llvm-6502/lib/Target/ARM/ARMSubtarget.cpp
Rafael Espindola 5793838fc8 Remove redundant calls to isMaterializable.
This removes calls to isMaterializable in the following cases:

* It was redundant with a call to isDeclaration now that isDeclaration returns
  the correct answer for materializable functions.
* It was followed by a call to Materialize. Just call Materialize and check EC.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221050 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-01 16:46:18 +00:00

407 lines
13 KiB
C++

//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARM specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "ARMSubtarget.h"
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMInstrInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
#include "ARMMachineFunctionInfo.h"
#include "Thumb1FrameLowering.h"
#include "Thumb1InstrInfo.h"
#include "Thumb2InstrInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "arm-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "ARMGenSubtargetInfo.inc"
static cl::opt<bool>
ReserveR9("arm-reserve-r9", cl::Hidden,
cl::desc("Reserve R9, making it unavailable as GPR"));
static cl::opt<bool>
ArmUseMOVT("arm-use-movt", cl::init(true), cl::Hidden);
static cl::opt<bool>
UseFusedMulOps("arm-use-mulops",
cl::init(true), cl::Hidden);
namespace {
enum AlignMode {
DefaultAlign,
StrictAlign,
NoStrictAlign
};
}
static cl::opt<AlignMode>
Align(cl::desc("Load/store alignment support"),
cl::Hidden, cl::init(DefaultAlign),
cl::values(
clEnumValN(DefaultAlign, "arm-default-align",
"Generate unaligned accesses only on hardware/OS "
"combinations that are known to support them"),
clEnumValN(StrictAlign, "arm-strict-align",
"Disallow all unaligned memory accesses"),
clEnumValN(NoStrictAlign, "arm-no-strict-align",
"Allow unaligned memory accesses"),
clEnumValEnd));
enum ITMode {
DefaultIT,
RestrictedIT,
NoRestrictedIT
};
static cl::opt<ITMode>
IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
cl::ZeroOrMore,
cl::values(clEnumValN(DefaultIT, "arm-default-it",
"Generate IT block based on arch"),
clEnumValN(RestrictedIT, "arm-restrict-it",
"Disallow deprecated IT based on ARMv8"),
clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
"Allow IT blocks based on ARMv7"),
clEnumValEnd));
static std::string computeDataLayout(ARMSubtarget &ST) {
std::string Ret = "";
if (ST.isLittle())
// Little endian.
Ret += "e";
else
// Big endian.
Ret += "E";
Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
// Pointers are 32 bits and aligned to 32 bits.
Ret += "-p:32:32";
// ABIs other than APCS have 64 bit integers with natural alignment.
if (!ST.isAPCS_ABI())
Ret += "-i64:64";
// We have 64 bits floats. The APCS ABI requires them to be aligned to 32
// bits, others to 64 bits. We always try to align to 64 bits.
if (ST.isAPCS_ABI())
Ret += "-f64:32:64";
// We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
// to 64. We always ty to give them natural alignment.
if (ST.isAPCS_ABI())
Ret += "-v64:32:64-v128:32:128";
else
Ret += "-v128:64:128";
// Try to align aggregates to 32 bits (the default is 64 bits, which has no
// particular hardware support on 32-bit ARM).
Ret += "-a:0:32";
// Integer registers are 32 bits.
Ret += "-n32";
// The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
// aligned everywhere else.
if (ST.isTargetNaCl())
Ret += "-S128";
else if (ST.isAAPCS_ABI())
Ret += "-S64";
else
Ret += "-S32";
return Ret;
}
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
/// so that we can use initializer lists for subtarget initialization.
ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
initSubtargetFeatures(CPU, FS);
return *this;
}
ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, const TargetMachine &TM,
bool IsLittle)
: ARMGenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle),
TargetTriple(TT), Options(TM.Options), TargetABI(ARM_ABI_UNKNOWN),
DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS))),
TSInfo(DL),
InstrInfo(isThumb1Only()
? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
: !isThumb()
? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
: (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
TLInfo(TM),
FrameLowering(!isThumb1Only()
? new ARMFrameLowering(*this)
: (ARMFrameLowering *)new Thumb1FrameLowering(*this)) {}
void ARMSubtarget::initializeEnvironment() {
HasV4TOps = false;
HasV5TOps = false;
HasV5TEOps = false;
HasV6Ops = false;
HasV6MOps = false;
HasV6T2Ops = false;
HasV7Ops = false;
HasV8Ops = false;
HasVFPv2 = false;
HasVFPv3 = false;
HasVFPv4 = false;
HasFPARMv8 = false;
HasNEON = false;
UseNEONForSinglePrecisionFP = false;
UseMulOps = UseFusedMulOps;
SlowFPVMLx = false;
HasVMLxForwarding = false;
SlowFPBrcc = false;
InThumbMode = false;
HasThumb2 = false;
NoARM = false;
IsR9Reserved = ReserveR9;
UseMovt = false;
SupportsTailCall = false;
HasFP16 = false;
HasD16 = false;
HasHardwareDivide = false;
HasHardwareDivideInARM = false;
HasT2ExtractPack = false;
HasDataBarrier = false;
Pref32BitThumb = false;
AvoidCPSRPartialUpdate = false;
AvoidMOVsShifterOperand = false;
HasRAS = false;
HasMPExtension = false;
HasVirtualization = false;
FPOnlySP = false;
HasPerfMon = false;
HasTrustZone = false;
HasCrypto = false;
HasCRC = false;
HasZeroCycleZeroing = false;
AllowsUnalignedMem = false;
Thumb2DSP = false;
UseNaClTrap = false;
UnsafeFPMath = false;
}
void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
if (CPUString.empty()) {
if (isTargetIOS() && TargetTriple.getArchName().endswith("v7s"))
// Default to the Swift CPU when targeting armv7s/thumbv7s.
CPUString = "swift";
else
CPUString = "generic";
}
// Insert the architecture feature derived from the target triple into the
// feature string. This is important for setting features that are implied
// based on the architecture version.
std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple.getTriple(),
CPUString);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = ArchFS + "," + FS.str();
else
ArchFS = FS;
}
ParseSubtargetFeatures(CPUString, ArchFS);
// FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
// Assert this for now to make the change obvious.
assert(hasV6T2Ops() || !hasThumb2());
// Keep a pointer to static instruction cost data for the specified CPU.
SchedModel = getSchedModelForCPU(CPUString);
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUString);
if (TargetABI == ARM_ABI_UNKNOWN) {
switch (TargetTriple.getEnvironment()) {
case Triple::Android:
case Triple::EABI:
case Triple::EABIHF:
case Triple::GNUEABI:
case Triple::GNUEABIHF:
TargetABI = ARM_ABI_AAPCS;
break;
default:
if (TargetTriple.isOSBinFormatMachO() &&
TargetTriple.getOS() == Triple::UnknownOS)
TargetABI = ARM_ABI_AAPCS;
else
TargetABI = ARM_ABI_APCS;
break;
}
}
// FIXME: this is invalid for WindowsCE
if (isTargetWindows()) {
TargetABI = ARM_ABI_AAPCS;
NoARM = true;
}
if (isAAPCS_ABI())
stackAlignment = 8;
if (isTargetNaCl())
stackAlignment = 16;
UseMovt = hasV6T2Ops() && ArmUseMOVT;
if (isTargetMachO()) {
IsR9Reserved = ReserveR9 || !HasV6Ops;
SupportsTailCall = !isTargetIOS() || !getTargetTriple().isOSVersionLT(5, 0);
} else {
IsR9Reserved = ReserveR9;
SupportsTailCall = !isThumb1Only();
}
if (Align == DefaultAlign) {
// Assume pre-ARMv6 doesn't support unaligned accesses.
//
// ARMv6 may or may not support unaligned accesses depending on the
// SCTLR.U bit, which is architecture-specific. We assume ARMv6
// Darwin and NetBSD targets support unaligned accesses, and others don't.
//
// ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit
// which raises an alignment fault on unaligned accesses. Linux
// defaults this bit to 0 and handles it as a system-wide (not
// per-process) setting. It is therefore safe to assume that ARMv7+
// Linux targets support unaligned accesses. The same goes for NaCl.
//
// The above behavior is consistent with GCC.
AllowsUnalignedMem =
(hasV7Ops() && (isTargetLinux() || isTargetNaCl() ||
isTargetNetBSD())) ||
(hasV6Ops() && (isTargetMachO() || isTargetNetBSD()));
} else {
AllowsUnalignedMem = !(Align == StrictAlign);
}
// No v6M core supports unaligned memory access (v6M ARM ARM A3.2)
if (isV6M())
AllowsUnalignedMem = false;
switch (IT) {
case DefaultIT:
RestrictIT = hasV8Ops() ? true : false;
break;
case RestrictedIT:
RestrictIT = true;
break;
case NoRestrictedIT:
RestrictIT = false;
break;
}
// NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
uint64_t Bits = getFeatureBits();
if ((Bits & ARM::ProcA5 || Bits & ARM::ProcA8) && // Where this matters
(Options.UnsafeFPMath || isTargetDarwin()))
UseNEONForSinglePrecisionFP = true;
}
/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
bool
ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
Reloc::Model RelocM) const {
if (RelocM == Reloc::Static)
return false;
bool isDecl = GV->isDeclarationForLinker();
if (!isTargetMachO()) {
// Extra load is needed for all externally visible.
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return false;
return true;
} else {
if (RelocM == Reloc::PIC_) {
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return false;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return true;
// If symbol visibility is hidden, we have a stub for common symbol
// references and external declarations.
if (isDecl || GV->hasCommonLinkage())
// Hidden $non_lazy_ptr reference.
return true;
return false;
} else {
// If this is a strong reference to a definition, it is definitely not
// through a stub.
if (!isDecl && !GV->isWeakForLinker())
return false;
// Unless we have a symbol with hidden visibility, we have to go through a
// normal $non_lazy_ptr stub because this symbol might be resolved late.
if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
return true;
}
}
return false;
}
unsigned ARMSubtarget::getMispredictionPenalty() const {
return SchedModel.MispredictPenalty;
}
bool ARMSubtarget::hasSinCos() const {
return getTargetTriple().isiOS() && !getTargetTriple().isOSVersionLT(7, 0);
}
// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
bool ARMSubtarget::enablePostMachineScheduler() const {
return (!isThumb() || hasThumb2());
}
bool ARMSubtarget::enableAtomicExpand() const {
return hasAnyDataBarrier() && !isThumb1Only();
}
bool ARMSubtarget::useMovt(const MachineFunction &MF) const {
// NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
// immediates as it is inherently position independent, and may be out of
// range otherwise.
return UseMovt && (isTargetWindows() ||
!MF.getFunction()->getAttributes().hasAttribute(
AttributeSet::FunctionIndex, Attribute::MinSize));
}