mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 02:33:33 +00:00
de9416e261
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135550 91177308-0d34-0410-b5e6-96231b3b80d8
830 lines
33 KiB
TableGen
830 lines
33 KiB
TableGen
//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the Mips implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction format superclass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
include "MipsInstrFormats.td"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips profiles and nodes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
|
|
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
|
|
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
|
|
SDTCisSameAs<1, 2>,
|
|
SDTCisSameAs<3, 4>,
|
|
SDTCisInt<4>]>;
|
|
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
|
|
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
|
|
def SDT_MipsMAddMSub : SDTypeProfile<0, 4,
|
|
[SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
|
|
SDTCisSameAs<1, 2>,
|
|
SDTCisSameAs<2, 3>]>;
|
|
def SDT_MipsDivRem : SDTypeProfile<0, 2,
|
|
[SDTCisVT<0, i32>,
|
|
SDTCisSameAs<0, 1>]>;
|
|
|
|
def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
|
|
|
|
def SDT_MipsDynAlloc : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
|
|
SDTCisVT<1, iPTR>]>;
|
|
def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
|
|
|
|
// Call
|
|
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
|
|
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
|
|
SDNPVariadic]>;
|
|
|
|
// Hi and Lo nodes are used to handle global addresses. Used on
|
|
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
|
|
// static model. (nothing to do with Mips Registers Hi and Lo)
|
|
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
|
|
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
|
|
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
|
|
|
|
// TlsGd node is used to handle General Dynamic TLS
|
|
def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
|
|
|
|
// TprelHi and TprelLo nodes are used to handle Local Exec TLS
|
|
def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
|
|
def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
|
|
|
|
// Thread pointer
|
|
def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
|
|
|
|
// Return
|
|
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
|
|
SDNPOptInGlue]>;
|
|
|
|
// These are target-independent nodes, but have target-specific formats.
|
|
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
|
|
[SDNPHasChain, SDNPOutGlue]>;
|
|
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
|
|
|
// MAdd*/MSub* nodes
|
|
def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
|
|
[SDNPOptInGlue, SDNPOutGlue]>;
|
|
def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
|
|
[SDNPOptInGlue, SDNPOutGlue]>;
|
|
def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
|
|
[SDNPOptInGlue, SDNPOutGlue]>;
|
|
def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
|
|
[SDNPOptInGlue, SDNPOutGlue]>;
|
|
|
|
// DivRem(u) nodes
|
|
def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
|
|
[SDNPOutGlue]>;
|
|
def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
|
|
[SDNPOutGlue]>;
|
|
|
|
// Target constant nodes that are not part of any isel patterns and remain
|
|
// unchanged can cause instructions with illegal operands to be emitted.
|
|
// Wrapper node patterns give the instruction selector a chance to replace
|
|
// target constant nodes that would otherwise remain unchanged with ADDiu
|
|
// nodes. Without these wrapper node patterns, the following conditional move
|
|
// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
|
|
// compiled:
|
|
// movn %got(d)($gp), %got(c)($gp), $4
|
|
// This instruction is illegal since movn can take only register operands.
|
|
|
|
def MipsWrapperPIC : SDNode<"MipsISD::WrapperPIC", SDTIntUnaryOp>;
|
|
|
|
// Pointer to dynamically allocated stack area.
|
|
def MipsDynAlloc : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
|
|
[SDNPHasChain, SDNPInGlue]>;
|
|
|
|
def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips Instruction Predicate Definitions.
|
|
//===----------------------------------------------------------------------===//
|
|
def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">;
|
|
def HasBitCount : Predicate<"Subtarget.hasBitCount()">;
|
|
def HasSwap : Predicate<"Subtarget.hasSwap()">;
|
|
def HasCondMov : Predicate<"Subtarget.hasCondMov()">;
|
|
def IsMips32 : Predicate<"Subtarget.isMips32()">;
|
|
def IsMips32r2 : Predicate<"Subtarget.isMips32r2()">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips Operand, Complex Patterns and Transformations Definitions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Instruction operand types
|
|
def brtarget : Operand<OtherVT>;
|
|
def calltarget : Operand<i32>;
|
|
def simm16 : Operand<i32>;
|
|
def shamt : Operand<i32>;
|
|
|
|
// Unsigned Operand
|
|
def uimm16 : Operand<i32> {
|
|
let PrintMethod = "printUnsignedImm";
|
|
}
|
|
|
|
// Address operand
|
|
def mem : Operand<i32> {
|
|
let PrintMethod = "printMemOperand";
|
|
let MIOperandInfo = (ops CPURegs, simm16);
|
|
}
|
|
|
|
def mem_ea : Operand<i32> {
|
|
let PrintMethod = "printMemOperandEA";
|
|
let MIOperandInfo = (ops CPURegs, simm16);
|
|
}
|
|
|
|
// Transformation Function - get the lower 16 bits.
|
|
def LO16 : SDNodeXForm<imm, [{
|
|
return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF);
|
|
}]>;
|
|
|
|
// Transformation Function - get the higher 16 bits.
|
|
def HI16 : SDNodeXForm<imm, [{
|
|
return getI32Imm((unsigned)N->getZExtValue() >> 16);
|
|
}]>;
|
|
|
|
// Node immediate fits as 16-bit sign extended on target immediate.
|
|
// e.g. addi, andi
|
|
def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
|
|
|
|
// Node immediate fits as 16-bit zero extended on target immediate.
|
|
// The LO16 param means that only the lower 16 bits of the node
|
|
// immediate are caught.
|
|
// e.g. addiu, sltiu
|
|
def immZExt16 : PatLeaf<(imm), [{
|
|
if (N->getValueType(0) == MVT::i32)
|
|
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
|
|
else
|
|
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
|
|
}], LO16>;
|
|
|
|
// shamt field must fit in 5 bits.
|
|
def immZExt5 : PatLeaf<(imm), [{
|
|
return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ;
|
|
}]>;
|
|
|
|
// Mips Address Mode! SDNode frameindex could possibily be a match
|
|
// since load and store instructions from stack used it.
|
|
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], []>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instructions specific format
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Arithmetic 3 register operands
|
|
class ArithR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
|
|
InstrItinClass itin, bit isComm = 0>:
|
|
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin> {
|
|
let isCommutable = isComm;
|
|
}
|
|
|
|
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
|
|
bit isComm = 0>:
|
|
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"), [], IIAlu> {
|
|
let isCommutable = isComm;
|
|
}
|
|
|
|
// Arithmetic 2 register operands
|
|
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
|
|
Operand Od, PatLeaf imm_type> :
|
|
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>;
|
|
|
|
class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
|
|
Operand Od, PatLeaf imm_type> :
|
|
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"), [], IIAlu>;
|
|
|
|
// Arithmetic Multiply ADD/SUB
|
|
let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
|
|
class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
|
|
FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
|
|
!strconcat(instr_asm, "\t$rs, $rt"),
|
|
[(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
|
|
let isCommutable = isComm;
|
|
}
|
|
|
|
// Logical
|
|
let isCommutable = 1 in
|
|
class LogicR<bits<6> func, string instr_asm, SDNode OpNode>:
|
|
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
|
|
|
|
class LogicI<bits<6> op, string instr_asm, SDNode OpNode>:
|
|
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, uimm16:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt16:$c))], IIAlu>;
|
|
|
|
let isCommutable = 1 in
|
|
class LogicNOR<bits<6> op, bits<6> func, string instr_asm>:
|
|
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))], IIAlu>;
|
|
|
|
// Shifts
|
|
class LogicR_shift_rotate_imm<bits<6> func, bits<5> _rs, string instr_asm,
|
|
SDNode OpNode>:
|
|
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, shamt:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu> {
|
|
let rs = _rs;
|
|
}
|
|
|
|
class LogicR_shift_rotate_reg<bits<6> func, bits<5> _shamt, string instr_asm,
|
|
SDNode OpNode>:
|
|
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$c, CPURegs:$b),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu> {
|
|
let shamt = _shamt;
|
|
}
|
|
|
|
// Load Upper Imediate
|
|
class LoadUpper<bits<6> op, string instr_asm>:
|
|
FI< op,
|
|
(outs CPURegs:$dst),
|
|
(ins uimm16:$imm),
|
|
!strconcat(instr_asm, "\t$dst, $imm"),
|
|
[], IIAlu>;
|
|
|
|
// Memory Load/Store
|
|
let canFoldAsLoad = 1, hasDelaySlot = 1 in
|
|
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode>:
|
|
FI<op, (outs CPURegs:$dst), (ins mem:$addr),
|
|
!strconcat(instr_asm, "\t$dst, $addr"),
|
|
[(set CPURegs:$dst, (OpNode addr:$addr))], IILoad>;
|
|
|
|
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode>:
|
|
FI<op, (outs), (ins CPURegs:$dst, mem:$addr),
|
|
!strconcat(instr_asm, "\t$dst, $addr"),
|
|
[(OpNode CPURegs:$dst, addr:$addr)], IIStore>;
|
|
|
|
// Conditional Branch
|
|
let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in {
|
|
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op>:
|
|
FI<op, (outs), (ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
|
|
!strconcat(instr_asm, "\t$a, $b, $offset"),
|
|
[(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)],
|
|
IIBranch>;
|
|
|
|
class CBranchZero<bits<6> op, string instr_asm, PatFrag cond_op>:
|
|
FI<op, (outs), (ins CPURegs:$src, brtarget:$offset),
|
|
!strconcat(instr_asm, "\t$src, $offset"),
|
|
[(brcond (cond_op CPURegs:$src, 0), bb:$offset)],
|
|
IIBranch>;
|
|
}
|
|
|
|
// SetCC
|
|
class SetCC_R<bits<6> op, bits<6> func, string instr_asm,
|
|
PatFrag cond_op>:
|
|
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))],
|
|
IIAlu>;
|
|
|
|
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op,
|
|
Operand Od, PatLeaf imm_type>:
|
|
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
|
|
!strconcat(instr_asm, "\t$dst, $b, $c"),
|
|
[(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))],
|
|
IIAlu>;
|
|
|
|
// Unconditional branch
|
|
let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
|
|
class JumpFJ<bits<6> op, string instr_asm>:
|
|
FJ<op, (outs), (ins brtarget:$target),
|
|
!strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch>;
|
|
|
|
let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
|
|
class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
|
|
FR<op, func, (outs), (ins CPURegs:$target),
|
|
!strconcat(instr_asm, "\t$target"), [(brind CPURegs:$target)], IIBranch>;
|
|
|
|
// Jump and Link (Call)
|
|
let isCall=1, hasDelaySlot=1,
|
|
// All calls clobber the non-callee saved registers...
|
|
Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
|
|
K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
|
|
class JumpLink<bits<6> op, string instr_asm>:
|
|
FJ<op, (outs), (ins calltarget:$target, variable_ops),
|
|
!strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
|
|
IIBranch>;
|
|
|
|
let rd=31 in
|
|
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
|
|
FR<op, func, (outs), (ins CPURegs:$rs, variable_ops),
|
|
!strconcat(instr_asm, "\t$rs"), [(MipsJmpLink CPURegs:$rs)], IIBranch>;
|
|
|
|
class BranchLink<string instr_asm>:
|
|
FI<0x1, (outs), (ins CPURegs:$rs, brtarget:$target, variable_ops),
|
|
!strconcat(instr_asm, "\t$rs, $target"), [], IIBranch>;
|
|
}
|
|
|
|
// Mul, Div
|
|
let Defs = [HI, LO] in {
|
|
let isCommutable = 1 in
|
|
class Mul<bits<6> func, string instr_asm, InstrItinClass itin>:
|
|
FR<0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b),
|
|
!strconcat(instr_asm, "\t$a, $b"), [], itin>;
|
|
|
|
class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
|
|
FR<0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b),
|
|
!strconcat(instr_asm, "\t$$zero, $a, $b"),
|
|
[(op CPURegs:$a, CPURegs:$b)], itin>;
|
|
}
|
|
|
|
// Move from Hi/Lo
|
|
class MoveFromLOHI<bits<6> func, string instr_asm>:
|
|
FR<0x00, func, (outs CPURegs:$dst), (ins),
|
|
!strconcat(instr_asm, "\t$dst"), [], IIHiLo>;
|
|
|
|
class MoveToLOHI<bits<6> func, string instr_asm>:
|
|
FR<0x00, func, (outs), (ins CPURegs:$src),
|
|
!strconcat(instr_asm, "\t$src"), [], IIHiLo>;
|
|
|
|
class EffectiveAddress<string instr_asm> :
|
|
FI<0x09, (outs CPURegs:$dst), (ins mem_ea:$addr),
|
|
instr_asm, [(set CPURegs:$dst, addr:$addr)], IIAlu>;
|
|
|
|
// Count Leading Ones/Zeros in Word
|
|
class CountLeading<bits<6> func, string instr_asm, list<dag> pattern>:
|
|
FR<0x1c, func, (outs CPURegs:$dst), (ins CPURegs:$src),
|
|
!strconcat(instr_asm, "\t$dst, $src"), pattern, IIAlu>,
|
|
Requires<[HasBitCount]> {
|
|
let shamt = 0;
|
|
let rt = rd;
|
|
}
|
|
|
|
// Sign Extend in Register.
|
|
class SignExtInReg<bits<6> func, string instr_asm, ValueType vt>:
|
|
FR<0x3f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
|
|
!strconcat(instr_asm, "\t$dst, $src"),
|
|
[(set CPURegs:$dst, (sext_inreg CPURegs:$src, vt))], NoItinerary>;
|
|
|
|
// Byte Swap
|
|
class ByteSwap<bits<6> func, string instr_asm>:
|
|
FR<0x1f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
|
|
!strconcat(instr_asm, "\t$dst, $src"),
|
|
[(set CPURegs:$dst, (bswap CPURegs:$src))], NoItinerary>;
|
|
|
|
// Conditional Move
|
|
class CondMov<bits<6> func, string instr_asm, PatLeaf MovCode>:
|
|
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$F, CPURegs:$T,
|
|
CPURegs:$cond), !strconcat(instr_asm, "\t$dst, $T, $cond"),
|
|
[], NoItinerary>;
|
|
|
|
// Read Hardware
|
|
class ReadHardware: FR<0x1f, 0x3b, (outs CPURegs:$dst), (ins HWRegs:$src),
|
|
"rdhwr\t$dst, $src", [], IIAlu> {
|
|
let rs = 0;
|
|
let shamt = 0;
|
|
}
|
|
|
|
// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
|
|
class Atomic2Ops<PatFrag Op, string Opstr> :
|
|
MipsPseudo<(outs CPURegs:$dst), (ins CPURegs:$ptr, CPURegs:$incr),
|
|
!strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
|
|
[(set CPURegs:$dst,
|
|
(Op CPURegs:$ptr, CPURegs:$incr))]>;
|
|
|
|
// Atomic Compare & Swap.
|
|
class AtomicCmpSwap<PatFrag Op, string Width> :
|
|
MipsPseudo<(outs CPURegs:$dst),
|
|
(ins CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap),
|
|
!strconcat("atomic_cmp_swap_", Width,
|
|
"\t$dst, $ptr, $cmp, $swap"),
|
|
[(set CPURegs:$dst,
|
|
(Op CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap))]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pseudo instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// As stack alignment is always done with addiu, we need a 16-bit immediate
|
|
let Defs = [SP], Uses = [SP] in {
|
|
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
|
|
"!ADJCALLSTACKDOWN $amt",
|
|
[(callseq_start timm:$amt)]>;
|
|
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
|
|
"!ADJCALLSTACKUP $amt1",
|
|
[(callseq_end timm:$amt1, timm:$amt2)]>;
|
|
}
|
|
|
|
// Some assembly macros need to avoid pseudoinstructions and assembler
|
|
// automatic reodering, we should reorder ourselves.
|
|
def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>;
|
|
def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>;
|
|
def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>;
|
|
def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>;
|
|
|
|
// These macros are inserted to prevent GAS from complaining
|
|
// when using the AT register.
|
|
def NOAT : MipsPseudo<(outs), (ins), ".set\tnoat", []>;
|
|
def ATMACRO : MipsPseudo<(outs), (ins), ".set\tat", []>;
|
|
|
|
// When handling PIC code the assembler needs .cpload and .cprestore
|
|
// directives. If the real instructions corresponding these directives
|
|
// are used, we have the same behavior, but get also a bunch of warnings
|
|
// from the assembler.
|
|
def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>;
|
|
def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc), ".cprestore\t$loc", []>;
|
|
|
|
let usesCustomInserter = 1 in {
|
|
def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, "load_add_8">;
|
|
def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, "load_add_16">;
|
|
def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, "load_add_32">;
|
|
def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, "load_sub_8">;
|
|
def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, "load_sub_16">;
|
|
def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, "load_sub_32">;
|
|
def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, "load_and_8">;
|
|
def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, "load_and_16">;
|
|
def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, "load_and_32">;
|
|
def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, "load_or_8">;
|
|
def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, "load_or_16">;
|
|
def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, "load_or_32">;
|
|
def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, "load_xor_8">;
|
|
def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, "load_xor_16">;
|
|
def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, "load_xor_32">;
|
|
def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, "load_nand_8">;
|
|
def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, "load_nand_16">;
|
|
def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, "load_nand_32">;
|
|
|
|
def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, "swap_8">;
|
|
def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, "swap_16">;
|
|
def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, "swap_32">;
|
|
|
|
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, "8">;
|
|
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, "16">;
|
|
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, "32">;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MipsI Instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Arithmetic Instructions (ALU Immediate)
|
|
def ADDiu : ArithI<0x09, "addiu", add, simm16, immSExt16>;
|
|
def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16>;
|
|
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>;
|
|
def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16>;
|
|
def ANDi : LogicI<0x0c, "andi", and>;
|
|
def ORi : LogicI<0x0d, "ori", or>;
|
|
def XORi : LogicI<0x0e, "xori", xor>;
|
|
def LUi : LoadUpper<0x0f, "lui">;
|
|
|
|
/// Arithmetic Instructions (3-Operand, R-Type)
|
|
def ADDu : ArithR<0x00, 0x21, "addu", add, IIAlu, 1>;
|
|
def SUBu : ArithR<0x00, 0x23, "subu", sub, IIAlu>;
|
|
def ADD : ArithOverflowR<0x00, 0x20, "add", 1>;
|
|
def SUB : ArithOverflowR<0x00, 0x22, "sub">;
|
|
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>;
|
|
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>;
|
|
def AND : LogicR<0x24, "and", and>;
|
|
def OR : LogicR<0x25, "or", or>;
|
|
def XOR : LogicR<0x26, "xor", xor>;
|
|
def NOR : LogicNOR<0x00, 0x27, "nor">;
|
|
|
|
/// Shift Instructions
|
|
def SLL : LogicR_shift_rotate_imm<0x00, 0x00, "sll", shl>;
|
|
def SRL : LogicR_shift_rotate_imm<0x02, 0x00, "srl", srl>;
|
|
def SRA : LogicR_shift_rotate_imm<0x03, 0x00, "sra", sra>;
|
|
def SLLV : LogicR_shift_rotate_reg<0x04, 0x00, "sllv", shl>;
|
|
def SRLV : LogicR_shift_rotate_reg<0x06, 0x00, "srlv", srl>;
|
|
def SRAV : LogicR_shift_rotate_reg<0x07, 0x00, "srav", sra>;
|
|
|
|
// Rotate Instructions
|
|
let Predicates = [IsMips32r2] in {
|
|
def ROTR : LogicR_shift_rotate_imm<0x02, 0x01, "rotr", rotr>;
|
|
def ROTRV : LogicR_shift_rotate_reg<0x06, 0x01, "rotrv", rotr>;
|
|
}
|
|
|
|
/// Load and Store Instructions
|
|
def LB : LoadM<0x20, "lb", sextloadi8>;
|
|
def LBu : LoadM<0x24, "lbu", zextloadi8>;
|
|
def LH : LoadM<0x21, "lh", sextloadi16>;
|
|
def LHu : LoadM<0x25, "lhu", zextloadi16>;
|
|
def LW : LoadM<0x23, "lw", load>;
|
|
def SB : StoreM<0x28, "sb", truncstorei8>;
|
|
def SH : StoreM<0x29, "sh", truncstorei16>;
|
|
def SW : StoreM<0x2b, "sw", store>;
|
|
|
|
let hasSideEffects = 1 in
|
|
def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype",
|
|
[(MipsSync imm:$stype)], NoItinerary>
|
|
{
|
|
let opcode = 0;
|
|
let Inst{25-11} = 0;
|
|
let Inst{5-0} = 15;
|
|
}
|
|
|
|
/// Load-linked, Store-conditional
|
|
let mayLoad = 1, hasDelaySlot = 1 in
|
|
def LL : FI<0x30, (outs CPURegs:$dst), (ins mem:$addr),
|
|
"ll\t$dst, $addr", [], IILoad>;
|
|
let mayStore = 1, Constraints = "$src = $dst" in
|
|
def SC : FI<0x38, (outs CPURegs:$dst), (ins CPURegs:$src, mem:$addr),
|
|
"sc\t$src, $addr", [], IIStore>;
|
|
|
|
/// Jump and Branch Instructions
|
|
def J : JumpFJ<0x02, "j">;
|
|
def JR : JumpFR<0x00, 0x08, "jr">;
|
|
def JAL : JumpLink<0x03, "jal">;
|
|
def JALR : JumpLinkReg<0x00, 0x09, "jalr">;
|
|
def BEQ : CBranch<0x04, "beq", seteq>;
|
|
def BNE : CBranch<0x05, "bne", setne>;
|
|
|
|
let rt=1 in
|
|
def BGEZ : CBranchZero<0x01, "bgez", setge>;
|
|
|
|
let rt=0 in {
|
|
def BGTZ : CBranchZero<0x07, "bgtz", setgt>;
|
|
def BLEZ : CBranchZero<0x07, "blez", setle>;
|
|
def BLTZ : CBranchZero<0x01, "bltz", setlt>;
|
|
}
|
|
|
|
def BGEZAL : BranchLink<"bgezal">;
|
|
def BLTZAL : BranchLink<"bltzal">;
|
|
|
|
let isReturn=1, isTerminator=1, hasDelaySlot=1,
|
|
isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in
|
|
def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target),
|
|
"jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
|
|
|
|
/// Multiply and Divide Instructions.
|
|
def MULT : Mul<0x18, "mult", IIImul>;
|
|
def MULTu : Mul<0x19, "multu", IIImul>;
|
|
def SDIV : Div<MipsDivRem, 0x1a, "div", IIIdiv>;
|
|
def UDIV : Div<MipsDivRemU, 0x1b, "divu", IIIdiv>;
|
|
|
|
let Defs = [HI] in
|
|
def MTHI : MoveToLOHI<0x11, "mthi">;
|
|
let Defs = [LO] in
|
|
def MTLO : MoveToLOHI<0x13, "mtlo">;
|
|
|
|
let Uses = [HI] in
|
|
def MFHI : MoveFromLOHI<0x10, "mfhi">;
|
|
let Uses = [LO] in
|
|
def MFLO : MoveFromLOHI<0x12, "mflo">;
|
|
|
|
/// Sign Ext In Register Instructions.
|
|
let Predicates = [HasSEInReg] in {
|
|
let shamt = 0x10, rs = 0 in
|
|
def SEB : SignExtInReg<0x21, "seb", i8>;
|
|
|
|
let shamt = 0x18, rs = 0 in
|
|
def SEH : SignExtInReg<0x20, "seh", i16>;
|
|
}
|
|
|
|
/// Count Leading
|
|
def CLZ : CountLeading<0b100000, "clz",
|
|
[(set CPURegs:$dst, (ctlz CPURegs:$src))]>;
|
|
def CLO : CountLeading<0b100001, "clo",
|
|
[(set CPURegs:$dst, (ctlz (not CPURegs:$src)))]>;
|
|
|
|
/// Byte Swap
|
|
let Predicates = [HasSwap] in {
|
|
let shamt = 0x3, rs = 0 in
|
|
def WSBW : ByteSwap<0x20, "wsbw">;
|
|
}
|
|
|
|
/// Conditional Move
|
|
def MIPS_CMOV_ZERO : PatLeaf<(i32 0)>;
|
|
def MIPS_CMOV_NZERO : PatLeaf<(i32 1)>;
|
|
|
|
// Conditional moves:
|
|
// These instructions are expanded in
|
|
// MipsISelLowering::EmitInstrWithCustomInserter if target does not have
|
|
// conditional move instructions.
|
|
// flag:int, data:int
|
|
let usesCustomInserter = 1, shamt = 0, Constraints = "$F = $dst" in
|
|
class CondMovIntInt<bits<6> funct, string instr_asm> :
|
|
FR<0, funct, (outs CPURegs:$dst),
|
|
(ins CPURegs:$T, CPURegs:$cond, CPURegs:$F),
|
|
!strconcat(instr_asm, "\t$dst, $T, $cond"), [], NoItinerary>;
|
|
|
|
def MOVZ_I : CondMovIntInt<0x0a, "movz">;
|
|
def MOVN_I : CondMovIntInt<0x0b, "movn">;
|
|
|
|
/// No operation
|
|
let addr=0 in
|
|
def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>;
|
|
|
|
// FrameIndexes are legalized when they are operands from load/store
|
|
// instructions. The same not happens for stack address copies, so an
|
|
// add op with mem ComplexPattern is used and the stack address copy
|
|
// can be matched. It's similar to Sparc LEA_ADDRi
|
|
def LEA_ADDiu : EffectiveAddress<"addiu\t$dst, $addr">;
|
|
|
|
// DynAlloc node points to dynamically allocated stack space.
|
|
// $sp is added to the list of implicitly used registers to prevent dead code
|
|
// elimination from removing instructions that modify $sp.
|
|
let Uses = [SP] in
|
|
def DynAlloc : EffectiveAddress<"addiu\t$dst, $addr">;
|
|
|
|
// MADD*/MSUB*
|
|
def MADD : MArithR<0, "madd", MipsMAdd, 1>;
|
|
def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
|
|
def MSUB : MArithR<4, "msub", MipsMSub>;
|
|
def MSUBU : MArithR<5, "msubu", MipsMSubu>;
|
|
|
|
// MUL is a assembly macro in the current used ISAs. In recent ISA's
|
|
// it is a real instruction.
|
|
def MUL : ArithR<0x1c, 0x02, "mul", mul, IIImul, 1>, Requires<[IsMips32]>;
|
|
|
|
def RDHWR : ReadHardware;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Arbitrary patterns that map to one or more instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Small immediates
|
|
def : Pat<(i32 immSExt16:$in),
|
|
(ADDiu ZERO, imm:$in)>;
|
|
def : Pat<(i32 immZExt16:$in),
|
|
(ORi ZERO, imm:$in)>;
|
|
|
|
// Arbitrary immediates
|
|
def : Pat<(i32 imm:$imm),
|
|
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
|
|
|
|
// Carry patterns
|
|
def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs),
|
|
(SUBu CPURegs:$lhs, CPURegs:$rhs)>;
|
|
def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs),
|
|
(ADDu CPURegs:$lhs, CPURegs:$rhs)>;
|
|
def : Pat<(addc CPURegs:$src, immSExt16:$imm),
|
|
(ADDiu CPURegs:$src, imm:$imm)>;
|
|
|
|
// Call
|
|
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
|
|
(JAL tglobaladdr:$dst)>;
|
|
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
|
|
(JAL texternalsym:$dst)>;
|
|
//def : Pat<(MipsJmpLink CPURegs:$dst),
|
|
// (JALR CPURegs:$dst)>;
|
|
|
|
// hi/lo relocs
|
|
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
|
|
def : Pat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
|
|
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
|
|
(ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
|
|
def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
|
|
(ADDiu CPURegs:$hi, tblockaddress:$lo)>;
|
|
|
|
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
|
|
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
|
|
(ADDiu CPURegs:$hi, tjumptable:$lo)>;
|
|
|
|
def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
|
|
def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
|
|
(ADDiu CPURegs:$hi, tconstpool:$lo)>;
|
|
|
|
// gp_rel relocs
|
|
def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
|
|
(ADDiu CPURegs:$gp, tglobaladdr:$in)>;
|
|
def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
|
|
(ADDiu CPURegs:$gp, tconstpool:$in)>;
|
|
|
|
// tlsgd
|
|
def : Pat<(add CPURegs:$gp, (MipsTlsGd tglobaltlsaddr:$in)),
|
|
(ADDiu CPURegs:$gp, tglobaltlsaddr:$in)>;
|
|
|
|
// tprel hi/lo
|
|
def : Pat<(MipsTprelHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
|
|
def : Pat<(add CPURegs:$hi, (MipsTprelLo tglobaltlsaddr:$lo)),
|
|
(ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
|
|
|
|
// wrapper_pic
|
|
class WrapperPICPat<SDNode node>:
|
|
Pat<(MipsWrapperPIC node:$in),
|
|
(ADDiu GP, node:$in)>;
|
|
|
|
def : WrapperPICPat<tglobaladdr>;
|
|
def : WrapperPICPat<tconstpool>;
|
|
def : WrapperPICPat<texternalsym>;
|
|
def : WrapperPICPat<tblockaddress>;
|
|
def : WrapperPICPat<tjumptable>;
|
|
|
|
// Mips does not have "not", so we expand our way
|
|
def : Pat<(not CPURegs:$in),
|
|
(NOR CPURegs:$in, ZERO)>;
|
|
|
|
// extended load and stores
|
|
def : Pat<(extloadi1 addr:$src), (LBu addr:$src)>;
|
|
def : Pat<(extloadi8 addr:$src), (LBu addr:$src)>;
|
|
def : Pat<(extloadi16 addr:$src), (LHu addr:$src)>;
|
|
|
|
// peepholes
|
|
def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
|
|
|
|
// brcond patterns
|
|
def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst),
|
|
(BNE CPURegs:$lhs, ZERO, bb:$dst)>;
|
|
def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst),
|
|
(BEQ CPURegs:$lhs, ZERO, bb:$dst)>;
|
|
|
|
def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
|
|
(BEQ (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
|
|
def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
|
|
(BEQ (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
|
|
def : Pat<(brcond (setge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
|
|
(BEQ (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
|
|
def : Pat<(brcond (setuge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
|
|
(BEQ (SLTiu CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
|
|
|
|
def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
|
|
(BEQ (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
|
|
def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
|
|
(BEQ (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
|
|
|
|
def : Pat<(brcond CPURegs:$cond, bb:$dst),
|
|
(BNE CPURegs:$cond, ZERO, bb:$dst)>;
|
|
|
|
// select patterns
|
|
multiclass MovzPats<RegisterClass RC, Instruction MOVZInst> {
|
|
def : Pat<(select (setge CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
|
|
(MOVZInst RC:$T, (SLT CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
|
|
def : Pat<(select (setuge CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
|
|
(MOVZInst RC:$T, (SLTu CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
|
|
def : Pat<(select (setge CPURegs:$lhs, immSExt16:$rhs), RC:$T, RC:$F),
|
|
(MOVZInst RC:$T, (SLTi CPURegs:$lhs, immSExt16:$rhs), RC:$F)>;
|
|
def : Pat<(select (setuge CPURegs:$lh, immSExt16:$rh), RC:$T, RC:$F),
|
|
(MOVZInst RC:$T, (SLTiu CPURegs:$lh, immSExt16:$rh), RC:$F)>;
|
|
def : Pat<(select (setle CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
|
|
(MOVZInst RC:$T, (SLT CPURegs:$rhs, CPURegs:$lhs), RC:$F)>;
|
|
def : Pat<(select (setule CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
|
|
(MOVZInst RC:$T, (SLTu CPURegs:$rhs, CPURegs:$lhs), RC:$F)>;
|
|
def : Pat<(select (seteq CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
|
|
(MOVZInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
|
|
def : Pat<(select (seteq CPURegs:$lhs, 0), RC:$T, RC:$F),
|
|
(MOVZInst RC:$T, CPURegs:$lhs, RC:$F)>;
|
|
}
|
|
|
|
multiclass MovnPats<RegisterClass RC, Instruction MOVNInst> {
|
|
def : Pat<(select (setne CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
|
|
(MOVNInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
|
|
def : Pat<(select CPURegs:$cond, RC:$T, RC:$F),
|
|
(MOVNInst RC:$T, CPURegs:$cond, RC:$F)>;
|
|
def : Pat<(select (setne CPURegs:$lhs, 0), RC:$T, RC:$F),
|
|
(MOVNInst RC:$T, CPURegs:$lhs, RC:$F)>;
|
|
}
|
|
|
|
defm : MovzPats<CPURegs, MOVZ_I>;
|
|
defm : MovnPats<CPURegs, MOVN_I>;
|
|
|
|
// setcc patterns
|
|
def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs),
|
|
(SLTu (XOR CPURegs:$lhs, CPURegs:$rhs), 1)>;
|
|
def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs),
|
|
(SLTu ZERO, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
|
|
|
|
def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs),
|
|
(XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>;
|
|
def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs),
|
|
(XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>;
|
|
|
|
def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs),
|
|
(SLT CPURegs:$rhs, CPURegs:$lhs)>;
|
|
def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs),
|
|
(SLTu CPURegs:$rhs, CPURegs:$lhs)>;
|
|
|
|
def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),
|
|
(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;
|
|
def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs),
|
|
(XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>;
|
|
|
|
def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs),
|
|
(XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>;
|
|
def : Pat<(setuge CPURegs:$lhs, immSExt16:$rhs),
|
|
(XORi (SLTiu CPURegs:$lhs, immSExt16:$rhs), 1)>;
|
|
|
|
// select MipsDynAlloc
|
|
def : Pat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating Point Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
include "MipsInstrFPU.td"
|
|
|