llvm-6502/include/llvm/Target/TargetRegisterInfo.h
Jim Grosbach e188fb7dd9 Move isSubRegister() and isSuperRegister to MCRegisterInfo.
These were defined on TargetRegisterInfo, but they don't use any information
that's not available in MCRegisterInfo, so sink them down to be available
at the MC layer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170608 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-19 23:38:46 +00:00

907 lines
36 KiB
C++

//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes an abstract interface used to get information about a
// target machines register file. This information is used for a variety of
// purposed, especially register allocation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
#define LLVM_TARGET_TARGETREGISTERINFO_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/CallingConv.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/MC/MCRegisterInfo.h"
#include <cassert>
#include <functional>
namespace llvm {
class BitVector;
class MachineFunction;
class RegScavenger;
template<class T> class SmallVectorImpl;
class VirtRegMap;
class raw_ostream;
class TargetRegisterClass {
public:
typedef const MCPhysReg* iterator;
typedef const MCPhysReg* const_iterator;
typedef const MVT::SimpleValueType* vt_iterator;
typedef const TargetRegisterClass* const * sc_iterator;
// Instance variables filled by tablegen, do not use!
const MCRegisterClass *MC;
const vt_iterator VTs;
const uint32_t *SubClassMask;
const uint16_t *SuperRegIndices;
const sc_iterator SuperClasses;
ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
/// getID() - Return the register class ID number.
///
unsigned getID() const { return MC->getID(); }
/// getName() - Return the register class name for debugging.
///
const char *getName() const { return MC->getName(); }
/// begin/end - Return all of the registers in this class.
///
iterator begin() const { return MC->begin(); }
iterator end() const { return MC->end(); }
/// getNumRegs - Return the number of registers in this class.
///
unsigned getNumRegs() const { return MC->getNumRegs(); }
/// getRegister - Return the specified register in the class.
///
unsigned getRegister(unsigned i) const {
return MC->getRegister(i);
}
/// contains - Return true if the specified register is included in this
/// register class. This does not include virtual registers.
bool contains(unsigned Reg) const {
return MC->contains(Reg);
}
/// contains - Return true if both registers are in this class.
bool contains(unsigned Reg1, unsigned Reg2) const {
return MC->contains(Reg1, Reg2);
}
/// getSize - Return the size of the register in bytes, which is also the size
/// of a stack slot allocated to hold a spilled copy of this register.
unsigned getSize() const { return MC->getSize(); }
/// getAlignment - Return the minimum required alignment for a register of
/// this class.
unsigned getAlignment() const { return MC->getAlignment(); }
/// getCopyCost - Return the cost of copying a value between two registers in
/// this class. A negative number means the register class is very expensive
/// to copy e.g. status flag register classes.
int getCopyCost() const { return MC->getCopyCost(); }
/// isAllocatable - Return true if this register class may be used to create
/// virtual registers.
bool isAllocatable() const { return MC->isAllocatable(); }
/// hasType - return true if this TargetRegisterClass has the ValueType vt.
///
bool hasType(EVT vt) const {
for(int i = 0; VTs[i] != MVT::Other; ++i)
if (EVT(VTs[i]) == vt)
return true;
return false;
}
/// vt_begin / vt_end - Loop over all of the value types that can be
/// represented by values in this register class.
vt_iterator vt_begin() const {
return VTs;
}
vt_iterator vt_end() const {
vt_iterator I = VTs;
while (*I != MVT::Other) ++I;
return I;
}
/// hasSubClass - return true if the specified TargetRegisterClass
/// is a proper sub-class of this TargetRegisterClass.
bool hasSubClass(const TargetRegisterClass *RC) const {
return RC != this && hasSubClassEq(RC);
}
/// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
/// class.
bool hasSubClassEq(const TargetRegisterClass *RC) const {
unsigned ID = RC->getID();
return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
}
/// hasSuperClass - return true if the specified TargetRegisterClass is a
/// proper super-class of this TargetRegisterClass.
bool hasSuperClass(const TargetRegisterClass *RC) const {
return RC->hasSubClass(this);
}
/// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
/// class.
bool hasSuperClassEq(const TargetRegisterClass *RC) const {
return RC->hasSubClassEq(this);
}
/// getSubClassMask - Returns a bit vector of subclasses, including this one.
/// The vector is indexed by class IDs, see hasSubClassEq() above for how to
/// use it.
const uint32_t *getSubClassMask() const {
return SubClassMask;
}
/// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
/// that project some super-register class into this register class. The list
/// has an entry for each Idx such that:
///
/// There exists SuperRC where:
/// For all Reg in SuperRC:
/// this->contains(Reg:Idx)
///
const uint16_t *getSuperRegIndices() const {
return SuperRegIndices;
}
/// getSuperClasses - Returns a NULL terminated list of super-classes. The
/// classes are ordered by ID which is also a topological ordering from large
/// to small classes. The list does NOT include the current class.
sc_iterator getSuperClasses() const {
return SuperClasses;
}
/// isASubClass - return true if this TargetRegisterClass is a subset
/// class of at least one other TargetRegisterClass.
bool isASubClass() const {
return SuperClasses[0] != 0;
}
/// getRawAllocationOrder - Returns the preferred order for allocating
/// registers from this register class in MF. The raw order comes directly
/// from the .td file and may include reserved registers that are not
/// allocatable. Register allocators should also make sure to allocate
/// callee-saved registers only after all the volatiles are used. The
/// RegisterClassInfo class provides filtered allocation orders with
/// callee-saved registers moved to the end.
///
/// The MachineFunction argument can be used to tune the allocatable
/// registers based on the characteristics of the function, subtarget, or
/// other criteria.
///
/// By default, this method returns all registers in the class.
///
ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
}
};
/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
/// registers. These are used by codegen, not by MC.
struct TargetRegisterInfoDesc {
unsigned CostPerUse; // Extra cost of instructions using register.
bool inAllocatableClass; // Register belongs to an allocatable regclass.
};
/// Each TargetRegisterClass has a per register weight, and weight
/// limit which must be less than the limits of its pressure sets.
struct RegClassWeight {
unsigned RegWeight;
unsigned WeightLimit;
};
/// TargetRegisterInfo base class - We assume that the target defines a static
/// array of TargetRegisterDesc objects that represent all of the machine
/// registers that the target has. As such, we simply have to track a pointer
/// to this array so that we can turn register number into a register
/// descriptor.
///
class TargetRegisterInfo : public MCRegisterInfo {
public:
typedef const TargetRegisterClass * const * regclass_iterator;
private:
const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen
const char *const *SubRegIndexNames; // Names of subreg indexes.
// Pointer to array of lane masks, one per sub-reg index.
const unsigned *SubRegIndexLaneMasks;
regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
protected:
TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
regclass_iterator RegClassBegin,
regclass_iterator RegClassEnd,
const char *const *SRINames,
const unsigned *SRILaneMasks);
virtual ~TargetRegisterInfo();
public:
// Register numbers can represent physical registers, virtual registers, and
// sometimes stack slots. The unsigned values are divided into these ranges:
//
// 0 Not a register, can be used as a sentinel.
// [1;2^30) Physical registers assigned by TableGen.
// [2^30;2^31) Stack slots. (Rarely used.)
// [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
//
// Further sentinels can be allocated from the small negative integers.
// DenseMapInfo<unsigned> uses -1u and -2u.
/// isStackSlot - Sometimes it is useful the be able to store a non-negative
/// frame index in a variable that normally holds a register. isStackSlot()
/// returns true if Reg is in the range used for stack slots.
///
/// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
/// slots, so if a variable may contains a stack slot, always check
/// isStackSlot() first.
///
static bool isStackSlot(unsigned Reg) {
return int(Reg) >= (1 << 30);
}
/// stackSlot2Index - Compute the frame index from a register value
/// representing a stack slot.
static int stackSlot2Index(unsigned Reg) {
assert(isStackSlot(Reg) && "Not a stack slot");
return int(Reg - (1u << 30));
}
/// index2StackSlot - Convert a non-negative frame index to a stack slot
/// register value.
static unsigned index2StackSlot(int FI) {
assert(FI >= 0 && "Cannot hold a negative frame index.");
return FI + (1u << 30);
}
/// isPhysicalRegister - Return true if the specified register number is in
/// the physical register namespace.
static bool isPhysicalRegister(unsigned Reg) {
assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
return int(Reg) > 0;
}
/// isVirtualRegister - Return true if the specified register number is in
/// the virtual register namespace.
static bool isVirtualRegister(unsigned Reg) {
assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
return int(Reg) < 0;
}
/// virtReg2Index - Convert a virtual register number to a 0-based index.
/// The first virtual register in a function will get the index 0.
static unsigned virtReg2Index(unsigned Reg) {
assert(isVirtualRegister(Reg) && "Not a virtual register");
return Reg & ~(1u << 31);
}
/// index2VirtReg - Convert a 0-based index to a virtual register number.
/// This is the inverse operation of VirtReg2IndexFunctor below.
static unsigned index2VirtReg(unsigned Index) {
return Index | (1u << 31);
}
/// getMinimalPhysRegClass - Returns the Register Class of a physical
/// register of the given type, picking the most sub register class of
/// the right type that contains this physreg.
const TargetRegisterClass *
getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
/// getAllocatableClass - Return the maximal subclass of the given register
/// class that is alloctable, or NULL.
const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass *RC) const;
/// getAllocatableSet - Returns a bitset indexed by register number
/// indicating if a register is allocatable or not. If a register class is
/// specified, returns the subset for the class.
BitVector getAllocatableSet(const MachineFunction &MF,
const TargetRegisterClass *RC = NULL) const;
/// getCostPerUse - Return the additional cost of using this register instead
/// of other registers in its class.
unsigned getCostPerUse(unsigned RegNo) const {
return InfoDesc[RegNo].CostPerUse;
}
/// isInAllocatableClass - Return true if the register is in the allocation
/// of any register class.
bool isInAllocatableClass(unsigned RegNo) const {
return InfoDesc[RegNo].inAllocatableClass;
}
/// getSubRegIndexName - Return the human-readable symbolic target-specific
/// name for the specified SubRegIndex.
const char *getSubRegIndexName(unsigned SubIdx) const {
assert(SubIdx && SubIdx < getNumSubRegIndices() &&
"This is not a subregister index");
return SubRegIndexNames[SubIdx-1];
}
/// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
/// register that are covered by SubIdx.
///
/// Lane masks for sub-register indices are similar to register units for
/// physical registers. The individual bits in a lane mask can't be assigned
/// any specific meaning. They can be used to check if two sub-register
/// indices overlap.
///
/// If the target has a register such that:
///
/// getSubReg(Reg, A) overlaps getSubReg(Reg, B)
///
/// then:
///
/// getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
///
/// The converse is not necessarily true. If two lane masks have a common
/// bit, the corresponding sub-registers may not overlap, but it can be
/// assumed that they usually will.
unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
// SubIdx == 0 is allowed, it has the lane mask ~0u.
assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
return SubRegIndexLaneMasks[SubIdx];
}
/// regsOverlap - Returns true if the two registers are equal or alias each
/// other. The registers may be virtual register.
bool regsOverlap(unsigned regA, unsigned regB) const {
if (regA == regB) return true;
if (isVirtualRegister(regA) || isVirtualRegister(regB))
return false;
// Regunits are numerically ordered. Find a common unit.
MCRegUnitIterator RUA(regA, this);
MCRegUnitIterator RUB(regB, this);
do {
if (*RUA == *RUB) return true;
if (*RUA < *RUB) ++RUA;
else ++RUB;
} while (RUA.isValid() && RUB.isValid());
return false;
}
/// hasRegUnit - Returns true if Reg contains RegUnit.
bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
if (*Units == RegUnit)
return true;
return false;
}
/// getCalleeSavedRegs - Return a null-terminated list of all of the
/// callee saved registers on this target. The register should be in the
/// order of desired callee-save stack frame offset. The first register is
/// closest to the incoming stack pointer if stack grows down, and vice versa.
///
virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0)
const = 0;
/// getCallPreservedMask - Return a mask of call-preserved registers for the
/// given calling convention on the current sub-target. The mask should
/// include all call-preserved aliases. This is used by the register
/// allocator to determine which registers can be live across a call.
///
/// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
/// A set bit indicates that all bits of the corresponding register are
/// preserved across the function call. The bit mask is expected to be
/// sub-register complete, i.e. if A is preserved, so are all its
/// sub-registers.
///
/// Bits are numbered from the LSB, so the bit for physical register Reg can
/// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
///
/// A NULL pointer means that no register mask will be used, and call
/// instructions should use implicit-def operands to indicate call clobbered
/// registers.
///
virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
// The default mask clobbers everything. All targets should override.
return 0;
}
/// getReservedRegs - Returns a bitset indexed by physical register number
/// indicating if a register is a special register that has particular uses
/// and should be considered unavailable at all times, e.g. SP, RA. This is
/// used by register scavenger to determine what registers are free.
virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
/// getMatchingSuperReg - Return a super-register of the specified register
/// Reg so its sub-register of index SubIdx is Reg.
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
const TargetRegisterClass *RC) const {
return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
}
/// getMatchingSuperRegClass - Return a subclass of the specified register
/// class A so that each register in it has a sub-register of the
/// specified sub-register index which is in the specified register class B.
///
/// TableGen will synthesize missing A sub-classes.
virtual const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B, unsigned Idx) const;
/// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
/// supports the sub-register index Idx.
/// If no such sub-class exists, return NULL.
/// If all registers in RC already have an Idx sub-register, return RC.
///
/// TableGen generates a version of this function that is good enough in most
/// cases. Targets can override if they have constraints that TableGen
/// doesn't understand. For example, the x86 sub_8bit sub-register index is
/// supported by the full GR32 register class in 64-bit mode, but only by the
/// GR32_ABCD regiister class in 32-bit mode.
///
/// TableGen will synthesize missing RC sub-classes.
virtual const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
assert(Idx == 0 && "Target has no sub-registers");
return RC;
}
/// composeSubRegIndices - Return the subregister index you get from composing
/// two subregister indices.
///
/// The special null sub-register index composes as the identity.
///
/// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
/// returns c. Note that composeSubRegIndices does not tell you about illegal
/// compositions. If R does not have a subreg a, or R:a does not have a subreg
/// b, composeSubRegIndices doesn't tell you.
///
/// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
/// ssub_0:S0 - ssub_3:S3 subregs.
/// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
///
unsigned composeSubRegIndices(unsigned a, unsigned b) const {
if (!a) return b;
if (!b) return a;
return composeSubRegIndicesImpl(a, b);
}
protected:
/// Overridden by TableGen in targets that have sub-registers.
virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
llvm_unreachable("Target has no sub-registers");
}
public:
/// getCommonSuperRegClass - Find a common super-register class if it exists.
///
/// Find a register class, SuperRC and two sub-register indices, PreA and
/// PreB, such that:
///
/// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and
///
/// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
///
/// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
///
/// SuperRC will be chosen such that no super-class of SuperRC satisfies the
/// requirements, and there is no register class with a smaller spill size
/// that satisfies the requirements.
///
/// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
///
/// Either of the PreA and PreB sub-register indices may be returned as 0. In
/// that case, the returned register class will be a sub-class of the
/// corresponding argument register class.
///
/// The function returns NULL if no register class can be found.
///
const TargetRegisterClass*
getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
const TargetRegisterClass *RCB, unsigned SubB,
unsigned &PreA, unsigned &PreB) const;
//===--------------------------------------------------------------------===//
// Register Class Information
//
/// Register class iterators
///
regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_iterator regclass_end() const { return RegClassEnd; }
unsigned getNumRegClasses() const {
return (unsigned)(regclass_end()-regclass_begin());
}
/// getRegClass - Returns the register class associated with the enumeration
/// value. See class MCOperandInfo.
const TargetRegisterClass *getRegClass(unsigned i) const {
assert(i < getNumRegClasses() && "Register Class ID out of range");
return RegClassBegin[i];
}
/// getCommonSubClass - find the largest common subclass of A and B. Return
/// NULL if there is no common subclass.
const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass *A,
const TargetRegisterClass *B) const;
/// getPointerRegClass - Returns a TargetRegisterClass used for pointer
/// values. If a target supports multiple different pointer register classes,
/// kind specifies which one is indicated.
virtual const TargetRegisterClass *
getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
llvm_unreachable("Target didn't implement getPointerRegClass!");
}
/// getCrossCopyRegClass - Returns a legal register class to copy a register
/// in the specified class to or from. If it is possible to copy the register
/// directly without using a cross register class copy, return the specified
/// RC. Returns NULL if it is not possible to copy between a two registers of
/// the specified class.
virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass *RC) const {
return RC;
}
/// getLargestLegalSuperClass - Returns the largest super class of RC that is
/// legal to use in the current sub-target and has the same spill size.
/// The returned register class can be used to create virtual registers which
/// means that all its registers can be copied and spilled.
virtual const TargetRegisterClass*
getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
/// The default implementation is very conservative and doesn't allow the
/// register allocator to inflate register classes.
return RC;
}
/// getRegPressureLimit - Return the register pressure "high water mark" for
/// the specific register class. The scheduler is in high register pressure
/// mode (for the specific register class) if it goes over the limit.
///
/// Note: this is the old register pressure model that relies on a manually
/// specified representative register class per value type.
virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
return 0;
}
/// Get the weight in units of pressure for this register class.
virtual const RegClassWeight &getRegClassWeight(
const TargetRegisterClass *RC) const = 0;
/// Get the weight in units of pressure for this register unit.
virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
/// Get the number of dimensions of register pressure.
virtual unsigned getNumRegPressureSets() const = 0;
/// Get the name of this register unit pressure set.
virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
/// Get the register unit pressure limit for this dimension.
/// This limit must be adjusted dynamically for reserved registers.
virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
/// Get the dimensions of register pressure impacted by this register class.
/// Returns a -1 terminated array of pressure set IDs.
virtual const int *getRegClassPressureSets(
const TargetRegisterClass *RC) const = 0;
/// Get the dimensions of register pressure impacted by this register unit.
/// Returns a -1 terminated array of pressure set IDs.
virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
/// Get a list of 'hint' registers that the register allocator should try
/// first when allocating a physical register for the virtual register
/// VirtReg. These registers are effectively moved to the front of the
/// allocation order.
///
/// The Order argument is the allocation order for VirtReg's register class
/// as returned from RegisterClassInfo::getOrder(). The hint registers must
/// come from Order, and they must not be reserved.
///
/// The default implementation of this function can resolve
/// target-independent hints provided to MRI::setRegAllocationHint with
/// HintType == 0. Targets that override this function should defer to the
/// default implementation if they have no reason to change the allocation
/// order for VirtReg. There may be target-independent hints.
virtual void getRegAllocationHints(unsigned VirtReg,
ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints,
const MachineFunction &MF,
const VirtRegMap *VRM = 0) const;
/// avoidWriteAfterWrite - Return true if the register allocator should avoid
/// writing a register from RC in two consecutive instructions.
/// This can avoid pipeline stalls on certain architectures.
/// It does cause increased register pressure, though.
virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
return false;
}
/// UpdateRegAllocHint - A callback to allow target a chance to update
/// register allocation hints when a register is "changed" (e.g. coalesced)
/// to another register. e.g. On ARM, some virtual registers should target
/// register pairs, if one of pair is coalesced to another register, the
/// allocation hint of the other half of the pair should be changed to point
/// to the new register.
virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
MachineFunction &MF) const {
// Do nothing.
}
/// requiresRegisterScavenging - returns true if the target requires (and can
/// make use of) the register scavenger.
virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
return false;
}
/// useFPForScavengingIndex - returns true if the target wants to use
/// frame pointer based accesses to spill to the scavenger emergency spill
/// slot.
virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
return true;
}
/// requiresFrameIndexScavenging - returns true if the target requires post
/// PEI scavenging of registers for materializing frame index constants.
virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
return false;
}
/// requiresVirtualBaseRegisters - Returns true if the target wants the
/// LocalStackAllocation pass to be run and virtual base registers
/// used for more efficient stack access.
virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
return false;
}
/// hasReservedSpillSlot - Return true if target has reserved a spill slot in
/// the stack frame of the given function for the specified register. e.g. On
/// x86, if the frame register is required, the first fixed stack object is
/// reserved as its spill slot. This tells PEI not to create a new stack frame
/// object for the given register. It should be called only after
/// processFunctionBeforeCalleeSavedScan().
virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
int &FrameIdx) const {
return false;
}
/// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
/// after register allocation.
virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
return false;
}
/// needsStackRealignment - true if storage within the function requires the
/// stack pointer to be aligned more than the normal calling convention calls
/// for.
virtual bool needsStackRealignment(const MachineFunction &MF) const {
return false;
}
/// getFrameIndexInstrOffset - Get the offset from the referenced frame
/// index in the instruction, if there is one.
virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
int Idx) const {
return 0;
}
/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
return false;
}
/// materializeFrameBaseRegister - Insert defining instruction(s) for
/// BaseReg to be a pointer to FrameIdx before insertion point I.
virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
unsigned BaseReg, int FrameIdx,
int64_t Offset) const {
llvm_unreachable("materializeFrameBaseRegister does not exist on this "
"target");
}
/// resolveFrameIndex - Resolve a frame index operand of an instruction
/// to reference the indicated base register plus offset instead.
virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
unsigned BaseReg, int64_t Offset) const {
llvm_unreachable("resolveFrameIndex does not exist on this target");
}
/// isFrameOffsetLegal - Determine whether a given offset immediate is
/// encodable to resolve a frame index.
virtual bool isFrameOffsetLegal(const MachineInstr *MI,
int64_t Offset) const {
llvm_unreachable("isFrameOffsetLegal does not exist on this target");
}
/// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
/// code insertion to eliminate call frame setup and destroy pseudo
/// instructions (but only if the Target is using them). It is responsible
/// for eliminating these instructions, replacing them with concrete
/// instructions. This method need only be implemented if using call frame
/// setup/destroy pseudo instructions.
///
virtual void
eliminateCallFramePseudoInstr(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
"target!");
}
/// saveScavengerRegister - Spill the register so it can be used by the
/// register scavenger. Return true if the register was spilled, false
/// otherwise. If this function does not spill the register, the scavenger
/// will instead spill it to the emergency spill slot.
///
virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
MachineBasicBlock::iterator &UseMI,
const TargetRegisterClass *RC,
unsigned Reg) const {
return false;
}
/// eliminateFrameIndex - This method must be overriden to eliminate abstract
/// frame indices from instructions which may use them. The instruction
/// referenced by the iterator contains an MO_FrameIndex operand which must be
/// eliminated by this method. This method may modify or replace the
/// specified instruction, as long as it keeps the iterator pointing at the
/// finished product. SPAdj is the SP adjustment due to call frame setup
/// instruction.
virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, RegScavenger *RS=NULL) const = 0;
//===--------------------------------------------------------------------===//
/// Debug information queries.
/// getFrameRegister - This method should return the register used as a base
/// for values allocated in the current stack frame.
virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
/// getCompactUnwindRegNum - This function maps the register to the number for
/// compact unwind encoding. Return -1 if the register isn't valid.
virtual int getCompactUnwindRegNum(unsigned, bool) const {
return -1;
}
};
//===----------------------------------------------------------------------===//
// SuperRegClassIterator
//===----------------------------------------------------------------------===//
//
// Iterate over the possible super-registers for a given register class. The
// iterator will visit a list of pairs (Idx, Mask) corresponding to the
// possible classes of super-registers.
//
// Each bit mask will have at least one set bit, and each set bit in Mask
// corresponds to a SuperRC such that:
//
// For all Reg in SuperRC: Reg:Idx is in RC.
//
// The iterator can include (O, RC->getSubClassMask()) as the first entry which
// also satisfies the above requirement, assuming Reg:0 == Reg.
//
class SuperRegClassIterator {
const unsigned RCMaskWords;
unsigned SubReg;
const uint16_t *Idx;
const uint32_t *Mask;
public:
/// Create a SuperRegClassIterator that visits all the super-register classes
/// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
SuperRegClassIterator(const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
bool IncludeSelf = false)
: RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
SubReg(0),
Idx(RC->getSuperRegIndices()),
Mask(RC->getSubClassMask()) {
if (!IncludeSelf)
++*this;
}
/// Returns true if this iterator is still pointing at a valid entry.
bool isValid() const { return Idx; }
/// Returns the current sub-register index.
unsigned getSubReg() const { return SubReg; }
/// Returns the bit mask if register classes that getSubReg() projects into
/// RC.
const uint32_t *getMask() const { return Mask; }
/// Advance iterator to the next entry.
void operator++() {
assert(isValid() && "Cannot move iterator past end.");
Mask += RCMaskWords;
SubReg = *Idx++;
if (!SubReg)
Idx = 0;
}
};
// This is useful when building IndexedMaps keyed on virtual registers
struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
unsigned operator()(unsigned Reg) const {
return TargetRegisterInfo::virtReg2Index(Reg);
}
};
/// PrintReg - Helper class for printing registers on a raw_ostream.
/// Prints virtual and physical registers with or without a TRI instance.
///
/// The format is:
/// %noreg - NoRegister
/// %vreg5 - a virtual register.
/// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
/// %EAX - a physical register
/// %physreg17 - a physical register when no TRI instance given.
///
/// Usage: OS << PrintReg(Reg, TRI) << '\n';
///
class PrintReg {
const TargetRegisterInfo *TRI;
unsigned Reg;
unsigned SubIdx;
public:
explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0,
unsigned subidx = 0)
: TRI(tri), Reg(reg), SubIdx(subidx) {}
void print(raw_ostream&) const;
};
static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
PR.print(OS);
return OS;
}
/// PrintRegUnit - Helper class for printing register units on a raw_ostream.
///
/// Register units are named after their root registers:
///
/// AL - Single root.
/// FP0~ST7 - Dual roots.
///
/// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
///
class PrintRegUnit {
const TargetRegisterInfo *TRI;
unsigned Unit;
public:
PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
: TRI(tri), Unit(unit) {}
void print(raw_ostream&) const;
};
static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
PR.print(OS);
return OS;
}
} // End llvm namespace
#endif