llvm-6502/lib/MC/MCELFStreamer.cpp

705 lines
24 KiB
C++

//===- lib/MC/MCELFStreamer.cpp - ELF Object Output -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file assembles .s files and emits ELF .o object files.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
bool MCELFStreamer::isBundleLocked() const {
return getCurrentSectionOnly()->isBundleLocked();
}
MCELFStreamer::~MCELFStreamer() {
}
void MCELFStreamer::mergeFragment(MCDataFragment *DF,
MCEncodedFragmentWithFixups *EF) {
MCAssembler &Assembler = getAssembler();
if (Assembler.isBundlingEnabled() && Assembler.getRelaxAll()) {
uint64_t FSize = EF->getContents().size();
if (FSize > Assembler.getBundleAlignSize())
report_fatal_error("Fragment can't be larger than a bundle size");
uint64_t RequiredBundlePadding = computeBundlePadding(
Assembler, EF, DF->getContents().size(), FSize);
if (RequiredBundlePadding > UINT8_MAX)
report_fatal_error("Padding cannot exceed 255 bytes");
if (RequiredBundlePadding > 0) {
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
MCObjectWriter *OW = Assembler.getBackend().createObjectWriter(VecOS);
EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
Assembler.writeFragmentPadding(*EF, FSize, OW);
VecOS.flush();
delete OW;
DF->getContents().append(Code.begin(), Code.end());
}
}
flushPendingLabels(DF, DF->getContents().size());
for (unsigned i = 0, e = EF->getFixups().size(); i != e; ++i) {
EF->getFixups()[i].setOffset(EF->getFixups()[i].getOffset() +
DF->getContents().size());
DF->getFixups().push_back(EF->getFixups()[i]);
}
DF->setHasInstructions(true);
DF->getContents().append(EF->getContents().begin(), EF->getContents().end());
}
void MCELFStreamer::InitSections(bool NoExecStack) {
// This emulates the same behavior of GNU as. This makes it easier
// to compare the output as the major sections are in the same order.
MCContext &Ctx = getContext();
SwitchSection(Ctx.getObjectFileInfo()->getTextSection());
EmitCodeAlignment(4);
SwitchSection(Ctx.getObjectFileInfo()->getDataSection());
EmitCodeAlignment(4);
SwitchSection(Ctx.getObjectFileInfo()->getBSSSection());
EmitCodeAlignment(4);
SwitchSection(Ctx.getObjectFileInfo()->getTextSection());
if (NoExecStack)
SwitchSection(Ctx.getAsmInfo()->getNonexecutableStackSection(Ctx));
}
void MCELFStreamer::EmitLabel(MCSymbol *S) {
auto *Symbol = cast<MCSymbolELF>(S);
assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
MCObjectStreamer::EmitLabel(Symbol);
const MCSectionELF &Section =
static_cast<const MCSectionELF&>(Symbol->getSection());
if (Section.getFlags() & ELF::SHF_TLS)
Symbol->setType(ELF::STT_TLS);
}
void MCELFStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) {
// Let the target do whatever target specific stuff it needs to do.
getAssembler().getBackend().handleAssemblerFlag(Flag);
// Do any generic stuff we need to do.
switch (Flag) {
case MCAF_SyntaxUnified: return; // no-op here.
case MCAF_Code16: return; // Change parsing mode; no-op here.
case MCAF_Code32: return; // Change parsing mode; no-op here.
case MCAF_Code64: return; // Change parsing mode; no-op here.
case MCAF_SubsectionsViaSymbols:
getAssembler().setSubsectionsViaSymbols(true);
return;
}
llvm_unreachable("invalid assembler flag!");
}
// If bundle aligment is used and there are any instructions in the section, it
// needs to be aligned to at least the bundle size.
static void setSectionAlignmentForBundling(const MCAssembler &Assembler,
MCSection *Section) {
if (Section && Assembler.isBundlingEnabled() && Section->hasInstructions() &&
Section->getAlignment() < Assembler.getBundleAlignSize())
Section->setAlignment(Assembler.getBundleAlignSize());
}
void MCELFStreamer::ChangeSection(MCSection *Section,
const MCExpr *Subsection) {
MCSection *CurSection = getCurrentSectionOnly();
if (CurSection && isBundleLocked())
report_fatal_error("Unterminated .bundle_lock when changing a section");
MCAssembler &Asm = getAssembler();
// Ensure the previous section gets aligned if necessary.
setSectionAlignmentForBundling(Asm, CurSection);
auto *SectionELF = static_cast<const MCSectionELF *>(Section);
const MCSymbol *Grp = SectionELF->getGroup();
if (Grp)
Asm.registerSymbol(*Grp);
this->MCObjectStreamer::ChangeSection(Section, Subsection);
MCContext &Ctx = getContext();
auto *Begin = cast_or_null<MCSymbolELF>(Section->getBeginSymbol());
if (!Begin) {
Begin = Ctx.getOrCreateSectionSymbol(*SectionELF);
Section->setBeginSymbol(Begin);
}
if (Begin->isUndefined()) {
Asm.registerSymbol(*Begin);
Begin->setType(ELF::STT_SECTION);
}
}
void MCELFStreamer::EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol) {
getAssembler().registerSymbol(*Symbol);
const MCExpr *Value = MCSymbolRefExpr::create(
Symbol, MCSymbolRefExpr::VK_WEAKREF, getContext());
Alias->setVariableValue(Value);
}
// When GNU as encounters more than one .type declaration for an object it seems
// to use a mechanism similar to the one below to decide which type is actually
// used in the object file. The greater of T1 and T2 is selected based on the
// following ordering:
// STT_NOTYPE < STT_OBJECT < STT_FUNC < STT_GNU_IFUNC < STT_TLS < anything else
// If neither T1 < T2 nor T2 < T1 according to this ordering, use T2 (the user
// provided type).
static unsigned CombineSymbolTypes(unsigned T1, unsigned T2) {
for (unsigned Type : {ELF::STT_NOTYPE, ELF::STT_OBJECT, ELF::STT_FUNC,
ELF::STT_GNU_IFUNC, ELF::STT_TLS}) {
if (T1 == Type)
return T2;
if (T2 == Type)
return T1;
}
return T2;
}
bool MCELFStreamer::EmitSymbolAttribute(MCSymbol *S, MCSymbolAttr Attribute) {
auto *Symbol = cast<MCSymbolELF>(S);
// Indirect symbols are handled differently, to match how 'as' handles
// them. This makes writing matching .o files easier.
if (Attribute == MCSA_IndirectSymbol) {
// Note that we intentionally cannot use the symbol data here; this is
// important for matching the string table that 'as' generates.
IndirectSymbolData ISD;
ISD.Symbol = Symbol;
ISD.Section = getCurrentSectionOnly();
getAssembler().getIndirectSymbols().push_back(ISD);
return true;
}
// Adding a symbol attribute always introduces the symbol, note that an
// important side effect of calling registerSymbol here is to register
// the symbol with the assembler.
getAssembler().registerSymbol(*Symbol);
// The implementation of symbol attributes is designed to match 'as', but it
// leaves much to desired. It doesn't really make sense to arbitrarily add and
// remove flags, but 'as' allows this (in particular, see .desc).
//
// In the future it might be worth trying to make these operations more well
// defined.
switch (Attribute) {
case MCSA_LazyReference:
case MCSA_Reference:
case MCSA_SymbolResolver:
case MCSA_PrivateExtern:
case MCSA_WeakDefinition:
case MCSA_WeakDefAutoPrivate:
case MCSA_Invalid:
case MCSA_IndirectSymbol:
return false;
case MCSA_NoDeadStrip:
// Ignore for now.
break;
case MCSA_ELF_TypeGnuUniqueObject:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT));
Symbol->setBinding(ELF::STB_GNU_UNIQUE);
Symbol->setExternal(true);
break;
case MCSA_Global:
Symbol->setBinding(ELF::STB_GLOBAL);
Symbol->setExternal(true);
break;
case MCSA_WeakReference:
case MCSA_Weak:
Symbol->setBinding(ELF::STB_WEAK);
Symbol->setExternal(true);
break;
case MCSA_Local:
Symbol->setBinding(ELF::STB_LOCAL);
Symbol->setExternal(false);
break;
case MCSA_ELF_TypeFunction:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_FUNC));
break;
case MCSA_ELF_TypeIndFunction:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_GNU_IFUNC));
break;
case MCSA_ELF_TypeObject:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT));
break;
case MCSA_ELF_TypeTLS:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_TLS));
break;
case MCSA_ELF_TypeCommon:
// TODO: Emit these as a common symbol.
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT));
break;
case MCSA_ELF_TypeNoType:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_NOTYPE));
break;
case MCSA_Protected:
Symbol->setVisibility(ELF::STV_PROTECTED);
break;
case MCSA_Hidden:
Symbol->setVisibility(ELF::STV_HIDDEN);
break;
case MCSA_Internal:
Symbol->setVisibility(ELF::STV_INTERNAL);
break;
}
return true;
}
void MCELFStreamer::EmitCommonSymbol(MCSymbol *S, uint64_t Size,
unsigned ByteAlignment) {
auto *Symbol = cast<MCSymbolELF>(S);
getAssembler().registerSymbol(*Symbol);
if (!Symbol->isBindingSet()) {
Symbol->setBinding(ELF::STB_GLOBAL);
Symbol->setExternal(true);
}
Symbol->setType(ELF::STT_OBJECT);
if (Symbol->getBinding() == ELF::STB_LOCAL) {
MCSection *Section = getAssembler().getContext().getELFSection(
".bss", ELF::SHT_NOBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
AssignSection(Symbol, Section);
struct LocalCommon L = {Symbol, Size, ByteAlignment};
LocalCommons.push_back(L);
} else {
if(Symbol->declareCommon(Size, ByteAlignment))
report_fatal_error("Symbol: " + Symbol->getName() +
" redeclared as different type");
}
cast<MCSymbolELF>(Symbol)
->setSize(MCConstantExpr::create(Size, getContext()));
}
void MCELFStreamer::emitELFSize(MCSymbolELF *Symbol, const MCExpr *Value) {
Symbol->setSize(Value);
}
void MCELFStreamer::EmitLocalCommonSymbol(MCSymbol *S, uint64_t Size,
unsigned ByteAlignment) {
auto *Symbol = cast<MCSymbolELF>(S);
// FIXME: Should this be caught and done earlier?
getAssembler().registerSymbol(*Symbol);
Symbol->setBinding(ELF::STB_LOCAL);
Symbol->setExternal(false);
EmitCommonSymbol(Symbol, Size, ByteAlignment);
}
void MCELFStreamer::EmitValueImpl(const MCExpr *Value, unsigned Size,
const SMLoc &Loc) {
if (isBundleLocked())
report_fatal_error("Emitting values inside a locked bundle is forbidden");
fixSymbolsInTLSFixups(Value);
MCObjectStreamer::EmitValueImpl(Value, Size, Loc);
}
void MCELFStreamer::EmitValueToAlignment(unsigned ByteAlignment,
int64_t Value,
unsigned ValueSize,
unsigned MaxBytesToEmit) {
if (isBundleLocked())
report_fatal_error("Emitting values inside a locked bundle is forbidden");
MCObjectStreamer::EmitValueToAlignment(ByteAlignment, Value,
ValueSize, MaxBytesToEmit);
}
// Add a symbol for the file name of this module. They start after the
// null symbol and don't count as normal symbol, i.e. a non-STT_FILE symbol
// with the same name may appear.
void MCELFStreamer::EmitFileDirective(StringRef Filename) {
getAssembler().addFileName(Filename);
}
void MCELFStreamer::EmitIdent(StringRef IdentString) {
MCSection *Comment = getAssembler().getContext().getELFSection(
".comment", ELF::SHT_PROGBITS, ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
PushSection();
SwitchSection(Comment);
if (!SeenIdent) {
EmitIntValue(0, 1);
SeenIdent = true;
}
EmitBytes(IdentString);
EmitIntValue(0, 1);
PopSection();
}
void MCELFStreamer::fixSymbolsInTLSFixups(const MCExpr *expr) {
switch (expr->getKind()) {
case MCExpr::Target:
cast<MCTargetExpr>(expr)->fixELFSymbolsInTLSFixups(getAssembler());
break;
case MCExpr::Constant:
break;
case MCExpr::Binary: {
const MCBinaryExpr *be = cast<MCBinaryExpr>(expr);
fixSymbolsInTLSFixups(be->getLHS());
fixSymbolsInTLSFixups(be->getRHS());
break;
}
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &symRef = *cast<MCSymbolRefExpr>(expr);
switch (symRef.getKind()) {
default:
return;
case MCSymbolRefExpr::VK_GOTTPOFF:
case MCSymbolRefExpr::VK_INDNTPOFF:
case MCSymbolRefExpr::VK_NTPOFF:
case MCSymbolRefExpr::VK_GOTNTPOFF:
case MCSymbolRefExpr::VK_TLSGD:
case MCSymbolRefExpr::VK_TLSLD:
case MCSymbolRefExpr::VK_TLSLDM:
case MCSymbolRefExpr::VK_TPOFF:
case MCSymbolRefExpr::VK_DTPOFF:
case MCSymbolRefExpr::VK_Mips_TLSGD:
case MCSymbolRefExpr::VK_Mips_GOTTPREL:
case MCSymbolRefExpr::VK_Mips_TPREL_HI:
case MCSymbolRefExpr::VK_Mips_TPREL_LO:
case MCSymbolRefExpr::VK_PPC_DTPMOD:
case MCSymbolRefExpr::VK_PPC_TPREL:
case MCSymbolRefExpr::VK_PPC_TPREL_LO:
case MCSymbolRefExpr::VK_PPC_TPREL_HI:
case MCSymbolRefExpr::VK_PPC_TPREL_HA:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHER:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHERA:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHEST:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHESTA:
case MCSymbolRefExpr::VK_PPC_DTPREL:
case MCSymbolRefExpr::VK_PPC_DTPREL_LO:
case MCSymbolRefExpr::VK_PPC_DTPREL_HI:
case MCSymbolRefExpr::VK_PPC_DTPREL_HA:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHER:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHERA:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHEST:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHESTA:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL_HI:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA:
case MCSymbolRefExpr::VK_PPC_GOT_DTPREL:
case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_LO:
case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_HI:
case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_HA:
case MCSymbolRefExpr::VK_PPC_TLS:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HI:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA:
case MCSymbolRefExpr::VK_PPC_TLSGD:
case MCSymbolRefExpr::VK_PPC_GOT_TLSLD:
case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO:
case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HI:
case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA:
case MCSymbolRefExpr::VK_PPC_TLSLD:
break;
}
getAssembler().registerSymbol(symRef.getSymbol());
cast<MCSymbolELF>(symRef.getSymbol()).setType(ELF::STT_TLS);
break;
}
case MCExpr::Unary:
fixSymbolsInTLSFixups(cast<MCUnaryExpr>(expr)->getSubExpr());
break;
}
}
void MCELFStreamer::EmitInstToFragment(const MCInst &Inst,
const MCSubtargetInfo &STI) {
this->MCObjectStreamer::EmitInstToFragment(Inst, STI);
MCRelaxableFragment &F = *cast<MCRelaxableFragment>(getCurrentFragment());
for (unsigned i = 0, e = F.getFixups().size(); i != e; ++i)
fixSymbolsInTLSFixups(F.getFixups()[i].getValue());
}
void MCELFStreamer::EmitInstToData(const MCInst &Inst,
const MCSubtargetInfo &STI) {
MCAssembler &Assembler = getAssembler();
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
Assembler.getEmitter().encodeInstruction(Inst, VecOS, Fixups, STI);
VecOS.flush();
for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
fixSymbolsInTLSFixups(Fixups[i].getValue());
// There are several possibilities here:
//
// If bundling is disabled, append the encoded instruction to the current data
// fragment (or create a new such fragment if the current fragment is not a
// data fragment).
//
// If bundling is enabled:
// - If we're not in a bundle-locked group, emit the instruction into a
// fragment of its own. If there are no fixups registered for the
// instruction, emit a MCCompactEncodedInstFragment. Otherwise, emit a
// MCDataFragment.
// - If we're in a bundle-locked group, append the instruction to the current
// data fragment because we want all the instructions in a group to get into
// the same fragment. Be careful not to do that for the first instruction in
// the group, though.
MCDataFragment *DF;
if (Assembler.isBundlingEnabled()) {
MCSection &Sec = *getCurrentSectionOnly();
if (Assembler.getRelaxAll() && isBundleLocked())
// If the -mc-relax-all flag is used and we are bundle-locked, we re-use
// the current bundle group.
DF = BundleGroups.back();
else if (Assembler.getRelaxAll() && !isBundleLocked())
// When not in a bundle-locked group and the -mc-relax-all flag is used,
// we create a new temporary fragment which will be later merged into
// the current fragment.
DF = new MCDataFragment();
else if (isBundleLocked() && !Sec.isBundleGroupBeforeFirstInst())
// If we are bundle-locked, we re-use the current fragment.
// The bundle-locking directive ensures this is a new data fragment.
DF = cast<MCDataFragment>(getCurrentFragment());
else if (!isBundleLocked() && Fixups.size() == 0) {
// Optimize memory usage by emitting the instruction to a
// MCCompactEncodedInstFragment when not in a bundle-locked group and
// there are no fixups registered.
MCCompactEncodedInstFragment *CEIF = new MCCompactEncodedInstFragment();
insert(CEIF);
CEIF->getContents().append(Code.begin(), Code.end());
return;
} else {
DF = new MCDataFragment();
insert(DF);
}
if (Sec.getBundleLockState() == MCSection::BundleLockedAlignToEnd) {
// If this fragment is for a group marked "align_to_end", set a flag
// in the fragment. This can happen after the fragment has already been
// created if there are nested bundle_align groups and an inner one
// is the one marked align_to_end.
DF->setAlignToBundleEnd(true);
}
// We're now emitting an instruction in a bundle group, so this flag has
// to be turned off.
Sec.setBundleGroupBeforeFirstInst(false);
} else {
DF = getOrCreateDataFragment();
}
// Add the fixups and data.
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
Fixups[i].setOffset(Fixups[i].getOffset() + DF->getContents().size());
DF->getFixups().push_back(Fixups[i]);
}
DF->setHasInstructions(true);
DF->getContents().append(Code.begin(), Code.end());
if (Assembler.isBundlingEnabled() && Assembler.getRelaxAll()) {
if (!isBundleLocked()) {
mergeFragment(getOrCreateDataFragment(), DF);
delete DF;
}
}
}
void MCELFStreamer::EmitBundleAlignMode(unsigned AlignPow2) {
assert(AlignPow2 <= 30 && "Invalid bundle alignment");
MCAssembler &Assembler = getAssembler();
if (AlignPow2 > 0 && (Assembler.getBundleAlignSize() == 0 ||
Assembler.getBundleAlignSize() == 1U << AlignPow2))
Assembler.setBundleAlignSize(1U << AlignPow2);
else
report_fatal_error(".bundle_align_mode cannot be changed once set");
}
void MCELFStreamer::EmitBundleLock(bool AlignToEnd) {
MCSection &Sec = *getCurrentSectionOnly();
// Sanity checks
//
if (!getAssembler().isBundlingEnabled())
report_fatal_error(".bundle_lock forbidden when bundling is disabled");
if (!isBundleLocked())
Sec.setBundleGroupBeforeFirstInst(true);
if (getAssembler().getRelaxAll() && !isBundleLocked()) {
// TODO: drop the lock state and set directly in the fragment
MCDataFragment *DF = new MCDataFragment();
BundleGroups.push_back(DF);
}
Sec.setBundleLockState(AlignToEnd ? MCSection::BundleLockedAlignToEnd
: MCSection::BundleLocked);
}
void MCELFStreamer::EmitBundleUnlock() {
MCSection &Sec = *getCurrentSectionOnly();
// Sanity checks
if (!getAssembler().isBundlingEnabled())
report_fatal_error(".bundle_unlock forbidden when bundling is disabled");
else if (!isBundleLocked())
report_fatal_error(".bundle_unlock without matching lock");
else if (Sec.isBundleGroupBeforeFirstInst())
report_fatal_error("Empty bundle-locked group is forbidden");
// When the -mc-relax-all flag is used, we emit instructions to fragments
// stored on a stack. When the bundle unlock is emited, we pop a fragment
// from the stack a merge it to the one below.
if (getAssembler().getRelaxAll()) {
assert(!BundleGroups.empty() && "There are no bundle groups");
MCDataFragment *DF = BundleGroups.back();
// FIXME: Use BundleGroups to track the lock state instead.
Sec.setBundleLockState(MCSection::NotBundleLocked);
// FIXME: Use more separate fragments for nested groups.
if (!isBundleLocked()) {
mergeFragment(getOrCreateDataFragment(), DF);
BundleGroups.pop_back();
delete DF;
}
if (Sec.getBundleLockState() != MCSection::BundleLockedAlignToEnd)
getOrCreateDataFragment()->setAlignToBundleEnd(false);
} else
Sec.setBundleLockState(MCSection::NotBundleLocked);
}
void MCELFStreamer::Flush() {
for (std::vector<LocalCommon>::const_iterator i = LocalCommons.begin(),
e = LocalCommons.end();
i != e; ++i) {
const MCSymbol &Symbol = *i->Symbol;
uint64_t Size = i->Size;
unsigned ByteAlignment = i->ByteAlignment;
MCSection &Section = Symbol.getSection();
getAssembler().registerSection(Section);
new MCAlignFragment(ByteAlignment, 0, 1, ByteAlignment, &Section);
MCFragment *F = new MCFillFragment(0, 0, Size, &Section);
Symbol.setFragment(F);
// Update the maximum alignment of the section if necessary.
if (ByteAlignment > Section.getAlignment())
Section.setAlignment(ByteAlignment);
}
LocalCommons.clear();
}
void MCELFStreamer::FinishImpl() {
// Ensure the last section gets aligned if necessary.
MCSection *CurSection = getCurrentSectionOnly();
setSectionAlignmentForBundling(getAssembler(), CurSection);
EmitFrames(nullptr);
Flush();
this->MCObjectStreamer::FinishImpl();
}
MCStreamer *llvm::createELFStreamer(MCContext &Context, MCAsmBackend &MAB,
raw_pwrite_stream &OS, MCCodeEmitter *CE,
bool RelaxAll) {
MCELFStreamer *S = new MCELFStreamer(Context, MAB, OS, CE);
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
return S;
}
void MCELFStreamer::EmitThumbFunc(MCSymbol *Func) {
llvm_unreachable("Generic ELF doesn't support this directive");
}
void MCELFStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::BeginCOFFSymbolDef(const MCSymbol *Symbol) {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::EmitCOFFSymbolStorageClass(int StorageClass) {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::EmitCOFFSymbolType(int Type) {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::EndCOFFSymbolDef() {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::EmitZerofill(MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment) {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::EmitTBSSSymbol(MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment) {
llvm_unreachable("ELF doesn't support this directive");
}