llvm-6502/tools/bugpoint/BugDriver.cpp
Reid Spencer c4bb052ecc For PR351:
Generally, remove use of fork/exec from bugpoint in favor of the portable
sys::Program::ExecuteAndWait method. This change requires two new options
to bugpoint to tell it that it is running in "child" mode. In this mode,
it reads its input and runs the passes. The result code signals to the
parent instance of bugpoint what happened (success, fail, crash).

This change should make bugpoint usable on Win32 systems.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24961 91177308-0d34-0410-b5e6-96231b3b80d8
2005-12-22 20:02:55 +00:00

225 lines
7.8 KiB
C++

//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class contains all of the shared state and information that is used by
// the BugPoint tool to track down errors in optimizations. This class is the
// main driver class that invokes all sub-functionality.
//
//===----------------------------------------------------------------------===//
#include "BugDriver.h"
#include "llvm/Linker.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Support/ToolRunner.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include <iostream>
#include <memory>
using namespace llvm;
// Anonymous namespace to define command line options for debugging.
//
namespace {
// Output - The user can specify a file containing the expected output of the
// program. If this filename is set, it is used as the reference diff source,
// otherwise the raw input run through an interpreter is used as the reference
// source.
//
cl::opt<std::string>
OutputFile("output", cl::desc("Specify a reference program output "
"(for miscompilation detection)"));
}
/// setNewProgram - If we reduce or update the program somehow, call this method
/// to update bugdriver with it. This deletes the old module and sets the
/// specified one as the current program.
void BugDriver::setNewProgram(Module *M) {
delete Program;
Program = M;
}
/// getPassesString - Turn a list of passes into a string which indicates the
/// command line options that must be passed to add the passes.
///
std::string llvm::getPassesString(const std::vector<const PassInfo*> &Passes) {
std::string Result;
for (unsigned i = 0, e = Passes.size(); i != e; ++i) {
if (i) Result += " ";
Result += "-";
Result += Passes[i]->getPassArgument();
}
return Result;
}
BugDriver::BugDriver(const char *toolname, bool as_child)
: ToolName(toolname), ReferenceOutputFile(OutputFile),
Program(0), Interpreter(0), cbe(0), gcc(0), run_as_child(as_child) {}
/// ParseInputFile - Given a bytecode or assembly input filename, parse and
/// return it, or return null if not possible.
///
Module *llvm::ParseInputFile(const std::string &InputFilename) {
Module *Result = 0;
try {
Result = ParseBytecodeFile(InputFilename);
if (!Result && !(Result = ParseAssemblyFile(InputFilename))){
std::cerr << "bugpoint: could not read input file '"
<< InputFilename << "'!\n";
}
} catch (const ParseException &E) {
std::cerr << "bugpoint: " << E.getMessage() << '\n';
Result = 0;
}
return Result;
}
// This method takes the specified list of LLVM input files, attempts to load
// them, either as assembly or bytecode, then link them together. It returns
// true on failure (if, for example, an input bytecode file could not be
// parsed), and false on success.
//
bool BugDriver::addSources(const std::vector<std::string> &Filenames) {
assert(Program == 0 && "Cannot call addSources multiple times!");
assert(!Filenames.empty() && "Must specify at least on input filename!");
// Load the first input file...
Program = ParseInputFile(Filenames[0]);
if (Program == 0) return true;
if (!run_as_child)
std::cout << "Read input file : '" << Filenames[0] << "'\n";
for (unsigned i = 1, e = Filenames.size(); i != e; ++i) {
std::auto_ptr<Module> M(ParseInputFile(Filenames[i]));
if (M.get() == 0) return true;
if (!run_as_child)
std::cout << "Linking in input file: '" << Filenames[i] << "'\n";
std::string ErrorMessage;
if (Linker::LinkModules(Program, M.get(), &ErrorMessage)) {
std::cerr << ToolName << ": error linking in '" << Filenames[i] << "': "
<< ErrorMessage << '\n';
return true;
}
}
if (!run_as_child)
std::cout << "*** All input ok\n";
// All input files read successfully!
return false;
}
/// run - The top level method that is invoked after all of the instance
/// variables are set up from command line arguments.
///
bool BugDriver::run() {
// The first thing to do is determine if we're running as a child. If we are,
// then what to do is very narrow. This form of invocation is only called
// from the runPasses method to actually run those passes in a child process.
if (run_as_child) {
// Execute the passes
return runPassesAsChild(PassesToRun);
}
// If we're not running as a child, the first thing that we must do is
// determine what the problem is. Does the optimization series crash the
// compiler, or does it produce illegal code? We make the top-level
// decision by trying to run all of the passes on the the input program,
// which should generate a bytecode file. If it does generate a bytecode
// file, then we know the compiler didn't crash, so try to diagnose a
// miscompilation.
if (!PassesToRun.empty()) {
std::cout << "Running selected passes on program to test for crash: ";
if (runPasses(PassesToRun))
return debugOptimizerCrash();
}
// Set up the execution environment, selecting a method to run LLVM bytecode.
if (initializeExecutionEnvironment()) return true;
// Test to see if we have a code generator crash.
std::cout << "Running the code generator to test for a crash: ";
try {
compileProgram(Program);
std::cout << '\n';
} catch (ToolExecutionError &TEE) {
std::cout << TEE.what();
return debugCodeGeneratorCrash();
}
// Run the raw input to see where we are coming from. If a reference output
// was specified, make sure that the raw output matches it. If not, it's a
// problem in the front-end or the code generator.
//
bool CreatedOutput = false;
if (ReferenceOutputFile.empty()) {
std::cout << "Generating reference output from raw program: ";
try {
ReferenceOutputFile = executeProgramWithCBE("bugpoint.reference.out");
CreatedOutput = true;
std::cout << "Reference output is: " << ReferenceOutputFile << '\n';
} catch (ToolExecutionError &TEE) {
std::cerr << TEE.what();
if (Interpreter != cbe) {
std::cerr << "*** There is a bug running the C backend. Either debug"
<< " it (use the -run-cbe bugpoint option), or fix the error"
<< " some other way.\n";
return 1;
}
return debugCodeGeneratorCrash();
}
}
// Make sure the reference output file gets deleted on exit from this
// function, if appropriate.
sys::Path ROF(ReferenceOutputFile);
FileRemover RemoverInstance(ROF, CreatedOutput);
// Diff the output of the raw program against the reference output. If it
// matches, then we have a miscompilation bug.
std::cout << "*** Checking the code generator...\n";
try {
if (!diffProgram()) {
std::cout << "\n*** Debugging miscompilation!\n";
return debugMiscompilation();
}
} catch (ToolExecutionError &TEE) {
std::cerr << TEE.what();
return debugCodeGeneratorCrash();
}
std::cout << "\n*** Input program does not match reference diff!\n";
std::cout << "Debugging code generator problem!\n";
try {
return debugCodeGenerator();
} catch (ToolExecutionError &TEE) {
std::cerr << TEE.what();
return debugCodeGeneratorCrash();
}
}
void llvm::PrintFunctionList(const std::vector<Function*> &Funcs) {
unsigned NumPrint = Funcs.size();
if (NumPrint > 10) NumPrint = 10;
for (unsigned i = 0; i != NumPrint; ++i)
std::cout << " " << Funcs[i]->getName();
if (NumPrint < Funcs.size())
std::cout << "... <" << Funcs.size() << " total>";
std::cout << std::flush;
}