/// merge the two metadata nodes.
|
|
void replaceAllUsesWith(Metadata *MD) {
|
|
ReplaceableMetadataImpl::replaceAllUsesWith(MD);
|
|
}
|
|
|
|
public:
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == LocalAsMetadataKind ||
|
|
MD->getMetadataID() == ConstantAsMetadataKind;
|
|
}
|
|
};
|
|
|
|
class ConstantAsMetadata : public ValueAsMetadata {
|
|
friend class ValueAsMetadata;
|
|
|
|
ConstantAsMetadata(LLVMContext &Context, Constant *C)
|
|
: ValueAsMetadata(Context, ConstantAsMetadataKind, C) {}
|
|
|
|
public:
|
|
static ConstantAsMetadata *get(Constant *C) {
|
|
return ValueAsMetadata::getConstant(C);
|
|
}
|
|
static ConstantAsMetadata *getIfExists(Constant *C) {
|
|
return ValueAsMetadata::getConstantIfExists(C);
|
|
}
|
|
|
|
Constant *getValue() const {
|
|
return cast<Constant>(ValueAsMetadata::getValue());
|
|
}
|
|
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == ConstantAsMetadataKind;
|
|
}
|
|
};
|
|
|
|
class LocalAsMetadata : public ValueAsMetadata {
|
|
friend class ValueAsMetadata;
|
|
|
|
LocalAsMetadata(LLVMContext &Context, Value *Local)
|
|
: ValueAsMetadata(Context, LocalAsMetadataKind, Local) {
|
|
assert(!isa<Constant>(Local) && "Expected local value");
|
|
}
|
|
|
|
public:
|
|
static LocalAsMetadata *get(Value *Local) {
|
|
return ValueAsMetadata::getLocal(Local);
|
|
}
|
|
static LocalAsMetadata *getIfExists(Value *Local) {
|
|
return ValueAsMetadata::getLocalIfExists(Local);
|
|
}
|
|
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == LocalAsMetadataKind;
|
|
}
|
|
};
|
|
|
|
/// \brief Transitional API for extracting constants from Metadata.
|
|
///
|
|
/// This namespace contains transitional functions for metadata that points to
|
|
/// \a Constants.
|
|
///
|
|
/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
|
|
/// operands could refer to any \a Value. There's was a lot of code like this:
|
|
///
|
|
/// \code
|
|
/// MDNode *N = ...;
|
|
/// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
|
|
/// \endcode
|
|
///
|
|
/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
|
|
/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
|
|
/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
|
|
/// cast in the \a Value hierarchy. Besides creating boiler-plate, this
|
|
/// requires subtle control flow changes.
|
|
///
|
|
/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
|
|
/// so that metadata can refer to numbers without traversing a bridge to the \a
|
|
/// Value hierarchy. In this final state, the code above would look like this:
|
|
///
|
|
/// \code
|
|
/// MDNode *N = ...;
|
|
/// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
|
|
/// \endcode
|
|
///
|
|
/// The API in this namespace supports the transition. \a MDInt doesn't exist
|
|
/// yet, and even once it does, changing each metadata schema to use it is its
|
|
/// own mini-project. In the meantime this API prevents us from introducing
|
|
/// complex and bug-prone control flow that will disappear in the end. In
|
|
/// particular, the above code looks like this:
|
|
///
|
|
/// \code
|
|
/// MDNode *N = ...;
|
|
/// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
|
|
/// \endcode
|
|
///
|
|
/// The full set of provided functions includes:
|
|
///
|
|
/// mdconst::hasa <=> isa
|
|
/// mdconst::extract <=> cast
|
|
/// mdconst::extract_or_null <=> cast_or_null
|
|
/// mdconst::dyn_extract <=> dyn_cast
|
|
/// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
|
|
///
|
|
/// The target of the cast must be a subclass of \a Constant.
|
|
namespace mdconst {
|
|
|
|
namespace detail {
|
|
template <class T> T &make();
|
|
template <class T, class Result> struct HasDereference {
|
|
typedef char Yes[1];
|
|
typedef char No[2];
|
|
template <size_t N> struct SFINAE {};
|
|
|
|
template <class U, class V>
|
|
static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
|
|
template <class U, class V> static No &hasDereference(...);
|
|
|
|
static const bool value =
|
|
sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
|
|
};
|
|
template <class V, class M> struct IsValidPointer {
|
|
static const bool value = std::is_base_of<Constant, V>::value &&
|
|
HasDereference<M, const Metadata &>::value;
|
|
};
|
|
template <class V, class M> struct IsValidReference {
|
|
static const bool value = std::is_base_of<Constant, V>::value &&
|
|
std::is_convertible<M, const Metadata &>::value;
|
|
};
|
|
} // end namespace detail
|
|
|
|
/// \brief Check whether Metadata has a Value.
|
|
///
|
|
/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
|
|
/// type \c X.
|
|
template <class X, class Y>
|
|
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
|
|
hasa(Y &&MD) {
|
|
assert(MD && "Null pointer sent into hasa");
|
|
if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
|
|
return isa<X>(V->getValue());
|
|
return false;
|
|
}
|
|
template <class X, class Y>
|
|
inline
|
|
typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
|
|
hasa(Y &MD) {
|
|
return hasa(&MD);
|
|
}
|
|
|
|
/// \brief Extract a Value from Metadata.
|
|
///
|
|
/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
|
|
template <class X, class Y>
|
|
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
|
|
extract(Y &&MD) {
|
|
return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
|
|
}
|
|
template <class X, class Y>
|
|
inline
|
|
typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
|
|
extract(Y &MD) {
|
|
return extract(&MD);
|
|
}
|
|
|
|
/// \brief Extract a Value from Metadata, allowing null.
|
|
///
|
|
/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
|
|
/// from \c MD, allowing \c MD to be null.
|
|
template <class X, class Y>
|
|
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
|
|
extract_or_null(Y &&MD) {
|
|
if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
|
|
return cast<X>(V->getValue());
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Extract a Value from Metadata, if any.
|
|
///
|
|
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
|
|
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
|
|
/// Value it does contain is of the wrong subclass.
|
|
template <class X, class Y>
|
|
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
|
|
dyn_extract(Y &&MD) {
|
|
if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
|
|
return dyn_cast<X>(V->getValue());
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Extract a Value from Metadata, if any, allowing null.
|
|
///
|
|
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
|
|
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
|
|
/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
|
|
template <class X, class Y>
|
|
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
|
|
dyn_extract_or_null(Y &&MD) {
|
|
if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
|
|
return dyn_cast<X>(V->getValue());
|
|
return nullptr;
|
|
}
|
|
|
|
} // end namespace mdconst
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// \brief A single uniqued string.
|
|
///
|
|
/// These are used to efficiently contain a byte sequence for metadata.
|
|
/// MDString is always unnamed.
|
|
class MDString : public Metadata {
|
|
friend class StringMapEntry<MDString>;
|
|
|
|
MDString(const MDString &) LLVM_DELETED_FUNCTION;
|
|
MDString &operator=(MDString &&) LLVM_DELETED_FUNCTION;
|
|
MDString &operator=(const MDString &) LLVM_DELETED_FUNCTION;
|
|
|
|
StringMapEntry<MDString> *Entry;
|
|
MDString() : Metadata(MDStringKind), Entry(nullptr) {}
|
|
MDString(MDString &&) : Metadata(MDStringKind) {}
|
|
|
|
public:
|
|
static MDString *get(LLVMContext &Context, StringRef Str);
|
|
static MDString *get(LLVMContext &Context, const char *Str) {
|
|
return get(Context, Str ? StringRef(Str) : StringRef());
|
|
}
|
|
|
|
StringRef getString() const;
|
|
|
|
unsigned getLength() const { return (unsigned)getString().size(); }
|
|
|
|
typedef StringRef::iterator iterator;
|
|
|
|
/// \brief Pointer to the first byte of the string.
|
|
iterator begin() const { return getString().begin(); }
|
|
|
|
/// \brief Pointer to one byte past the end of the string.
|
|
iterator end() const { return getString().end(); }
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == MDStringKind;
|
|
}
|
|
};
|
|
|
|
/// \brief A collection of metadata nodes that might be associated with a
|
|
/// memory access used by the alias-analysis infrastructure.
|
|
struct AAMDNodes {
|
|
explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
|
|
MDNode *N = nullptr)
|
|
: TBAA(T), Scope(S), NoAlias(N) {}
|
|
|
|
bool operator==(const AAMDNodes &A) const {
|
|
return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
|
|
}
|
|
|
|
bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
|
|
|
|
LLVM_EXPLICIT operator bool() const { return TBAA || Scope || NoAlias; }
|
|
|
|
/// \brief The tag for type-based alias analysis.
|
|
MDNode *TBAA;
|
|
|
|
/// \brief The tag for alias scope specification (used with noalias).
|
|
MDNode *Scope;
|
|
|
|
/// \brief The tag specifying the noalias scope.
|
|
MDNode *NoAlias;
|
|
};
|
|
|
|
// Specialize DenseMapInfo for AAMDNodes.
|
|
template<>
|
|
struct DenseMapInfo<AAMDNodes> {
|
|
static inline AAMDNodes getEmptyKey() {
|
|
return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(), 0, 0);
|
|
}
|
|
static inline AAMDNodes getTombstoneKey() {
|
|
return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(), 0, 0);
|
|
}
|
|
static unsigned getHashValue(const AAMDNodes &Val) {
|
|
return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
|
|
DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
|
|
DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
|
|
}
|
|
static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// \brief Tracking metadata reference owned by Metadata.
|
|
///
|
|
/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
|
|
/// of \a Metadata, which has the option of registering itself for callbacks to
|
|
/// re-unique itself.
|
|
///
|
|
/// In particular, this is used by \a MDNode.
|
|
class MDOperand {
|
|
MDOperand(MDOperand &&) LLVM_DELETED_FUNCTION;
|
|
MDOperand(const MDOperand &) LLVM_DELETED_FUNCTION;
|
|
MDOperand &operator=(MDOperand &&) LLVM_DELETED_FUNCTION;
|
|
MDOperand &operator=(const MDOperand &) LLVM_DELETED_FUNCTION;
|
|
|
|
Metadata *MD;
|
|
|
|
public:
|
|
MDOperand() : MD(nullptr) {}
|
|
~MDOperand() { untrack(); }
|
|
|
|
LLVM_EXPLICIT operator bool() const { return get(); }
|
|
Metadata *get() const { return MD; }
|
|
operator Metadata *() const { return get(); }
|
|
Metadata *operator->() const { return get(); }
|
|
Metadata &operator*() const { return *get(); }
|
|
|
|
void reset() {
|
|
untrack();
|
|
MD = nullptr;
|
|
}
|
|
void reset(Metadata *MD, Metadata *Owner) {
|
|
untrack();
|
|
this->MD = MD;
|
|
track(Owner);
|
|
}
|
|
|
|
private:
|
|
void track(Metadata *Owner) {
|
|
if (MD) {
|
|
if (Owner)
|
|
MetadataTracking::track(this, *MD, *Owner);
|
|
else
|
|
MetadataTracking::track(MD);
|
|
}
|
|
}
|
|
void untrack() {
|
|
assert(static_cast<void *>(this) == &MD && "Expected same address");
|
|
if (MD)
|
|
MetadataTracking::untrack(MD);
|
|
}
|
|
};
|
|
|
|
template <> struct simplify_type<MDOperand> {
|
|
typedef Metadata *SimpleType;
|
|
static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
|
|
};
|
|
|
|
template <> struct simplify_type<const MDOperand> {
|
|
typedef Metadata *SimpleType;
|
|
static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// \brief Tuple of metadata.
|
|
class MDNode : public Metadata {
|
|
MDNode(const MDNode &) LLVM_DELETED_FUNCTION;
|
|
void operator=(const MDNode &) LLVM_DELETED_FUNCTION;
|
|
void *operator new(size_t) LLVM_DELETED_FUNCTION;
|
|
|
|
LLVMContext &Context;
|
|
unsigned NumOperands;
|
|
|
|
protected:
|
|
unsigned MDNodeSubclassData;
|
|
|
|
void *operator new(size_t Size, unsigned NumOps);
|
|
|
|
/// \brief Required by std, but never called.
|
|
void operator delete(void *Mem);
|
|
|
|
/// \brief Required by std, but never called.
|
|
void operator delete(void *, unsigned) {
|
|
llvm_unreachable("Constructor throws?");
|
|
}
|
|
|
|
/// \brief Required by std, but never called.
|
|
void operator delete(void *, unsigned, bool) {
|
|
llvm_unreachable("Constructor throws?");
|
|
}
|
|
|
|
MDNode(LLVMContext &Context, unsigned ID, ArrayRef<Metadata *> MDs);
|
|
~MDNode() { dropAllReferences(); }
|
|
|
|
void dropAllReferences();
|
|
void storeDistinctInContext();
|
|
|
|
static MDNode *getMDNode(LLVMContext &C, ArrayRef<Metadata *> MDs,
|
|
bool Insert = true);
|
|
|
|
MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
|
|
MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
|
|
|
|
public:
|
|
static MDNode *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
|
|
return getMDNode(Context, MDs, true);
|
|
}
|
|
static MDNode *getWhenValsUnresolved(LLVMContext &Context,
|
|
ArrayRef<Metadata *> MDs) {
|
|
// TODO: Remove this.
|
|
return get(Context, MDs);
|
|
}
|
|
|
|
static MDNode *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
|
|
return getMDNode(Context, MDs, false);
|
|
}
|
|
|
|
/// \brief Return a temporary MDNode
|
|
///
|
|
/// For use in constructing cyclic MDNode structures. A temporary MDNode is
|
|
/// not uniqued, may be RAUW'd, and must be manually deleted with
|
|
/// deleteTemporary.
|
|
static MDNodeFwdDecl *getTemporary(LLVMContext &Context,
|
|
ArrayRef<Metadata *> MDs);
|
|
|
|
/// \brief Deallocate a node created by getTemporary.
|
|
///
|
|
/// The node must not have any users.
|
|
static void deleteTemporary(MDNode *N);
|
|
|
|
LLVMContext &getContext() const { return Context; }
|
|
|
|
/// \brief Replace a specific operand.
|
|
void replaceOperandWith(unsigned I, Metadata *New);
|
|
|
|
/// \brief Check if node is fully resolved.
|
|
bool isResolved() const;
|
|
|
|
protected:
|
|
/// \brief Set an operand.
|
|
///
|
|
/// Sets the operand directly, without worrying about uniquing.
|
|
void setOperand(unsigned I, Metadata *New);
|
|
|
|
public:
|
|
typedef const MDOperand *op_iterator;
|
|
typedef iterator_range<op_iterator> op_range;
|
|
|
|
op_iterator op_begin() const {
|
|
return const_cast<MDNode *>(this)->mutable_begin();
|
|
}
|
|
op_iterator op_end() const {
|
|
return const_cast<MDNode *>(this)->mutable_end();
|
|
}
|
|
op_range operands() const { return op_range(op_begin(), op_end()); }
|
|
|
|
const MDOperand &getOperand(unsigned I) const {
|
|
assert(I < NumOperands && "Out of range");
|
|
return op_begin()[I];
|
|
}
|
|
|
|
/// \brief Return number of MDNode operands.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == GenericMDNodeKind ||
|
|
MD->getMetadataID() == MDNodeFwdDeclKind;
|
|
}
|
|
|
|
/// \brief Check whether MDNode is a vtable access.
|
|
bool isTBAAVtableAccess() const;
|
|
|
|
/// \brief Methods for metadata merging.
|
|
static MDNode *concatenate(MDNode *A, MDNode *B);
|
|
static MDNode *intersect(MDNode *A, MDNode *B);
|
|
static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
|
|
static AAMDNodes getMostGenericAA(const AAMDNodes &A, const AAMDNodes &B);
|
|
static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
|
|
static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
|
|
};
|
|
|
|
/// \brief Generic metadata node.
|
|
///
|
|
/// Generic metadata nodes, with opt-out support for uniquing.
|
|
///
|
|
/// Although nodes are uniqued by default, \a GenericMDNode has no support for
|
|
/// RAUW. If an operand change (due to RAUW or otherwise) causes a uniquing
|
|
/// collision, the uniquing bit is dropped.
|
|
///
|
|
/// TODO: Make uniquing opt-out (status: mandatory, sometimes dropped).
|
|
/// TODO: Drop support for RAUW.
|
|
class GenericMDNode : public MDNode {
|
|
friend class Metadata;
|
|
friend class MDNode;
|
|
friend class LLVMContextImpl;
|
|
friend class ReplaceableMetadataImpl;
|
|
|
|
/// \brief Support RAUW as long as one of its arguments is replaceable.
|
|
///
|
|
/// If an operand is an \a MDNodeFwdDecl (or a replaceable \a GenericMDNode),
|
|
/// support RAUW to support uniquing as forward declarations are resolved.
|
|
/// As soon as operands have been resolved, drop support.
|
|
///
|
|
/// FIXME: Save memory by storing this in a pointer union with the
|
|
/// LLVMContext, and adding an LLVMContext reference to RMI.
|
|
std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses;
|
|
|
|
GenericMDNode(LLVMContext &C, ArrayRef<Metadata *> Vals);
|
|
~GenericMDNode();
|
|
|
|
void setHash(unsigned Hash) { MDNodeSubclassData = Hash; }
|
|
|
|
public:
|
|
/// \brief Get the hash, if any.
|
|
unsigned getHash() const { return MDNodeSubclassData; }
|
|
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == GenericMDNodeKind;
|
|
}
|
|
|
|
/// \brief Check whether any operands are forward declarations.
|
|
///
|
|
/// Returns \c true as long as any operands (or their operands, etc.) are \a
|
|
/// MDNodeFwdDecl.
|
|
///
|
|
/// As forward declarations are resolved, their containers should get
|
|
/// resolved automatically. However, if this (or one of its operands) is
|
|
/// involved in a cycle, \a resolveCycles() needs to be called explicitly.
|
|
bool isResolved() const { return !ReplaceableUses; }
|
|
|
|
/// \brief Resolve cycles.
|
|
///
|
|
/// Once all forward declarations have been resolved, force cycles to be
|
|
/// resolved.
|
|
///
|
|
/// \pre No operands (or operands' operands, etc.) are \a MDNodeFwdDecl.
|
|
void resolveCycles();
|
|
|
|
private:
|
|
void handleChangedOperand(void *Ref, Metadata *New);
|
|
|
|
bool hasUnresolvedOperands() const { return SubclassData32; }
|
|
void incrementUnresolvedOperands() { ++SubclassData32; }
|
|
void decrementUnresolvedOperands() { --SubclassData32; }
|
|
void resolve();
|
|
};
|
|
|
|
/// \brief Forward declaration of metadata.
|
|
///
|
|
/// Forward declaration of metadata, in the form of a metadata node. Unlike \a
|
|
/// GenericMDNode, this class has support for RAUW and is suitable for forward
|
|
/// references.
|
|
class MDNodeFwdDecl : public MDNode, ReplaceableMetadataImpl {
|
|
friend class Metadata;
|
|
friend class MDNode;
|
|
friend class ReplaceableMetadataImpl;
|
|
|
|
MDNodeFwdDecl(LLVMContext &C, ArrayRef<Metadata *> Vals)
|
|
: MDNode(C, MDNodeFwdDeclKind, Vals) {}
|
|
~MDNodeFwdDecl() {}
|
|
|
|
public:
|
|
static bool classof(const Metadata *MD) {
|
|
return MD->getMetadataID() == MDNodeFwdDeclKind;
|
|
}
|
|
|
|
using ReplaceableMetadataImpl::replaceAllUsesWith;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// \brief A tuple of MDNodes.
|
|
///
|
|
/// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
|
|
/// to modules, have names, and contain lists of MDNodes.
|
|
///
|
|
/// TODO: Inherit from Metadata.
|
|
class NamedMDNode : public ilist_node<NamedMDNode> {
|
|
friend class SymbolTableListTraits<NamedMDNode, Module>;
|
|
friend struct ilist_traits<NamedMDNode>;
|
|
friend class LLVMContextImpl;
|
|
friend class Module;
|
|
NamedMDNode(const NamedMDNode &) LLVM_DELETED_FUNCTION;
|
|
|
|
std::string Name;
|
|
Module *Parent;
|
|
void *Operands; // SmallVector<TrackingMDRef, 4>
|
|
|
|
void setParent(Module *M) { Parent = M; }
|
|
|
|
explicit NamedMDNode(const Twine &N);
|
|
|
|
template<class T1, class T2>
|
|
class op_iterator_impl :
|
|
public std::iterator<std::bidirectional_iterator_tag, T2> {
|
|
const NamedMDNode *Node;
|
|
unsigned Idx;
|
|
op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }
|
|
|
|
friend class NamedMDNode;
|
|
|
|
public:
|
|
op_iterator_impl() : Node(nullptr), Idx(0) { }
|
|
|
|
bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
|
|
bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
|
|
op_iterator_impl &operator++() {
|
|
++Idx;
|
|
return *this;
|
|
}
|
|
op_iterator_impl operator++(int) {
|
|
op_iterator_impl tmp(*this);
|
|
operator++();
|
|
return tmp;
|
|
}
|
|
op_iterator_impl &operator--() {
|
|
--Idx;
|
|
return *this;
|
|
}
|
|
op_iterator_impl operator--(int) {
|
|
op_iterator_impl tmp(*this);
|
|
operator--();
|
|
return tmp;
|
|
}
|
|
|
|
T1 operator*() const { return Node->getOperand(Idx); }
|
|
};
|
|
|
|
public:
|
|
/// \brief Drop all references and remove the node from parent module.
|
|
void eraseFromParent();
|
|
|
|
/// \brief Remove all uses and clear node vector.
|
|
void dropAllReferences();
|
|
|
|
~NamedMDNode();
|
|
|
|
/// \brief Get the module that holds this named metadata collection.
|
|
inline Module *getParent() { return Parent; }
|
|
inline const Module *getParent() const { return Parent; }
|
|
|
|
MDNode *getOperand(unsigned i) const;
|
|
unsigned getNumOperands() const;
|
|
void addOperand(MDNode *M);
|
|
StringRef getName() const;
|
|
void print(raw_ostream &ROS) const;
|
|
void dump() const;
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Operand Iterator interface...
|
|
//
|
|
typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
|
|
op_iterator op_begin() { return op_iterator(this, 0); }
|
|
op_iterator op_end() { return op_iterator(this, getNumOperands()); }
|
|
|
|
typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
|
|
const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
|
|
const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
|
|
|
|
inline iterator_range<op_iterator> operands() {
|
|
return iterator_range<op_iterator>(op_begin(), op_end());
|
|
}
|
|
inline iterator_range<const_op_iterator> operands() const {
|
|
return iterator_range<const_op_iterator>(op_begin(), op_end());
|
|
}
|
|
};
|
|
|
|
} // end llvm namespace
|
|
|
|
#endif
|