mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-15 07:34:33 +00:00
c17bcb8b34
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206238 91177308-0d34-0410-b5e6-96231b3b80d8
1177 lines
48 KiB
C++
1177 lines
48 KiB
C++
//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the declaration of the MachineInstr class, which is the
|
|
// basic representation for all target dependent machine instructions used by
|
|
// the back end.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
|
|
#define LLVM_CODEGEN_MACHINEINSTR_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Support/ArrayRecycler.h"
|
|
#include "llvm/Target/TargetOpcodes.h"
|
|
|
|
namespace llvm {
|
|
|
|
template <typename T> class SmallVectorImpl;
|
|
class AliasAnalysis;
|
|
class TargetInstrInfo;
|
|
class TargetRegisterClass;
|
|
class TargetRegisterInfo;
|
|
class MachineFunction;
|
|
class MachineMemOperand;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// MachineInstr - Representation of each machine instruction.
|
|
///
|
|
/// This class isn't a POD type, but it must have a trivial destructor. When a
|
|
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
|
|
/// without having their destructor called.
|
|
///
|
|
class MachineInstr : public ilist_node<MachineInstr> {
|
|
public:
|
|
typedef MachineMemOperand **mmo_iterator;
|
|
|
|
/// Flags to specify different kinds of comments to output in
|
|
/// assembly code. These flags carry semantic information not
|
|
/// otherwise easily derivable from the IR text.
|
|
///
|
|
enum CommentFlag {
|
|
ReloadReuse = 0x1
|
|
};
|
|
|
|
enum MIFlag {
|
|
NoFlags = 0,
|
|
FrameSetup = 1 << 0, // Instruction is used as a part of
|
|
// function frame setup code.
|
|
BundledPred = 1 << 1, // Instruction has bundled predecessors.
|
|
BundledSucc = 1 << 2 // Instruction has bundled successors.
|
|
};
|
|
private:
|
|
const MCInstrDesc *MCID; // Instruction descriptor.
|
|
MachineBasicBlock *Parent; // Pointer to the owning basic block.
|
|
|
|
// Operands are allocated by an ArrayRecycler.
|
|
MachineOperand *Operands; // Pointer to the first operand.
|
|
unsigned NumOperands; // Number of operands on instruction.
|
|
typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
|
|
OperandCapacity CapOperands; // Capacity of the Operands array.
|
|
|
|
uint8_t Flags; // Various bits of additional
|
|
// information about machine
|
|
// instruction.
|
|
|
|
uint8_t AsmPrinterFlags; // Various bits of information used by
|
|
// the AsmPrinter to emit helpful
|
|
// comments. This is *not* semantic
|
|
// information. Do not use this for
|
|
// anything other than to convey comment
|
|
// information to AsmPrinter.
|
|
|
|
uint8_t NumMemRefs; // Information on memory references.
|
|
mmo_iterator MemRefs;
|
|
|
|
DebugLoc debugLoc; // Source line information.
|
|
|
|
MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
|
|
void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
|
|
// Use MachineFunction::DeleteMachineInstr() instead.
|
|
~MachineInstr() LLVM_DELETED_FUNCTION;
|
|
|
|
// Intrusive list support
|
|
friend struct ilist_traits<MachineInstr>;
|
|
friend struct ilist_traits<MachineBasicBlock>;
|
|
void setParent(MachineBasicBlock *P) { Parent = P; }
|
|
|
|
/// MachineInstr ctor - This constructor creates a copy of the given
|
|
/// MachineInstr in the given MachineFunction.
|
|
MachineInstr(MachineFunction &, const MachineInstr &);
|
|
|
|
/// MachineInstr ctor - This constructor create a MachineInstr and add the
|
|
/// implicit operands. It reserves space for number of operands specified by
|
|
/// MCInstrDesc. An explicit DebugLoc is supplied.
|
|
MachineInstr(MachineFunction&, const MCInstrDesc &MCID,
|
|
const DebugLoc dl, bool NoImp = false);
|
|
|
|
// MachineInstrs are pool-allocated and owned by MachineFunction.
|
|
friend class MachineFunction;
|
|
|
|
public:
|
|
const MachineBasicBlock* getParent() const { return Parent; }
|
|
MachineBasicBlock* getParent() { return Parent; }
|
|
|
|
/// getAsmPrinterFlags - Return the asm printer flags bitvector.
|
|
///
|
|
uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
|
|
|
|
/// clearAsmPrinterFlags - clear the AsmPrinter bitvector
|
|
///
|
|
void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
|
|
|
|
/// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
|
|
///
|
|
bool getAsmPrinterFlag(CommentFlag Flag) const {
|
|
return AsmPrinterFlags & Flag;
|
|
}
|
|
|
|
/// setAsmPrinterFlag - Set a flag for the AsmPrinter.
|
|
///
|
|
void setAsmPrinterFlag(CommentFlag Flag) {
|
|
AsmPrinterFlags |= (uint8_t)Flag;
|
|
}
|
|
|
|
/// clearAsmPrinterFlag - clear specific AsmPrinter flags
|
|
///
|
|
void clearAsmPrinterFlag(CommentFlag Flag) {
|
|
AsmPrinterFlags &= ~Flag;
|
|
}
|
|
|
|
/// getFlags - Return the MI flags bitvector.
|
|
uint8_t getFlags() const {
|
|
return Flags;
|
|
}
|
|
|
|
/// getFlag - Return whether an MI flag is set.
|
|
bool getFlag(MIFlag Flag) const {
|
|
return Flags & Flag;
|
|
}
|
|
|
|
/// setFlag - Set a MI flag.
|
|
void setFlag(MIFlag Flag) {
|
|
Flags |= (uint8_t)Flag;
|
|
}
|
|
|
|
void setFlags(unsigned flags) {
|
|
// Filter out the automatically maintained flags.
|
|
unsigned Mask = BundledPred | BundledSucc;
|
|
Flags = (Flags & Mask) | (flags & ~Mask);
|
|
}
|
|
|
|
/// clearFlag - Clear a MI flag.
|
|
void clearFlag(MIFlag Flag) {
|
|
Flags &= ~((uint8_t)Flag);
|
|
}
|
|
|
|
/// isInsideBundle - Return true if MI is in a bundle (but not the first MI
|
|
/// in a bundle).
|
|
///
|
|
/// A bundle looks like this before it's finalized:
|
|
/// ----------------
|
|
/// | MI |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// In this case, the first MI starts a bundle but is not inside a bundle, the
|
|
/// next 2 MIs are considered "inside" the bundle.
|
|
///
|
|
/// After a bundle is finalized, it looks like this:
|
|
/// ----------------
|
|
/// | Bundle |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// The first instruction has the special opcode "BUNDLE". It's not "inside"
|
|
/// a bundle, but the next three MIs are.
|
|
bool isInsideBundle() const {
|
|
return getFlag(BundledPred);
|
|
}
|
|
|
|
/// isBundled - Return true if this instruction part of a bundle. This is true
|
|
/// if either itself or its following instruction is marked "InsideBundle".
|
|
bool isBundled() const {
|
|
return isBundledWithPred() || isBundledWithSucc();
|
|
}
|
|
|
|
/// Return true if this instruction is part of a bundle, and it is not the
|
|
/// first instruction in the bundle.
|
|
bool isBundledWithPred() const { return getFlag(BundledPred); }
|
|
|
|
/// Return true if this instruction is part of a bundle, and it is not the
|
|
/// last instruction in the bundle.
|
|
bool isBundledWithSucc() const { return getFlag(BundledSucc); }
|
|
|
|
/// Bundle this instruction with its predecessor. This can be an unbundled
|
|
/// instruction, or it can be the first instruction in a bundle.
|
|
void bundleWithPred();
|
|
|
|
/// Bundle this instruction with its successor. This can be an unbundled
|
|
/// instruction, or it can be the last instruction in a bundle.
|
|
void bundleWithSucc();
|
|
|
|
/// Break bundle above this instruction.
|
|
void unbundleFromPred();
|
|
|
|
/// Break bundle below this instruction.
|
|
void unbundleFromSucc();
|
|
|
|
/// getDebugLoc - Returns the debug location id of this MachineInstr.
|
|
///
|
|
DebugLoc getDebugLoc() const { return debugLoc; }
|
|
|
|
/// getDebugVariable() - Return the debug variable referenced by
|
|
/// this DBG_VALUE instruction.
|
|
DIVariable getDebugVariable() const {
|
|
assert(isDebugValue() && "not a DBG_VALUE");
|
|
const MDNode *Var = getOperand(getNumOperands() - 1).getMetadata();
|
|
return DIVariable(Var);
|
|
}
|
|
|
|
/// emitError - Emit an error referring to the source location of this
|
|
/// instruction. This should only be used for inline assembly that is somehow
|
|
/// impossible to compile. Other errors should have been handled much
|
|
/// earlier.
|
|
///
|
|
/// If this method returns, the caller should try to recover from the error.
|
|
///
|
|
void emitError(StringRef Msg) const;
|
|
|
|
/// getDesc - Returns the target instruction descriptor of this
|
|
/// MachineInstr.
|
|
const MCInstrDesc &getDesc() const { return *MCID; }
|
|
|
|
/// getOpcode - Returns the opcode of this MachineInstr.
|
|
///
|
|
int getOpcode() const { return MCID->Opcode; }
|
|
|
|
/// Access to explicit operands of the instruction.
|
|
///
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
const MachineOperand& getOperand(unsigned i) const {
|
|
assert(i < getNumOperands() && "getOperand() out of range!");
|
|
return Operands[i];
|
|
}
|
|
MachineOperand& getOperand(unsigned i) {
|
|
assert(i < getNumOperands() && "getOperand() out of range!");
|
|
return Operands[i];
|
|
}
|
|
|
|
/// getNumExplicitOperands - Returns the number of non-implicit operands.
|
|
///
|
|
unsigned getNumExplicitOperands() const;
|
|
|
|
/// iterator/begin/end - Iterate over all operands of a machine instruction.
|
|
typedef MachineOperand *mop_iterator;
|
|
typedef const MachineOperand *const_mop_iterator;
|
|
|
|
mop_iterator operands_begin() { return Operands; }
|
|
mop_iterator operands_end() { return Operands + NumOperands; }
|
|
|
|
const_mop_iterator operands_begin() const { return Operands; }
|
|
const_mop_iterator operands_end() const { return Operands + NumOperands; }
|
|
|
|
iterator_range<mop_iterator> operands() {
|
|
return iterator_range<mop_iterator>(operands_begin(), operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> operands() const {
|
|
return iterator_range<const_mop_iterator>(operands_begin(), operands_end());
|
|
}
|
|
iterator_range<mop_iterator> explicit_operands() {
|
|
return iterator_range<mop_iterator>(
|
|
operands_begin(), operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<const_mop_iterator> explicit_operands() const {
|
|
return iterator_range<const_mop_iterator>(
|
|
operands_begin(), operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<mop_iterator> implicit_operands() {
|
|
return iterator_range<mop_iterator>(explicit_operands().end(),
|
|
operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> implicit_operands() const {
|
|
return iterator_range<const_mop_iterator>(explicit_operands().end(),
|
|
operands_end());
|
|
}
|
|
iterator_range<mop_iterator> defs() {
|
|
return iterator_range<mop_iterator>(
|
|
operands_begin(), operands_begin() + getDesc().getNumDefs());
|
|
}
|
|
iterator_range<const_mop_iterator> defs() const {
|
|
return iterator_range<const_mop_iterator>(
|
|
operands_begin(), operands_begin() + getDesc().getNumDefs());
|
|
}
|
|
iterator_range<mop_iterator> uses() {
|
|
return iterator_range<mop_iterator>(
|
|
operands_begin() + getDesc().getNumDefs(), operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> uses() const {
|
|
return iterator_range<const_mop_iterator>(
|
|
operands_begin() + getDesc().getNumDefs(), operands_end());
|
|
}
|
|
|
|
/// Access to memory operands of the instruction
|
|
mmo_iterator memoperands_begin() const { return MemRefs; }
|
|
mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
|
|
bool memoperands_empty() const { return NumMemRefs == 0; }
|
|
|
|
iterator_range<mmo_iterator> memoperands() {
|
|
return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
|
|
}
|
|
iterator_range<mmo_iterator> memoperands() const {
|
|
return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
|
|
}
|
|
|
|
/// hasOneMemOperand - Return true if this instruction has exactly one
|
|
/// MachineMemOperand.
|
|
bool hasOneMemOperand() const {
|
|
return NumMemRefs == 1;
|
|
}
|
|
|
|
/// API for querying MachineInstr properties. They are the same as MCInstrDesc
|
|
/// queries but they are bundle aware.
|
|
|
|
enum QueryType {
|
|
IgnoreBundle, // Ignore bundles
|
|
AnyInBundle, // Return true if any instruction in bundle has property
|
|
AllInBundle // Return true if all instructions in bundle have property
|
|
};
|
|
|
|
/// hasProperty - Return true if the instruction (or in the case of a bundle,
|
|
/// the instructions inside the bundle) has the specified property.
|
|
/// The first argument is the property being queried.
|
|
/// The second argument indicates whether the query should look inside
|
|
/// instruction bundles.
|
|
bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
|
|
// Inline the fast path for unbundled or bundle-internal instructions.
|
|
if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
|
|
return getDesc().getFlags() & (1 << MCFlag);
|
|
|
|
// If this is the first instruction in a bundle, take the slow path.
|
|
return hasPropertyInBundle(1 << MCFlag, Type);
|
|
}
|
|
|
|
/// isVariadic - Return true if this instruction can have a variable number of
|
|
/// operands. In this case, the variable operands will be after the normal
|
|
/// operands but before the implicit definitions and uses (if any are
|
|
/// present).
|
|
bool isVariadic(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Variadic, Type);
|
|
}
|
|
|
|
/// hasOptionalDef - Set if this instruction has an optional definition, e.g.
|
|
/// ARM instructions which can set condition code if 's' bit is set.
|
|
bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::HasOptionalDef, Type);
|
|
}
|
|
|
|
/// isPseudo - Return true if this is a pseudo instruction that doesn't
|
|
/// correspond to a real machine instruction.
|
|
///
|
|
bool isPseudo(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Pseudo, Type);
|
|
}
|
|
|
|
bool isReturn(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Return, Type);
|
|
}
|
|
|
|
bool isCall(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Call, Type);
|
|
}
|
|
|
|
/// isBarrier - Returns true if the specified instruction stops control flow
|
|
/// from executing the instruction immediately following it. Examples include
|
|
/// unconditional branches and return instructions.
|
|
bool isBarrier(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Barrier, Type);
|
|
}
|
|
|
|
/// isTerminator - Returns true if this instruction part of the terminator for
|
|
/// a basic block. Typically this is things like return and branch
|
|
/// instructions.
|
|
///
|
|
/// Various passes use this to insert code into the bottom of a basic block,
|
|
/// but before control flow occurs.
|
|
bool isTerminator(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Terminator, Type);
|
|
}
|
|
|
|
/// isBranch - Returns true if this is a conditional, unconditional, or
|
|
/// indirect branch. Predicates below can be used to discriminate between
|
|
/// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
|
|
/// get more information.
|
|
bool isBranch(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Branch, Type);
|
|
}
|
|
|
|
/// isIndirectBranch - Return true if this is an indirect branch, such as a
|
|
/// branch through a register.
|
|
bool isIndirectBranch(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::IndirectBranch, Type);
|
|
}
|
|
|
|
/// isConditionalBranch - Return true if this is a branch which may fall
|
|
/// through to the next instruction or may transfer control flow to some other
|
|
/// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
|
|
/// information about this branch.
|
|
bool isConditionalBranch(QueryType Type = AnyInBundle) const {
|
|
return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
|
|
}
|
|
|
|
/// isUnconditionalBranch - Return true if this is a branch which always
|
|
/// transfers control flow to some other block. The
|
|
/// TargetInstrInfo::AnalyzeBranch method can be used to get more information
|
|
/// about this branch.
|
|
bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
|
|
return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
|
|
}
|
|
|
|
/// Return true if this instruction has a predicate operand that
|
|
/// controls execution. It may be set to 'always', or may be set to other
|
|
/// values. There are various methods in TargetInstrInfo that can be used to
|
|
/// control and modify the predicate in this instruction.
|
|
bool isPredicable(QueryType Type = AllInBundle) const {
|
|
// If it's a bundle than all bundled instructions must be predicable for this
|
|
// to return true.
|
|
return hasProperty(MCID::Predicable, Type);
|
|
}
|
|
|
|
/// isCompare - Return true if this instruction is a comparison.
|
|
bool isCompare(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Compare, Type);
|
|
}
|
|
|
|
/// isMoveImmediate - Return true if this instruction is a move immediate
|
|
/// (including conditional moves) instruction.
|
|
bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::MoveImm, Type);
|
|
}
|
|
|
|
/// isBitcast - Return true if this instruction is a bitcast instruction.
|
|
///
|
|
bool isBitcast(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Bitcast, Type);
|
|
}
|
|
|
|
/// isSelect - Return true if this instruction is a select instruction.
|
|
///
|
|
bool isSelect(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Select, Type);
|
|
}
|
|
|
|
/// isNotDuplicable - Return true if this instruction cannot be safely
|
|
/// duplicated. For example, if the instruction has a unique labels attached
|
|
/// to it, duplicating it would cause multiple definition errors.
|
|
bool isNotDuplicable(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::NotDuplicable, Type);
|
|
}
|
|
|
|
/// hasDelaySlot - Returns true if the specified instruction has a delay slot
|
|
/// which must be filled by the code generator.
|
|
bool hasDelaySlot(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::DelaySlot, Type);
|
|
}
|
|
|
|
/// canFoldAsLoad - Return true for instructions that can be folded as
|
|
/// memory operands in other instructions. The most common use for this
|
|
/// is instructions that are simple loads from memory that don't modify
|
|
/// the loaded value in any way, but it can also be used for instructions
|
|
/// that can be expressed as constant-pool loads, such as V_SETALLONES
|
|
/// on x86, to allow them to be folded when it is beneficial.
|
|
/// This should only be set on instructions that return a value in their
|
|
/// only virtual register definition.
|
|
bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::FoldableAsLoad, Type);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Side Effect Analysis
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// mayLoad - Return true if this instruction could possibly read memory.
|
|
/// Instructions with this flag set are not necessarily simple load
|
|
/// instructions, they may load a value and modify it, for example.
|
|
bool mayLoad(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_MayLoad)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::MayLoad, Type);
|
|
}
|
|
|
|
|
|
/// mayStore - Return true if this instruction could possibly modify memory.
|
|
/// Instructions with this flag set are not necessarily simple store
|
|
/// instructions, they may store a modified value based on their operands, or
|
|
/// may not actually modify anything, for example.
|
|
bool mayStore(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_MayStore)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::MayStore, Type);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Flags that indicate whether an instruction can be modified by a method.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// isCommutable - Return true if this may be a 2- or 3-address
|
|
/// instruction (of the form "X = op Y, Z, ..."), which produces the same
|
|
/// result if Y and Z are exchanged. If this flag is set, then the
|
|
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
|
|
/// instruction.
|
|
///
|
|
/// Note that this flag may be set on instructions that are only commutable
|
|
/// sometimes. In these cases, the call to commuteInstruction will fail.
|
|
/// Also note that some instructions require non-trivial modification to
|
|
/// commute them.
|
|
bool isCommutable(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Commutable, Type);
|
|
}
|
|
|
|
/// isConvertibleTo3Addr - Return true if this is a 2-address instruction
|
|
/// which can be changed into a 3-address instruction if needed. Doing this
|
|
/// transformation can be profitable in the register allocator, because it
|
|
/// means that the instruction can use a 2-address form if possible, but
|
|
/// degrade into a less efficient form if the source and dest register cannot
|
|
/// be assigned to the same register. For example, this allows the x86
|
|
/// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
|
|
/// is the same speed as the shift but has bigger code size.
|
|
///
|
|
/// If this returns true, then the target must implement the
|
|
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
|
|
/// is allowed to fail if the transformation isn't valid for this specific
|
|
/// instruction (e.g. shl reg, 4 on x86).
|
|
///
|
|
bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::ConvertibleTo3Addr, Type);
|
|
}
|
|
|
|
/// usesCustomInsertionHook - Return true if this instruction requires
|
|
/// custom insertion support when the DAG scheduler is inserting it into a
|
|
/// machine basic block. If this is true for the instruction, it basically
|
|
/// means that it is a pseudo instruction used at SelectionDAG time that is
|
|
/// expanded out into magic code by the target when MachineInstrs are formed.
|
|
///
|
|
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
|
|
/// is used to insert this into the MachineBasicBlock.
|
|
bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::UsesCustomInserter, Type);
|
|
}
|
|
|
|
/// hasPostISelHook - Return true if this instruction requires *adjustment*
|
|
/// after instruction selection by calling a target hook. For example, this
|
|
/// can be used to fill in ARM 's' optional operand depending on whether
|
|
/// the conditional flag register is used.
|
|
bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::HasPostISelHook, Type);
|
|
}
|
|
|
|
/// isRematerializable - Returns true if this instruction is a candidate for
|
|
/// remat. This flag is deprecated, please don't use it anymore. If this
|
|
/// flag is set, the isReallyTriviallyReMaterializable() method is called to
|
|
/// verify the instruction is really rematable.
|
|
bool isRematerializable(QueryType Type = AllInBundle) const {
|
|
// It's only possible to re-mat a bundle if all bundled instructions are
|
|
// re-materializable.
|
|
return hasProperty(MCID::Rematerializable, Type);
|
|
}
|
|
|
|
/// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
|
|
/// less) than a move instruction. This is useful during certain types of
|
|
/// optimizations (e.g., remat during two-address conversion or machine licm)
|
|
/// where we would like to remat or hoist the instruction, but not if it costs
|
|
/// more than moving the instruction into the appropriate register. Note, we
|
|
/// are not marking copies from and to the same register class with this flag.
|
|
bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
|
|
// Only returns true for a bundle if all bundled instructions are cheap.
|
|
// FIXME: This probably requires a target hook.
|
|
return hasProperty(MCID::CheapAsAMove, Type);
|
|
}
|
|
|
|
/// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
|
|
/// have special register allocation requirements that are not captured by the
|
|
/// operand register classes. e.g. ARM::STRD's two source registers must be an
|
|
/// even / odd pair, ARM::STM registers have to be in ascending order.
|
|
/// Post-register allocation passes should not attempt to change allocations
|
|
/// for sources of instructions with this flag.
|
|
bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
|
|
}
|
|
|
|
/// hasExtraDefRegAllocReq - Returns true if this instruction def operands
|
|
/// have special register allocation requirements that are not captured by the
|
|
/// operand register classes. e.g. ARM::LDRD's two def registers must be an
|
|
/// even / odd pair, ARM::LDM registers have to be in ascending order.
|
|
/// Post-register allocation passes should not attempt to change allocations
|
|
/// for definitions of instructions with this flag.
|
|
bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::ExtraDefRegAllocReq, Type);
|
|
}
|
|
|
|
|
|
enum MICheckType {
|
|
CheckDefs, // Check all operands for equality
|
|
CheckKillDead, // Check all operands including kill / dead markers
|
|
IgnoreDefs, // Ignore all definitions
|
|
IgnoreVRegDefs // Ignore virtual register definitions
|
|
};
|
|
|
|
/// isIdenticalTo - Return true if this instruction is identical to (same
|
|
/// opcode and same operands as) the specified instruction.
|
|
bool isIdenticalTo(const MachineInstr *Other,
|
|
MICheckType Check = CheckDefs) const;
|
|
|
|
/// Unlink 'this' from the containing basic block, and return it without
|
|
/// deleting it.
|
|
///
|
|
/// This function can not be used on bundled instructions, use
|
|
/// removeFromBundle() to remove individual instructions from a bundle.
|
|
MachineInstr *removeFromParent();
|
|
|
|
/// Unlink this instruction from its basic block and return it without
|
|
/// deleting it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle remain bundled.
|
|
MachineInstr *removeFromBundle();
|
|
|
|
/// Unlink 'this' from the containing basic block and delete it.
|
|
///
|
|
/// If this instruction is the header of a bundle, the whole bundle is erased.
|
|
/// This function can not be used for instructions inside a bundle, use
|
|
/// eraseFromBundle() to erase individual bundled instructions.
|
|
void eraseFromParent();
|
|
|
|
/// Unlink 'this' form its basic block and delete it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle remain bundled.
|
|
void eraseFromBundle();
|
|
|
|
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
|
|
bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
|
|
|
|
/// isLabel - Returns true if the MachineInstr represents a label.
|
|
///
|
|
bool isLabel() const { return isEHLabel() || isGCLabel(); }
|
|
bool isCFIInstruction() const {
|
|
return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
|
|
}
|
|
|
|
// True if the instruction represents a position in the function.
|
|
bool isPosition() const { return isLabel() || isCFIInstruction(); }
|
|
|
|
bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
|
|
/// A DBG_VALUE is indirect iff the first operand is a register and
|
|
/// the second operand is an immediate.
|
|
bool isIndirectDebugValue() const {
|
|
return isDebugValue()
|
|
&& getOperand(0).isReg()
|
|
&& getOperand(1).isImm();
|
|
}
|
|
|
|
bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
|
|
bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
|
|
bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
|
|
bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
|
|
bool isMSInlineAsm() const {
|
|
return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
|
|
}
|
|
bool isStackAligningInlineAsm() const;
|
|
InlineAsm::AsmDialect getInlineAsmDialect() const;
|
|
bool isInsertSubreg() const {
|
|
return getOpcode() == TargetOpcode::INSERT_SUBREG;
|
|
}
|
|
bool isSubregToReg() const {
|
|
return getOpcode() == TargetOpcode::SUBREG_TO_REG;
|
|
}
|
|
bool isRegSequence() const {
|
|
return getOpcode() == TargetOpcode::REG_SEQUENCE;
|
|
}
|
|
bool isBundle() const {
|
|
return getOpcode() == TargetOpcode::BUNDLE;
|
|
}
|
|
bool isCopy() const {
|
|
return getOpcode() == TargetOpcode::COPY;
|
|
}
|
|
bool isFullCopy() const {
|
|
return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
|
|
}
|
|
|
|
/// isCopyLike - Return true if the instruction behaves like a copy.
|
|
/// This does not include native copy instructions.
|
|
bool isCopyLike() const {
|
|
return isCopy() || isSubregToReg();
|
|
}
|
|
|
|
/// isIdentityCopy - Return true is the instruction is an identity copy.
|
|
bool isIdentityCopy() const {
|
|
return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
|
|
getOperand(0).getSubReg() == getOperand(1).getSubReg();
|
|
}
|
|
|
|
/// isTransient - Return true if this is a transient instruction that is
|
|
/// either very likely to be eliminated during register allocation (such as
|
|
/// copy-like instructions), or if this instruction doesn't have an
|
|
/// execution-time cost.
|
|
bool isTransient() const {
|
|
switch(getOpcode()) {
|
|
default: return false;
|
|
// Copy-like instructions are usually eliminated during register allocation.
|
|
case TargetOpcode::PHI:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
// Pseudo-instructions that don't produce any real output.
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::CFI_INSTRUCTION:
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::GC_LABEL:
|
|
case TargetOpcode::DBG_VALUE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Return the number of instructions inside the MI bundle, excluding the
|
|
/// bundle header.
|
|
///
|
|
/// This is the number of instructions that MachineBasicBlock::iterator
|
|
/// skips, 0 for unbundled instructions.
|
|
unsigned getBundleSize() const;
|
|
|
|
/// readsRegister - Return true if the MachineInstr reads the specified
|
|
/// register. If TargetRegisterInfo is passed, then it also checks if there
|
|
/// is a read of a super-register.
|
|
/// This does not count partial redefines of virtual registers as reads:
|
|
/// %reg1024:6 = OP.
|
|
bool readsRegister(unsigned Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
|
|
}
|
|
|
|
/// readsVirtualRegister - Return true if the MachineInstr reads the specified
|
|
/// virtual register. Take into account that a partial define is a
|
|
/// read-modify-write operation.
|
|
bool readsVirtualRegister(unsigned Reg) const {
|
|
return readsWritesVirtualRegister(Reg).first;
|
|
}
|
|
|
|
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
|
|
/// indicating if this instruction reads or writes Reg. This also considers
|
|
/// partial defines.
|
|
/// If Ops is not null, all operand indices for Reg are added.
|
|
std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
|
|
SmallVectorImpl<unsigned> *Ops = nullptr) const;
|
|
|
|
/// killsRegister - Return true if the MachineInstr kills the specified
|
|
/// register. If TargetRegisterInfo is passed, then it also checks if there is
|
|
/// a kill of a super-register.
|
|
bool killsRegister(unsigned Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
|
|
}
|
|
|
|
/// definesRegister - Return true if the MachineInstr fully defines the
|
|
/// specified register. If TargetRegisterInfo is passed, then it also checks
|
|
/// if there is a def of a super-register.
|
|
/// NOTE: It's ignoring subreg indices on virtual registers.
|
|
bool definesRegister(unsigned Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
|
|
}
|
|
|
|
/// modifiesRegister - Return true if the MachineInstr modifies (fully define
|
|
/// or partially define) the specified register.
|
|
/// NOTE: It's ignoring subreg indices on virtual registers.
|
|
bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
|
|
return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
|
|
}
|
|
|
|
/// registerDefIsDead - Returns true if the register is dead in this machine
|
|
/// instruction. If TargetRegisterInfo is passed, then it also checks
|
|
/// if there is a dead def of a super-register.
|
|
bool registerDefIsDead(unsigned Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
|
|
}
|
|
|
|
/// findRegisterUseOperandIdx() - Returns the operand index that is a use of
|
|
/// the specific register or -1 if it is not found. It further tightens
|
|
/// the search criteria to a use that kills the register if isKill is true.
|
|
int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const;
|
|
|
|
/// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
|
|
/// a pointer to the MachineOperand rather than an index.
|
|
MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) {
|
|
int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
|
|
return (Idx == -1) ? nullptr : &getOperand(Idx);
|
|
}
|
|
|
|
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
|
|
/// the specified register or -1 if it is not found. If isDead is true, defs
|
|
/// that are not dead are skipped. If Overlap is true, then it also looks for
|
|
/// defs that merely overlap the specified register. If TargetRegisterInfo is
|
|
/// non-null, then it also checks if there is a def of a super-register.
|
|
/// This may also return a register mask operand when Overlap is true.
|
|
int findRegisterDefOperandIdx(unsigned Reg,
|
|
bool isDead = false, bool Overlap = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const;
|
|
|
|
/// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
|
|
/// a pointer to the MachineOperand rather than an index.
|
|
MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
|
|
const TargetRegisterInfo *TRI = nullptr) {
|
|
int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
|
|
return (Idx == -1) ? nullptr : &getOperand(Idx);
|
|
}
|
|
|
|
/// findFirstPredOperandIdx() - Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int findFirstPredOperandIdx() const;
|
|
|
|
/// findInlineAsmFlagIdx() - Find the index of the flag word operand that
|
|
/// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
|
|
/// getOperand(OpIdx) does not belong to an inline asm operand group.
|
|
///
|
|
/// If GroupNo is not NULL, it will receive the number of the operand group
|
|
/// containing OpIdx.
|
|
///
|
|
/// The flag operand is an immediate that can be decoded with methods like
|
|
/// InlineAsm::hasRegClassConstraint().
|
|
///
|
|
int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
|
|
|
|
/// getRegClassConstraint - Compute the static register class constraint for
|
|
/// operand OpIdx. For normal instructions, this is derived from the
|
|
/// MCInstrDesc. For inline assembly it is derived from the flag words.
|
|
///
|
|
/// Returns NULL if the static register classs constraint cannot be
|
|
/// determined.
|
|
///
|
|
const TargetRegisterClass*
|
|
getRegClassConstraint(unsigned OpIdx,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
|
|
/// the given \p CurRC.
|
|
/// If \p ExploreBundle is set and MI is part of a bundle, all the
|
|
/// instructions inside the bundle will be taken into account. In other words,
|
|
/// this method accumulates all the constrains of the operand of this MI and
|
|
/// the related bundle if MI is a bundle or inside a bundle.
|
|
///
|
|
/// Returns the register class that statisfies both \p CurRC and the
|
|
/// constraints set by MI. Returns NULL if such a register class does not
|
|
/// exist.
|
|
///
|
|
/// \pre CurRC must not be NULL.
|
|
const TargetRegisterClass *getRegClassConstraintEffectForVReg(
|
|
unsigned Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
|
|
bool ExploreBundle = false) const;
|
|
|
|
/// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
|
|
/// to the given \p CurRC.
|
|
///
|
|
/// Returns the register class that statisfies both \p CurRC and the
|
|
/// constraints set by \p OpIdx MI. Returns NULL if such a register class
|
|
/// does not exist.
|
|
///
|
|
/// \pre CurRC must not be NULL.
|
|
/// \pre The operand at \p OpIdx must be a register.
|
|
const TargetRegisterClass *
|
|
getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// tieOperands - Add a tie between the register operands at DefIdx and
|
|
/// UseIdx. The tie will cause the register allocator to ensure that the two
|
|
/// operands are assigned the same physical register.
|
|
///
|
|
/// Tied operands are managed automatically for explicit operands in the
|
|
/// MCInstrDesc. This method is for exceptional cases like inline asm.
|
|
void tieOperands(unsigned DefIdx, unsigned UseIdx);
|
|
|
|
/// findTiedOperandIdx - Given the index of a tied register operand, find the
|
|
/// operand it is tied to. Defs are tied to uses and vice versa. Returns the
|
|
/// index of the tied operand which must exist.
|
|
unsigned findTiedOperandIdx(unsigned OpIdx) const;
|
|
|
|
/// isRegTiedToUseOperand - Given the index of a register def operand,
|
|
/// check if the register def is tied to a source operand, due to either
|
|
/// two-address elimination or inline assembly constraints. Returns the
|
|
/// first tied use operand index by reference if UseOpIdx is not null.
|
|
bool isRegTiedToUseOperand(unsigned DefOpIdx,
|
|
unsigned *UseOpIdx = nullptr) const {
|
|
const MachineOperand &MO = getOperand(DefOpIdx);
|
|
if (!MO.isReg() || !MO.isDef() || !MO.isTied())
|
|
return false;
|
|
if (UseOpIdx)
|
|
*UseOpIdx = findTiedOperandIdx(DefOpIdx);
|
|
return true;
|
|
}
|
|
|
|
/// isRegTiedToDefOperand - Return true if the use operand of the specified
|
|
/// index is tied to an def operand. It also returns the def operand index by
|
|
/// reference if DefOpIdx is not null.
|
|
bool isRegTiedToDefOperand(unsigned UseOpIdx,
|
|
unsigned *DefOpIdx = nullptr) const {
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse() || !MO.isTied())
|
|
return false;
|
|
if (DefOpIdx)
|
|
*DefOpIdx = findTiedOperandIdx(UseOpIdx);
|
|
return true;
|
|
}
|
|
|
|
/// clearKillInfo - Clears kill flags on all operands.
|
|
///
|
|
void clearKillInfo();
|
|
|
|
/// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
|
|
/// properly composing subreg indices where necessary.
|
|
void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
|
|
const TargetRegisterInfo &RegInfo);
|
|
|
|
/// addRegisterKilled - We have determined MI kills a register. Look for the
|
|
/// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
|
|
/// add a implicit operand if it's not found. Returns true if the operand
|
|
/// exists / is added.
|
|
bool addRegisterKilled(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound = false);
|
|
|
|
/// clearRegisterKills - Clear all kill flags affecting Reg. If RegInfo is
|
|
/// provided, this includes super-register kills.
|
|
void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
|
|
|
|
/// addRegisterDead - We have determined MI defined a register without a use.
|
|
/// Look for the operand that defines it and mark it as IsDead. If
|
|
/// AddIfNotFound is true, add a implicit operand if it's not found. Returns
|
|
/// true if the operand exists / is added.
|
|
bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound = false);
|
|
|
|
/// addRegisterDefined - We have determined MI defines a register. Make sure
|
|
/// there is an operand defining Reg.
|
|
void addRegisterDefined(unsigned Reg,
|
|
const TargetRegisterInfo *RegInfo = nullptr);
|
|
|
|
/// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
|
|
/// dead except those in the UsedRegs list.
|
|
///
|
|
/// On instructions with register mask operands, also add implicit-def
|
|
/// operands for all registers in UsedRegs.
|
|
void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
|
|
const TargetRegisterInfo &TRI);
|
|
|
|
/// isSafeToMove - Return true if it is safe to move this instruction. If
|
|
/// SawStore is set to true, it means that there is a store (or call) between
|
|
/// the instruction's location and its intended destination.
|
|
bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
|
|
bool &SawStore) const;
|
|
|
|
/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
|
|
/// or volatile memory reference, or if the information describing the memory
|
|
/// reference is not available. Return false if it is known to have no
|
|
/// ordered or volatile memory references.
|
|
bool hasOrderedMemoryRef() const;
|
|
|
|
/// isInvariantLoad - Return true if this instruction is loading from a
|
|
/// location whose value is invariant across the function. For example,
|
|
/// loading a value from the constant pool or from the argument area of
|
|
/// a function if it does not change. This should only return true of *all*
|
|
/// loads the instruction does are invariant (if it does multiple loads).
|
|
bool isInvariantLoad(AliasAnalysis *AA) const;
|
|
|
|
/// isConstantValuePHI - If the specified instruction is a PHI that always
|
|
/// merges together the same virtual register, return the register, otherwise
|
|
/// return 0.
|
|
unsigned isConstantValuePHI() const;
|
|
|
|
/// hasUnmodeledSideEffects - Return true if this instruction has side
|
|
/// effects that are not modeled by mayLoad / mayStore, etc.
|
|
/// For all instructions, the property is encoded in MCInstrDesc::Flags
|
|
/// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
|
|
/// INLINEASM instruction, in which case the side effect property is encoded
|
|
/// in one of its operands (see InlineAsm::Extra_HasSideEffect).
|
|
///
|
|
bool hasUnmodeledSideEffects() const;
|
|
|
|
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
|
|
///
|
|
bool allDefsAreDead() const;
|
|
|
|
/// copyImplicitOps - Copy implicit register operands from specified
|
|
/// instruction to this instruction.
|
|
void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
|
|
|
|
//
|
|
// Debugging support
|
|
//
|
|
void print(raw_ostream &OS, const TargetMachine *TM = nullptr,
|
|
bool SkipOpers = false) const;
|
|
void dump() const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors used to build up machine instructions.
|
|
|
|
/// Add the specified operand to the instruction. If it is an implicit
|
|
/// operand, it is added to the end of the operand list. If it is an
|
|
/// explicit operand it is added at the end of the explicit operand list
|
|
/// (before the first implicit operand).
|
|
///
|
|
/// MF must be the machine function that was used to allocate this
|
|
/// instruction.
|
|
///
|
|
/// MachineInstrBuilder provides a more convenient interface for creating
|
|
/// instructions and adding operands.
|
|
void addOperand(MachineFunction &MF, const MachineOperand &Op);
|
|
|
|
/// Add an operand without providing an MF reference. This only works for
|
|
/// instructions that are inserted in a basic block.
|
|
///
|
|
/// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
|
|
/// preferred.
|
|
void addOperand(const MachineOperand &Op);
|
|
|
|
/// setDesc - Replace the instruction descriptor (thus opcode) of
|
|
/// the current instruction with a new one.
|
|
///
|
|
void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
|
|
|
|
/// setDebugLoc - Replace current source information with new such.
|
|
/// Avoid using this, the constructor argument is preferable.
|
|
///
|
|
void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
|
|
|
|
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
|
|
/// fewer operand than it started with.
|
|
///
|
|
void RemoveOperand(unsigned i);
|
|
|
|
/// addMemOperand - Add a MachineMemOperand to the machine instruction.
|
|
/// This function should be used only occasionally. The setMemRefs function
|
|
/// is the primary method for setting up a MachineInstr's MemRefs list.
|
|
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
|
|
|
|
/// setMemRefs - Assign this MachineInstr's memory reference descriptor
|
|
/// list. This does not transfer ownership.
|
|
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
|
|
MemRefs = NewMemRefs;
|
|
NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
|
|
assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
|
|
}
|
|
|
|
private:
|
|
/// getRegInfo - If this instruction is embedded into a MachineFunction,
|
|
/// return the MachineRegisterInfo object for the current function, otherwise
|
|
/// return null.
|
|
MachineRegisterInfo *getRegInfo();
|
|
|
|
/// untieRegOperand - Break any tie involving OpIdx.
|
|
void untieRegOperand(unsigned OpIdx) {
|
|
MachineOperand &MO = getOperand(OpIdx);
|
|
if (MO.isReg() && MO.isTied()) {
|
|
getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
|
|
MO.TiedTo = 0;
|
|
}
|
|
}
|
|
|
|
/// addImplicitDefUseOperands - Add all implicit def and use operands to
|
|
/// this instruction.
|
|
void addImplicitDefUseOperands(MachineFunction &MF);
|
|
|
|
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands already be on their use lists.
|
|
void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
|
|
|
|
/// AddRegOperandsToUseLists - Add all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands not be on their use lists yet.
|
|
void AddRegOperandsToUseLists(MachineRegisterInfo&);
|
|
|
|
/// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
|
|
/// bundle.
|
|
bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
|
|
|
|
/// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
|
|
/// this MI and the given operand index \p OpIdx.
|
|
/// If the related operand does not constrained Reg, this returns CurRC.
|
|
const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
|
|
unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
|
|
};
|
|
|
|
/// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
|
|
/// MachineInstr* by *value* of the instruction rather than by pointer value.
|
|
/// The hashing and equality testing functions ignore definitions so this is
|
|
/// useful for CSE, etc.
|
|
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
|
|
static inline MachineInstr *getEmptyKey() {
|
|
return nullptr;
|
|
}
|
|
|
|
static inline MachineInstr *getTombstoneKey() {
|
|
return reinterpret_cast<MachineInstr*>(-1);
|
|
}
|
|
|
|
static unsigned getHashValue(const MachineInstr* const &MI);
|
|
|
|
static bool isEqual(const MachineInstr* const &LHS,
|
|
const MachineInstr* const &RHS) {
|
|
if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
|
|
LHS == getEmptyKey() || LHS == getTombstoneKey())
|
|
return LHS == RHS;
|
|
return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Debugging Support
|
|
|
|
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
|
|
MI.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|