llvm-6502/lib/Target/PTX/PTXAsmPrinter.cpp
Justin Holewinski e1fee48cd0 PTX: Add intrinsics to list of built-in intrinsics, which allows them to be
used by Clang.  To help Clang integration, the PTX target has been split
     into two targets: ptx32 and ptx64, depending on the desired pointer size.

- Add GCCBuiltin class to all intrinsics
- Split PTX target into ptx32 and ptx64

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129851 91177308-0d34-0410-b5e6-96231b3b80d8
2011-04-20 15:37:17 +00:00

453 lines
13 KiB
C++

//===-- PTXAsmPrinter.cpp - PTX LLVM assembly writer ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to PTX assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ptx-asm-printer"
#include "PTX.h"
#include "PTXMachineFunctionInfo.h"
#include "PTXTargetMachine.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class PTXAsmPrinter : public AsmPrinter {
public:
explicit PTXAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer) {}
const char *getPassName() const { return "PTX Assembly Printer"; }
bool doFinalization(Module &M);
virtual void EmitStartOfAsmFile(Module &M);
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void EmitFunctionBodyStart();
virtual void EmitFunctionBodyEnd() { OutStreamer.EmitRawText(Twine("}")); }
virtual void EmitInstruction(const MachineInstr *MI);
void printOperand(const MachineInstr *MI, int opNum, raw_ostream &OS);
void printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &OS,
const char *Modifier = 0);
void printParamOperand(const MachineInstr *MI, int opNum, raw_ostream &OS,
const char *Modifier = 0);
void printPredicateOperand(const MachineInstr *MI, raw_ostream &O);
// autogen'd.
void printInstruction(const MachineInstr *MI, raw_ostream &OS);
static const char *getRegisterName(unsigned RegNo);
private:
void EmitVariableDeclaration(const GlobalVariable *gv);
void EmitFunctionDeclaration();
}; // class PTXAsmPrinter
} // namespace
static const char PARAM_PREFIX[] = "__param_";
static const char *getRegisterTypeName(unsigned RegNo) {
#define TEST_REGCLS(cls, clsstr) \
if (PTX::cls ## RegisterClass->contains(RegNo)) return # clsstr;
TEST_REGCLS(Preds, pred);
TEST_REGCLS(RRegu16, u16);
TEST_REGCLS(RRegu32, u32);
TEST_REGCLS(RRegu64, u64);
TEST_REGCLS(RRegf32, f32);
TEST_REGCLS(RRegf64, f64);
#undef TEST_REGCLS
llvm_unreachable("Not in any register class!");
return NULL;
}
static const char *getStateSpaceName(unsigned addressSpace) {
switch (addressSpace) {
default: llvm_unreachable("Unknown state space");
case PTX::GLOBAL: return "global";
case PTX::CONSTANT: return "const";
case PTX::LOCAL: return "local";
case PTX::PARAMETER: return "param";
case PTX::SHARED: return "shared";
}
return NULL;
}
static const char *getTypeName(const Type* type) {
while (true) {
switch (type->getTypeID()) {
default: llvm_unreachable("Unknown type");
case Type::FloatTyID: return ".f32";
case Type::DoubleTyID: return ".f64";
case Type::IntegerTyID:
switch (type->getPrimitiveSizeInBits()) {
default: llvm_unreachable("Unknown integer bit-width");
case 16: return ".u16";
case 32: return ".u32";
case 64: return ".u64";
}
case Type::ArrayTyID:
case Type::PointerTyID:
type = dyn_cast<const SequentialType>(type)->getElementType();
break;
}
}
return NULL;
}
bool PTXAsmPrinter::doFinalization(Module &M) {
// XXX Temproarily remove global variables so that doFinalization() will not
// emit them again (global variables are emitted at beginning).
Module::GlobalListType &global_list = M.getGlobalList();
int i, n = global_list.size();
GlobalVariable **gv_array = new GlobalVariable* [n];
// first, back-up GlobalVariable in gv_array
i = 0;
for (Module::global_iterator I = global_list.begin(), E = global_list.end();
I != E; ++I)
gv_array[i++] = &*I;
// second, empty global_list
while (!global_list.empty())
global_list.remove(global_list.begin());
// call doFinalization
bool ret = AsmPrinter::doFinalization(M);
// now we restore global variables
for (i = 0; i < n; i ++)
global_list.insert(global_list.end(), gv_array[i]);
delete[] gv_array;
return ret;
}
void PTXAsmPrinter::EmitStartOfAsmFile(Module &M)
{
const PTXSubtarget& ST = TM.getSubtarget<PTXSubtarget>();
OutStreamer.EmitRawText(Twine("\t.version " + ST.getPTXVersionString()));
OutStreamer.EmitRawText(Twine("\t.target " + ST.getTargetString() +
(ST.supportsDouble() ? ""
: ", map_f64_to_f32")));
OutStreamer.AddBlankLine();
// declare global variables
for (Module::const_global_iterator i = M.global_begin(), e = M.global_end();
i != e; ++i)
EmitVariableDeclaration(i);
}
bool PTXAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
SetupMachineFunction(MF);
EmitFunctionDeclaration();
EmitFunctionBody();
return false;
}
void PTXAsmPrinter::EmitFunctionBodyStart() {
OutStreamer.EmitRawText(Twine("{"));
const PTXMachineFunctionInfo *MFI = MF->getInfo<PTXMachineFunctionInfo>();
// Print local variable definition
for (PTXMachineFunctionInfo::reg_iterator
i = MFI->localVarRegBegin(), e = MFI->localVarRegEnd(); i != e; ++ i) {
unsigned reg = *i;
std::string def = "\t.reg .";
def += getRegisterTypeName(reg);
def += ' ';
def += getRegisterName(reg);
def += ';';
OutStreamer.EmitRawText(Twine(def));
}
}
void PTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
std::string str;
str.reserve(64);
raw_string_ostream OS(str);
// Emit predicate
printPredicateOperand(MI, OS);
// Write instruction to str
printInstruction(MI, OS);
OS << ';';
OS.flush();
StringRef strref = StringRef(str);
OutStreamer.EmitRawText(strref);
}
void PTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &OS) {
const MachineOperand &MO = MI->getOperand(opNum);
switch (MO.getType()) {
default:
llvm_unreachable("<unknown operand type>");
break;
case MachineOperand::MO_GlobalAddress:
OS << *Mang->getSymbol(MO.getGlobal());
break;
case MachineOperand::MO_Immediate:
OS << (int) MO.getImm();
break;
case MachineOperand::MO_MachineBasicBlock:
OS << *MO.getMBB()->getSymbol();
break;
case MachineOperand::MO_Register:
OS << getRegisterName(MO.getReg());
break;
case MachineOperand::MO_FPImmediate:
APInt constFP = MO.getFPImm()->getValueAPF().bitcastToAPInt();
bool isFloat = MO.getFPImm()->getType()->getTypeID() == Type::FloatTyID;
// Emit 0F for 32-bit floats and 0D for 64-bit doubles.
if (isFloat) {
OS << "0F";
}
else {
OS << "0D";
}
// Emit the encoded floating-point value.
if (constFP.getZExtValue() > 0) {
OS << constFP.toString(16, false);
}
else {
OS << "00000000";
// If We have a double-precision zero, pad to 8-bytes.
if (!isFloat) {
OS << "00000000";
}
}
break;
}
}
void PTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
raw_ostream &OS, const char *Modifier) {
printOperand(MI, opNum, OS);
if (MI->getOperand(opNum+1).isImm() && MI->getOperand(opNum+1).getImm() == 0)
return; // don't print "+0"
OS << "+";
printOperand(MI, opNum+1, OS);
}
void PTXAsmPrinter::printParamOperand(const MachineInstr *MI, int opNum,
raw_ostream &OS, const char *Modifier) {
OS << PARAM_PREFIX << (int) MI->getOperand(opNum).getImm() + 1;
}
void PTXAsmPrinter::EmitVariableDeclaration(const GlobalVariable *gv) {
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(gv))
return;
MCSymbol *gvsym = Mang->getSymbol(gv);
assert(gvsym->isUndefined() && "Cannot define a symbol twice!");
std::string decl;
// check if it is defined in some other translation unit
if (gv->isDeclaration())
decl += ".extern ";
// state space: e.g., .global
decl += ".";
decl += getStateSpaceName(gv->getType()->getAddressSpace());
decl += " ";
// alignment (optional)
unsigned alignment = gv->getAlignment();
if (alignment != 0) {
decl += ".align ";
decl += utostr(Log2_32(gv->getAlignment()));
decl += " ";
}
if (PointerType::classof(gv->getType())) {
const PointerType* pointerTy = dyn_cast<const PointerType>(gv->getType());
const Type* elementTy = pointerTy->getElementType();
assert(elementTy->isArrayTy() && "Only pointers to arrays are supported");
const ArrayType* arrayTy = dyn_cast<const ArrayType>(elementTy);
elementTy = arrayTy->getElementType();
unsigned numElements = arrayTy->getNumElements();
while (elementTy->isArrayTy()) {
arrayTy = dyn_cast<const ArrayType>(elementTy);
elementTy = arrayTy->getElementType();
numElements *= arrayTy->getNumElements();
}
// FIXME: isPrimitiveType() == false for i16?
assert(elementTy->isSingleValueType() &&
"Non-primitive types are not handled");
// Compute the size of the array, in bytes.
uint64_t arraySize = (elementTy->getPrimitiveSizeInBits() >> 3)
* numElements;
decl += ".b8 ";
decl += gvsym->getName();
decl += "[";
decl += utostr(arraySize);
decl += "]";
}
else {
// Note: this is currently the fall-through case and most likely generates
// incorrect code.
decl += getTypeName(gv->getType());
decl += " ";
decl += gvsym->getName();
if (ArrayType::classof(gv->getType()) ||
PointerType::classof(gv->getType()))
decl += "[]";
}
decl += ";";
OutStreamer.EmitRawText(Twine(decl));
OutStreamer.AddBlankLine();
}
void PTXAsmPrinter::EmitFunctionDeclaration() {
// The function label could have already been emitted if two symbols end up
// conflicting due to asm renaming. Detect this and emit an error.
if (!CurrentFnSym->isUndefined()) {
report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
"' label emitted multiple times to assembly file");
return;
}
const PTXMachineFunctionInfo *MFI = MF->getInfo<PTXMachineFunctionInfo>();
const bool isKernel = MFI->isKernel();
unsigned reg;
std::string decl = isKernel ? ".entry" : ".func";
// Print return register
reg = MFI->retReg();
if (!isKernel && reg != PTX::NoRegister) {
decl += " (.reg ."; // FIXME: could it return in .param space?
decl += getRegisterTypeName(reg);
decl += " ";
decl += getRegisterName(reg);
decl += ")";
}
// Print function name
decl += " ";
decl += CurrentFnSym->getName().str();
// Print parameter list
if (!MFI->argRegEmpty()) {
decl += " (";
if (isKernel) {
unsigned cnt = 0;
for(PTXMachineFunctionInfo::reg_iterator
i = MFI->argRegBegin(), e = MFI->argRegEnd(), b = i;
i != e; ++i) {
reg = *i;
assert(reg != PTX::NoRegister && "Not a valid register!");
if (i != b)
decl += ", ";
decl += ".param .";
decl += getRegisterTypeName(reg);
decl += " ";
decl += PARAM_PREFIX;
decl += utostr(++cnt);
}
} else {
for (PTXMachineFunctionInfo::reg_iterator
i = MFI->argRegBegin(), e = MFI->argRegEnd(), b = i;
i != e; ++i) {
reg = *i;
assert(reg != PTX::NoRegister && "Not a valid register!");
if (i != b)
decl += ", ";
decl += ".reg .";
decl += getRegisterTypeName(reg);
decl += " ";
decl += getRegisterName(reg);
}
}
decl += ")";
}
OutStreamer.EmitRawText(Twine(decl));
}
void PTXAsmPrinter::
printPredicateOperand(const MachineInstr *MI, raw_ostream &O) {
int i = MI->findFirstPredOperandIdx();
if (i == -1)
llvm_unreachable("missing predicate operand");
unsigned reg = MI->getOperand(i).getReg();
int predOp = MI->getOperand(i+1).getImm();
DEBUG(dbgs() << "predicate: (" << reg << ", " << predOp << ")\n");
if (reg != PTX::NoRegister) {
O << '@';
if (predOp == PTX::PRED_NEGATE)
O << '!';
O << getRegisterName(reg);
}
}
#include "PTXGenAsmWriter.inc"
// Force static initialization.
extern "C" void LLVMInitializePTXAsmPrinter() {
RegisterAsmPrinter<PTXAsmPrinter> X(ThePTX32Target);
RegisterAsmPrinter<PTXAsmPrinter> Y(ThePTX64Target);
}