mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
7a1b190bcd
This helps reduce the frequency of stack realignment prologues in 32-bit X86 Windows code. Before this change and the corresponding clang change, we would take the max of the type preferred alignment and the explicit alignment on the alloca. If you don't override aggregate alignment in datalayout, you get a default of 8. This dates back to 2007 / r34356, and changing it seems prohibitively difficult at this point. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236270 91177308-0d34-0410-b5e6-96231b3b80d8
243 lines
8.0 KiB
C++
243 lines
8.0 KiB
C++
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the X86 specific subclass of TargetMachine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86TargetMachine.h"
|
|
#include "X86.h"
|
|
#include "X86TargetObjectFile.h"
|
|
#include "X86TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
extern "C" void LLVMInitializeX86Target() {
|
|
// Register the target.
|
|
RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
|
|
RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
|
|
}
|
|
|
|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
|
if (TT.isOSBinFormatMachO()) {
|
|
if (TT.getArch() == Triple::x86_64)
|
|
return make_unique<X86_64MachoTargetObjectFile>();
|
|
return make_unique<TargetLoweringObjectFileMachO>();
|
|
}
|
|
|
|
if (TT.isOSLinux() || TT.isOSNaCl())
|
|
return make_unique<X86LinuxNaClTargetObjectFile>();
|
|
if (TT.isOSBinFormatELF())
|
|
return make_unique<X86ELFTargetObjectFile>();
|
|
if (TT.isKnownWindowsMSVCEnvironment())
|
|
return make_unique<X86WindowsTargetObjectFile>();
|
|
if (TT.isOSBinFormatCOFF())
|
|
return make_unique<TargetLoweringObjectFileCOFF>();
|
|
llvm_unreachable("unknown subtarget type");
|
|
}
|
|
|
|
static std::string computeDataLayout(const Triple &TT) {
|
|
// X86 is little endian
|
|
std::string Ret = "e";
|
|
|
|
Ret += DataLayout::getManglingComponent(TT);
|
|
// X86 and x32 have 32 bit pointers.
|
|
if ((TT.isArch64Bit() &&
|
|
(TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
|
|
!TT.isArch64Bit())
|
|
Ret += "-p:32:32";
|
|
|
|
// Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
|
|
if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
|
|
Ret += "-i64:64";
|
|
else
|
|
Ret += "-f64:32:64";
|
|
|
|
// Some ABIs align long double to 128 bits, others to 32.
|
|
if (TT.isOSNaCl())
|
|
; // No f80
|
|
else if (TT.isArch64Bit() || TT.isOSDarwin())
|
|
Ret += "-f80:128";
|
|
else
|
|
Ret += "-f80:32";
|
|
|
|
// The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
|
|
if (TT.isArch64Bit())
|
|
Ret += "-n8:16:32:64";
|
|
else
|
|
Ret += "-n8:16:32";
|
|
|
|
// The stack is aligned to 32 bits on some ABIs and 128 bits on others.
|
|
if (!TT.isArch64Bit() && TT.isOSWindows())
|
|
Ret += "-a:0:32-S32";
|
|
else
|
|
Ret += "-S128";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
/// X86TargetMachine ctor - Create an X86 target.
|
|
///
|
|
X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
|
|
StringRef FS, const TargetOptions &Options,
|
|
Reloc::Model RM, CodeModel::Model CM,
|
|
CodeGenOpt::Level OL)
|
|
: LLVMTargetMachine(T, computeDataLayout(Triple(TT)), TT, CPU, FS, Options,
|
|
RM, CM, OL),
|
|
TLOF(createTLOF(Triple(getTargetTriple()))),
|
|
Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
|
|
// default to hard float ABI
|
|
if (Options.FloatABIType == FloatABI::Default)
|
|
this->Options.FloatABIType = FloatABI::Hard;
|
|
|
|
// Windows stack unwinder gets confused when execution flow "falls through"
|
|
// after a call to 'noreturn' function.
|
|
// To prevent that, we emit a trap for 'unreachable' IR instructions.
|
|
// (which on X86, happens to be the 'ud2' instruction)
|
|
if (Subtarget.isTargetWin64())
|
|
this->Options.TrapUnreachable = true;
|
|
|
|
initAsmInfo();
|
|
}
|
|
|
|
X86TargetMachine::~X86TargetMachine() {}
|
|
|
|
const X86Subtarget *
|
|
X86TargetMachine::getSubtargetImpl(const Function &F) const {
|
|
Attribute CPUAttr = F.getFnAttribute("target-cpu");
|
|
Attribute FSAttr = F.getFnAttribute("target-features");
|
|
|
|
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
|
|
? CPUAttr.getValueAsString().str()
|
|
: TargetCPU;
|
|
std::string FS = !FSAttr.hasAttribute(Attribute::None)
|
|
? FSAttr.getValueAsString().str()
|
|
: TargetFS;
|
|
|
|
// FIXME: This is related to the code below to reset the target options,
|
|
// we need to know whether or not the soft float flag is set on the
|
|
// function before we can generate a subtarget. We also need to use
|
|
// it as a key for the subtarget since that can be the only difference
|
|
// between two functions.
|
|
Attribute SFAttr = F.getFnAttribute("use-soft-float");
|
|
bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
|
|
? SFAttr.getValueAsString() == "true"
|
|
: Options.UseSoftFloat;
|
|
|
|
auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
|
|
: "use-soft-float=false")];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
|
|
Options.StackAlignmentOverride);
|
|
}
|
|
return I.get();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Command line options for x86
|
|
//===----------------------------------------------------------------------===//
|
|
static cl::opt<bool>
|
|
UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
|
|
cl::desc("Minimize AVX to SSE transition penalty"),
|
|
cl::init(true));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 TTI query.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() {
|
|
return TargetIRAnalysis(
|
|
[this](Function &F) { return TargetTransformInfo(X86TTIImpl(this, F)); });
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pass Pipeline Configuration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// X86 Code Generator Pass Configuration Options.
|
|
class X86PassConfig : public TargetPassConfig {
|
|
public:
|
|
X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
X86TargetMachine &getX86TargetMachine() const {
|
|
return getTM<X86TargetMachine>();
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
bool addInstSelector() override;
|
|
bool addILPOpts() override;
|
|
void addPreRegAlloc() override;
|
|
void addPostRegAlloc() override;
|
|
void addPreEmitPass() override;
|
|
};
|
|
} // namespace
|
|
|
|
TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new X86PassConfig(this, PM);
|
|
}
|
|
|
|
void X86PassConfig::addIRPasses() {
|
|
addPass(createAtomicExpandPass(&getX86TargetMachine()));
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
}
|
|
|
|
bool X86PassConfig::addInstSelector() {
|
|
// Install an instruction selector.
|
|
addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
|
|
|
|
// For ELF, cleanup any local-dynamic TLS accesses.
|
|
if (Triple(TM->getTargetTriple()).isOSBinFormatELF() &&
|
|
getOptLevel() != CodeGenOpt::None)
|
|
addPass(createCleanupLocalDynamicTLSPass());
|
|
|
|
addPass(createX86GlobalBaseRegPass());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86PassConfig::addILPOpts() {
|
|
addPass(&EarlyIfConverterID);
|
|
return true;
|
|
}
|
|
|
|
void X86PassConfig::addPreRegAlloc() {
|
|
addPass(createX86CallFrameOptimization());
|
|
}
|
|
|
|
void X86PassConfig::addPostRegAlloc() {
|
|
addPass(createX86FloatingPointStackifierPass());
|
|
}
|
|
|
|
void X86PassConfig::addPreEmitPass() {
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
|
|
|
|
if (UseVZeroUpper)
|
|
addPass(createX86IssueVZeroUpperPass());
|
|
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createX86PadShortFunctions());
|
|
addPass(createX86FixupLEAs());
|
|
}
|
|
}
|