llvm-6502/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
Duncan Sands d8742eeb2f Initial soft-float support for LegalizeTypes. I rewrote
the fcopysign expansion from LegalizeDAG to get rid of
what seems to be a bug: the use of sign extension means
that when copying the sign bit from an f32 to an f64,
the upper 32 bits of the f64 (now an i64) are set, not
just the top bit...  I also generalized it to work for
any sized floating point types, and removed the bogosity:
  SDOperand Mask1 = (SrcVT == MVT::f64)
    ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT)
    : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT);
  Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1);
(here SrcNVT is an integer with the same size as SrcVT).
As far as I can see this takes a 1 << 63, converts to
a double, converts that to a floating point constant
then converts that to an integer constant, ending up
with... 1 << 63 as an integer constant!  So I just
generate this integer constant directly.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48305 91177308-0d34-0410-b5e6-96231b3b80d8
2008-03-12 21:27:04 +00:00

538 lines
19 KiB
C++

//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeTypes method. It transforms
// an arbitrary well-formed SelectionDAG to only consist of legal types. This
// is common code shared among the LegalizeTypes*.cpp files.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#ifndef NDEBUG
static cl::opt<bool>
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before legalize types"));
#else
static const bool ViewLegalizeTypesDAGs = 0;
#endif
/// run - This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes.
void DAGTypeLegalizer::run() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// The root of the dag may dangle to deleted nodes until the type legalizer is
// done. Set it to null to avoid confusion.
DAG.setRoot(SDOperand());
// Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
// (and remembering them) if they are leaves and assigning 'NewNode' if
// non-leaves.
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
if (I->getNumOperands() == 0) {
I->setNodeId(ReadyToProcess);
Worklist.push_back(I);
} else {
I->setNodeId(NewNode);
}
}
// Now that we have a set of nodes to process, handle them all.
while (!Worklist.empty()) {
SDNode *N = Worklist.back();
Worklist.pop_back();
assert(N->getNodeId() == ReadyToProcess &&
"Node should be ready if on worklist!");
// Scan the values produced by the node, checking to see if any result
// types are illegal.
unsigned i = 0;
unsigned NumResults = N->getNumValues();
do {
MVT::ValueType ResultVT = N->getValueType(i);
switch (getTypeAction(ResultVT)) {
default:
assert(false && "Unknown action!");
case Legal:
break;
case Promote:
PromoteResult(N, i);
goto NodeDone;
case Expand:
ExpandResult(N, i);
goto NodeDone;
case FloatToInt:
FloatToIntResult(N, i);
goto NodeDone;
case Scalarize:
ScalarizeResult(N, i);
goto NodeDone;
case Split:
SplitResult(N, i);
goto NodeDone;
}
} while (++i < NumResults);
// Scan the operand list for the node, handling any nodes with operands that
// are illegal.
{
unsigned NumOperands = N->getNumOperands();
bool NeedsRevisit = false;
for (i = 0; i != NumOperands; ++i) {
MVT::ValueType OpVT = N->getOperand(i).getValueType();
switch (getTypeAction(OpVT)) {
default:
assert(false && "Unknown action!");
case Legal:
continue;
case Promote:
NeedsRevisit = PromoteOperand(N, i);
break;
case Expand:
NeedsRevisit = ExpandOperand(N, i);
break;
case FloatToInt:
NeedsRevisit = FloatToIntOperand(N, i);
break;
case Scalarize:
NeedsRevisit = ScalarizeOperand(N, i);
break;
case Split:
NeedsRevisit = SplitOperand(N, i);
break;
}
break;
}
// If the node needs revisiting, don't add all users to the worklist etc.
if (NeedsRevisit)
continue;
if (i == NumOperands)
DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
}
NodeDone:
// If we reach here, the node was processed, potentially creating new nodes.
// Mark it as processed and add its users to the worklist as appropriate.
N->setNodeId(Processed);
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
int NodeID = User->getNodeId();
assert(NodeID != ReadyToProcess && NodeID != Processed &&
"Invalid node id for user of unprocessed node!");
// This node has two options: it can either be a new node or its Node ID
// may be a count of the number of operands it has that are not ready.
if (NodeID > 0) {
User->setNodeId(NodeID-1);
// If this was the last use it was waiting on, add it to the ready list.
if (NodeID-1 == ReadyToProcess)
Worklist.push_back(User);
continue;
}
// Otherwise, this node is new: this is the first operand of it that
// became ready. Its new NodeID is the number of operands it has minus 1
// (as this node is now processed).
assert(NodeID == NewNode && "Unknown node ID!");
User->setNodeId(User->getNumOperands()-1);
// If the node only has a single operand, it is now ready.
if (User->getNumOperands() == 1)
Worklist.push_back(User);
}
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
//DAG.viewGraph();
// Remove dead nodes. This is important to do for cleanliness but also before
// the checking loop below. Implicit folding by the DAG.getNode operators can
// cause unreachable nodes to be around with their flags set to new.
DAG.RemoveDeadNodes();
// In a debug build, scan all the nodes to make sure we found them all. This
// ensures that there are no cycles and that everything got processed.
#ifndef NDEBUG
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
bool Failed = false;
// Check that all result types are legal.
for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
if (!isTypeLegal(I->getValueType(i))) {
cerr << "Result type " << i << " illegal!\n";
Failed = true;
}
// Check that all operand types are legal.
for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
if (!isTypeLegal(I->getOperand(i).getValueType())) {
cerr << "Operand type " << i << " illegal!\n";
Failed = true;
}
if (I->getNodeId() != Processed) {
if (I->getNodeId() == NewNode)
cerr << "New node not 'noticed'?\n";
else if (I->getNodeId() > 0)
cerr << "Operand not processed?\n";
else if (I->getNodeId() == ReadyToProcess)
cerr << "Not added to worklist?\n";
Failed = true;
}
if (Failed) {
I->dump(&DAG); cerr << "\n";
abort();
}
}
#endif
}
/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
/// new nodes. Correct any processed operands (this may change the node) and
/// calculate the NodeId.
void DAGTypeLegalizer::AnalyzeNewNode(SDNode *&N) {
// If this was an existing node that is already done, we're done.
if (N->getNodeId() != NewNode)
return;
// Okay, we know that this node is new. Recursively walk all of its operands
// to see if they are new also. The depth of this walk is bounded by the size
// of the new tree that was constructed (usually 2-3 nodes), so we don't worry
// about revisiting of nodes.
//
// As we walk the operands, keep track of the number of nodes that are
// processed. If non-zero, this will become the new nodeid of this node.
// Already processed operands may need to be remapped to the node that
// replaced them, which can result in our node changing. Since remapping
// is rare, the code tries to minimize overhead in the non-remapping case.
SmallVector<SDOperand, 8> NewOps;
unsigned NumProcessed = 0;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDOperand OrigOp = N->getOperand(i);
SDOperand Op = OrigOp;
if (Op.Val->getNodeId() == Processed)
RemapNode(Op);
if (Op.Val->getNodeId() == NewNode)
AnalyzeNewNode(Op.Val);
else if (Op.Val->getNodeId() == Processed)
++NumProcessed;
if (!NewOps.empty()) {
// Some previous operand changed. Add this one to the list.
NewOps.push_back(Op);
} else if (Op != OrigOp) {
// This is the first operand to change - add all operands so far.
for (unsigned j = 0; j < i; ++j)
NewOps.push_back(N->getOperand(j));
NewOps.push_back(Op);
}
}
// Some operands changed - update the node.
if (!NewOps.empty())
N = DAG.UpdateNodeOperands(SDOperand(N, 0), &NewOps[0], NewOps.size()).Val;
N->setNodeId(N->getNumOperands()-NumProcessed);
if (N->getNodeId() == ReadyToProcess)
Worklist.push_back(N);
}
namespace {
/// NodeUpdateListener - This class is a DAGUpdateListener that listens for
/// updates to nodes and recomputes their ready state.
class VISIBILITY_HIDDEN NodeUpdateListener :
public SelectionDAG::DAGUpdateListener {
DAGTypeLegalizer &DTL;
public:
NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}
virtual void NodeDeleted(SDNode *N) {
// Ignore deletes.
assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
"RAUW deleted processed node!");
}
virtual void NodeUpdated(SDNode *N) {
// Node updates can mean pretty much anything. It is possible that an
// operand was set to something already processed (f.e.) in which case
// this node could become ready. Recompute its flags.
assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
"RAUW updated processed node!");
DTL.ReanalyzeNode(N);
}
};
}
/// ReplaceValueWith - The specified value was legalized to the specified other
/// value. If they are different, update the DAG and NodeIDs replacing any uses
/// of From to use To instead.
void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) {
if (From == To) return;
// If expansion produced new nodes, make sure they are properly marked.
AnalyzeNewNode(To.Val);
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
NodeUpdateListener NUL(*this);
DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
// The old node may still be present in ExpandedNodes or PromotedNodes.
// Inform them about the replacement.
ReplacedNodes[From] = To;
}
/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
/// node's results. The from and to node must define identical result types.
void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
if (From == To) return;
// If expansion produced new nodes, make sure they are properly marked.
AnalyzeNewNode(To);
assert(From->getNumValues() == To->getNumValues() &&
"Node results don't match");
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
NodeUpdateListener NUL(*this);
DAG.ReplaceAllUsesWith(From, To, &NUL);
// The old node may still be present in ExpandedNodes or PromotedNodes.
// Inform them about the replacement.
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
assert(From->getValueType(i) == To->getValueType(i) &&
"Node results don't match");
ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i);
}
}
/// RemapNode - If the specified value was already legalized to another value,
/// replace it by that value.
void DAGTypeLegalizer::RemapNode(SDOperand &N) {
DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.find(N);
if (I != ReplacedNodes.end()) {
// Use path compression to speed up future lookups if values get multiply
// replaced with other values.
RemapNode(I->second);
N = I->second;
}
}
void DAGTypeLegalizer::SetPromotedOp(SDOperand Op, SDOperand Result) {
AnalyzeNewNode(Result.Val);
SDOperand &OpEntry = PromotedNodes[Op];
assert(OpEntry.Val == 0 && "Node is already promoted!");
OpEntry = Result;
}
void DAGTypeLegalizer::SetIntegerOp(SDOperand Op, SDOperand Result) {
AnalyzeNewNode(Result.Val);
SDOperand &OpEntry = FloatToIntedNodes[Op];
assert(OpEntry.Val == 0 && "Node is already converted to integer!");
OpEntry = Result;
}
void DAGTypeLegalizer::SetScalarizedOp(SDOperand Op, SDOperand Result) {
AnalyzeNewNode(Result.Val);
SDOperand &OpEntry = ScalarizedNodes[Op];
assert(OpEntry.Val == 0 && "Node is already scalarized!");
OpEntry = Result;
}
void DAGTypeLegalizer::GetExpandedOp(SDOperand Op, SDOperand &Lo,
SDOperand &Hi) {
std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.Val && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi) {
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewNode(Lo.Val);
AnalyzeNewNode(Hi.Val);
// Remember that this is the result of the node.
std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
assert(Entry.first.Val == 0 && "Node already expanded");
Entry.first = Lo;
Entry.second = Hi;
}
void DAGTypeLegalizer::GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) {
std::pair<SDOperand, SDOperand> &Entry = SplitNodes[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.Val && "Operand isn't split");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetSplitOp(SDOperand Op, SDOperand Lo, SDOperand Hi) {
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewNode(Lo.Val);
AnalyzeNewNode(Hi.Val);
// Remember that this is the result of the node.
std::pair<SDOperand, SDOperand> &Entry = SplitNodes[Op];
assert(Entry.first.Val == 0 && "Node already split");
Entry.first = Lo;
Entry.second = Hi;
}
/// BitConvertToInteger - Convert to an integer of the same size.
SDOperand DAGTypeLegalizer::BitConvertToInteger(SDOperand Op) {
return DAG.getNode(ISD::BIT_CONVERT,
MVT::getIntegerType(MVT::getSizeInBits(Op.getValueType())),
Op);
}
SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
MVT::ValueType DestVT) {
// Create the stack frame object.
SDOperand FIPtr = DAG.CreateStackTemporary(DestVT);
// Emit a store to the stack slot.
SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
// Result is a load from the stack slot.
return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
}
/// HandleMemIntrinsic - This handles memcpy/memset/memmove with invalid
/// operands. This promotes or expands the operands as required.
SDOperand DAGTypeLegalizer::HandleMemIntrinsic(SDNode *N) {
// The chain and pointer [operands #0 and #1] are always valid types.
SDOperand Chain = N->getOperand(0);
SDOperand Ptr = N->getOperand(1);
SDOperand Op2 = N->getOperand(2);
// Op #2 is either a value (memset) or a pointer. Promote it if required.
switch (getTypeAction(Op2.getValueType())) {
default: assert(0 && "Unknown action for pointer/value operand");
case Legal: break;
case Promote: Op2 = GetPromotedOp(Op2); break;
}
// The length could have any action required.
SDOperand Length = N->getOperand(3);
switch (getTypeAction(Length.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: Length = GetPromotedZExtOp(Length); break;
case Expand:
SDOperand Dummy; // discard the high part.
GetExpandedOp(Length, Length, Dummy);
break;
}
SDOperand Align = N->getOperand(4);
switch (getTypeAction(Align.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: Align = GetPromotedZExtOp(Align); break;
}
SDOperand AlwaysInline = N->getOperand(5);
switch (getTypeAction(AlwaysInline.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: AlwaysInline = GetPromotedZExtOp(AlwaysInline); break;
}
SDOperand Ops[] = { Chain, Ptr, Op2, Length, Align, AlwaysInline };
return DAG.UpdateNodeOperands(SDOperand(N, 0), Ops, 6);
}
/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
SDOperand DAGTypeLegalizer::JoinIntegers(SDOperand Lo, SDOperand Hi) {
MVT::ValueType LVT = Lo.getValueType();
MVT::ValueType HVT = Hi.getValueType();
MVT::ValueType NVT = MVT::getIntegerType(MVT::getSizeInBits(LVT) +
MVT::getSizeInBits(HVT));
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo);
Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi);
Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(MVT::getSizeInBits(LVT),
TLI.getShiftAmountTy()));
return DAG.getNode(ISD::OR, NVT, Lo, Hi);
}
/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
/// bits in Hi.
void DAGTypeLegalizer::SplitInteger(SDOperand Op,
MVT::ValueType LoVT, MVT::ValueType HiVT,
SDOperand &Lo, SDOperand &Hi) {
assert(MVT::getSizeInBits(LoVT) + MVT::getSizeInBits(HiVT) ==
MVT::getSizeInBits(Op.getValueType()) && "Invalid integer splitting!");
Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op);
Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
DAG.getConstant(MVT::getSizeInBits(LoVT),
TLI.getShiftAmountTy()));
Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi);
}
/// SplitInteger - Return the lower and upper halves of Op's bits in a value type
/// half the size of Op's.
void DAGTypeLegalizer::SplitInteger(SDOperand Op,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType HalfVT =
MVT::getIntegerType(MVT::getSizeInBits(Op.getValueType())/2);
SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
}
//===----------------------------------------------------------------------===//
// Entry Point
//===----------------------------------------------------------------------===//
/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void SelectionDAG::LegalizeTypes() {
if (ViewLegalizeTypesDAGs) viewGraph();
DAGTypeLegalizer(*this).run();
}