mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-22 07:32:48 +00:00
fc1665793e
code that uses it by using SelectionDAG::getVTList instead. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68744 91177308-0d34-0410-b5e6-96231b3b80d8
1218 lines
46 KiB
C++
1218 lines
46 KiB
C++
//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that Mips uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mips-lower"
|
|
|
|
#include "MipsISelLowering.h"
|
|
#include "MipsMachineFunction.h"
|
|
#include "MipsTargetMachine.h"
|
|
#include "MipsSubtarget.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
const char *MipsTargetLowering::
|
|
getTargetNodeName(unsigned Opcode) const
|
|
{
|
|
switch (Opcode)
|
|
{
|
|
case MipsISD::JmpLink : return "MipsISD::JmpLink";
|
|
case MipsISD::Hi : return "MipsISD::Hi";
|
|
case MipsISD::Lo : return "MipsISD::Lo";
|
|
case MipsISD::GPRel : return "MipsISD::GPRel";
|
|
case MipsISD::Ret : return "MipsISD::Ret";
|
|
case MipsISD::CMov : return "MipsISD::CMov";
|
|
case MipsISD::SelectCC : return "MipsISD::SelectCC";
|
|
case MipsISD::FPSelectCC : return "MipsISD::FPSelectCC";
|
|
case MipsISD::FPBrcond : return "MipsISD::FPBrcond";
|
|
case MipsISD::FPCmp : return "MipsISD::FPCmp";
|
|
default : return NULL;
|
|
}
|
|
}
|
|
|
|
MipsTargetLowering::
|
|
MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM)
|
|
{
|
|
Subtarget = &TM.getSubtarget<MipsSubtarget>();
|
|
|
|
// Mips does not have i1 type, so use i32 for
|
|
// setcc operations results (slt, sgt, ...).
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
|
|
// JumpTable targets must use GOT when using PIC_
|
|
setUsesGlobalOffsetTable(true);
|
|
|
|
// Set up the register classes
|
|
addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
|
|
addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
|
|
|
|
// When dealing with single precision only, use libcalls
|
|
if (!Subtarget->isSingleFloat())
|
|
if (!Subtarget->isFP64bit())
|
|
addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
|
|
|
|
// Legal fp constants
|
|
addLegalFPImmediate(APFloat(+0.0f));
|
|
|
|
// Load extented operations for i1 types must be promoted
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// Used by legalize types to correctly generate the setcc result.
|
|
// Without this, every float setcc comes with a AND/OR with the result,
|
|
// we don't want this, since the fpcmp result goes to a flag register,
|
|
// which is used implicitly by brcond and select operations.
|
|
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
|
|
|
|
// Mips Custom Operations
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::RET, MVT::Other, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Custom);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
|
|
|
|
// We custom lower AND/OR to handle the case where the DAG contain 'ands/ors'
|
|
// with operands comming from setcc fp comparions. This is necessary since
|
|
// the result from these setcc are in a flag registers (FCR31).
|
|
setOperationAction(ISD::AND, MVT::i32, Custom);
|
|
setOperationAction(ISD::OR, MVT::i32, Custom);
|
|
|
|
// Operations not directly supported by Mips.
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
|
|
// We don't have line number support yet.
|
|
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
|
|
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
|
|
setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
|
|
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
|
|
|
|
// Use the default for now
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
|
|
|
|
if (Subtarget->isSingleFloat())
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
|
|
if (!Subtarget->hasSEInReg()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
}
|
|
|
|
if (!Subtarget->hasBitCount())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
|
|
if (!Subtarget->hasSwap())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
|
|
setStackPointerRegisterToSaveRestore(Mips::SP);
|
|
computeRegisterProperties();
|
|
}
|
|
|
|
|
|
MVT MipsTargetLowering::getSetCCResultType(MVT VT) const {
|
|
return MVT::i32;
|
|
}
|
|
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerOperation(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
switch (Op.getOpcode())
|
|
{
|
|
case ISD::AND: return LowerANDOR(Op, DAG);
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::CALL: return LowerCALL(Op, DAG);
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::OR: return LowerANDOR(Op, DAG);
|
|
case ISD::RET: return LowerRET(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::SETCC: return LowerSETCC(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lower helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// AddLiveIn - This helper function adds the specified physical register to the
|
|
// MachineFunction as a live in value. It also creates a corresponding
|
|
// virtual register for it.
|
|
static unsigned
|
|
AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
|
|
{
|
|
assert(RC->contains(PReg) && "Not the correct regclass!");
|
|
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
|
|
MF.getRegInfo().addLiveIn(PReg, VReg);
|
|
return VReg;
|
|
}
|
|
|
|
// A address must be loaded from a small section if its size is less than the
|
|
// small section size threshold. Data in this section must be addressed using
|
|
// gp_rel operator.
|
|
bool MipsTargetLowering::IsInSmallSection(unsigned Size) {
|
|
return (Size > 0 && (Size <= Subtarget->getSSectionThreshold()));
|
|
}
|
|
|
|
// Discover if this global address can be placed into small data/bss section.
|
|
bool MipsTargetLowering::IsGlobalInSmallSection(GlobalValue *GV)
|
|
{
|
|
const TargetData *TD = getTargetData();
|
|
const GlobalVariable *GVA = dyn_cast<GlobalVariable>(GV);
|
|
|
|
if (!GVA)
|
|
return false;
|
|
|
|
const Type *Ty = GV->getType()->getElementType();
|
|
unsigned Size = TD->getTypePaddedSize(Ty);
|
|
|
|
// if this is a internal constant string, there is a special
|
|
// section for it, but not in small data/bss.
|
|
if (GVA->hasInitializer() && GV->hasLocalLinkage()) {
|
|
Constant *C = GVA->getInitializer();
|
|
const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
|
|
if (CVA && CVA->isCString())
|
|
return false;
|
|
}
|
|
|
|
return IsInSmallSection(Size);
|
|
}
|
|
|
|
// Get fp branch code (not opcode) from condition code.
|
|
static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
|
|
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
|
|
return Mips::BRANCH_T;
|
|
|
|
if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
|
|
return Mips::BRANCH_F;
|
|
|
|
return Mips::BRANCH_INVALID;
|
|
}
|
|
|
|
static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC) {
|
|
switch(BC) {
|
|
default:
|
|
assert(0 && "Unknown branch code");
|
|
case Mips::BRANCH_T : return Mips::BC1T;
|
|
case Mips::BRANCH_F : return Mips::BC1F;
|
|
case Mips::BRANCH_TL : return Mips::BC1TL;
|
|
case Mips::BRANCH_FL : return Mips::BC1FL;
|
|
}
|
|
}
|
|
|
|
static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown fp condition code!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: return Mips::FCOND_EQ;
|
|
case ISD::SETUNE: return Mips::FCOND_OGL;
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT: return Mips::FCOND_OLT;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: return Mips::FCOND_OGT;
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE: return Mips::FCOND_OLE;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: return Mips::FCOND_OGE;
|
|
case ISD::SETULT: return Mips::FCOND_ULT;
|
|
case ISD::SETULE: return Mips::FCOND_ULE;
|
|
case ISD::SETUGT: return Mips::FCOND_UGT;
|
|
case ISD::SETUGE: return Mips::FCOND_UGE;
|
|
case ISD::SETUO: return Mips::FCOND_UN;
|
|
case ISD::SETO: return Mips::FCOND_OR;
|
|
case ISD::SETNE:
|
|
case ISD::SETONE: return Mips::FCOND_NEQ;
|
|
case ISD::SETUEQ: return Mips::FCOND_UEQ;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
bool isFPCmp = false;
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
switch (MI->getOpcode()) {
|
|
default: assert(false && "Unexpected instr type to insert");
|
|
case Mips::Select_FCC:
|
|
case Mips::Select_FCC_S32:
|
|
case Mips::Select_FCC_D32:
|
|
isFPCmp = true; // FALL THROUGH
|
|
case Mips::Select_CC:
|
|
case Mips::Select_CC_S32:
|
|
case Mips::Select_CC_D32: {
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// setcc r1, r2, r3
|
|
// bNE r1, r0, copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
// Emit the right instruction according to the type of the operands compared
|
|
if (isFPCmp) {
|
|
// Find the condiction code present in the setcc operation.
|
|
Mips::CondCode CC = (Mips::CondCode)MI->getOperand(4).getImm();
|
|
// Get the branch opcode from the branch code.
|
|
unsigned Opc = FPBranchCodeToOpc(GetFPBranchCodeFromCond(CC));
|
|
BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
|
|
} else
|
|
BuildMI(BB, dl, TII->get(Mips::BNE)).addReg(MI->getOperand(1).getReg())
|
|
.addReg(Mips::ZERO).addMBB(sinkMBB);
|
|
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
// Update machine-CFG edges by first adding all successors of the current
|
|
// block to the new block which will contain the Phi node for the select.
|
|
for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
|
|
e = BB->succ_end(); i != e; ++i)
|
|
sinkMBB->addSuccessor(*i);
|
|
// Next, remove all successors of the current block, and add the true
|
|
// and fallthrough blocks as its successors.
|
|
while(!BB->succ_empty())
|
|
BB->removeSuccessor(BB->succ_begin());
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, dl, TII->get(Mips::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(3).getReg()).addMBB(thisMBB);
|
|
|
|
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Misc Lower Operation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Get a reference from Mips stack pointer
|
|
SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32);
|
|
|
|
// Subtract the dynamic size from the actual stack size to
|
|
// obtain the new stack size.
|
|
SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
|
|
|
|
// The Sub result contains the new stack start address, so it
|
|
// must be placed in the stack pointer register.
|
|
Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub);
|
|
|
|
// This node always has two return values: a new stack pointer
|
|
// value and a chain
|
|
SDValue Ops[2] = { Sub, Chain };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerANDOR(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (LHS.getOpcode() != MipsISD::FPCmp || RHS.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
SDValue True = DAG.getConstant(1, MVT::i32);
|
|
SDValue False = DAG.getConstant(0, MVT::i32);
|
|
|
|
SDValue LSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
|
|
LHS, True, False, LHS.getOperand(2));
|
|
SDValue RSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
|
|
RHS, True, False, RHS.getOperand(2));
|
|
|
|
return DAG.getNode(Op.getOpcode(), dl, MVT::i32, LSEL, RSEL);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerBRCOND(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
// The first operand is the chain, the second is the condition, the third is
|
|
// the block to branch to if the condition is true.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Dest = Op.getOperand(2);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (Op.getOperand(1).getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
SDValue CondRes = Op.getOperand(1);
|
|
SDValue CCNode = CondRes.getOperand(2);
|
|
Mips::CondCode CC =
|
|
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
|
|
SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
|
|
|
|
return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
|
|
Dest, CondRes);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerSETCC(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
// The operands to this are the left and right operands to compare (ops #0,
|
|
// and #1) and the condition code to compare them with (op #2) as a
|
|
// CondCodeSDNode.
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
|
|
return DAG.getNode(MipsISD::FPCmp, dl, Op.getValueType(), LHS, RHS,
|
|
DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerSELECT(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
SDValue Cond = Op.getOperand(0);
|
|
SDValue True = Op.getOperand(1);
|
|
SDValue False = Op.getOperand(2);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// if the incomming condition comes from a integer compare, the select
|
|
// operation must be SelectCC or a conditional move if the subtarget
|
|
// supports it.
|
|
if (Cond.getOpcode() != MipsISD::FPCmp) {
|
|
if (Subtarget->hasCondMov() && !True.getValueType().isFloatingPoint())
|
|
return Op;
|
|
return DAG.getNode(MipsISD::SelectCC, dl, True.getValueType(),
|
|
Cond, True, False);
|
|
}
|
|
|
|
// if the incomming condition comes from fpcmp, the select
|
|
// operation must use FPSelectCC.
|
|
SDValue CCNode = Cond.getOperand(2);
|
|
return DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
|
|
Cond, True, False, CCNode);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerGlobalAddress(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32);
|
|
|
|
if (!Subtarget->hasABICall()) {
|
|
SDVTList VTs = DAG.getVTList(MVT::i32);
|
|
SDValue Ops[] = { GA };
|
|
// %gp_rel relocation
|
|
if (!isa<Function>(GV) && IsGlobalInSmallSection(GV)) {
|
|
SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, Ops, 1);
|
|
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
|
|
}
|
|
// %hi/%lo relocation
|
|
SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, Ops, 1);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
|
|
} else { // Abicall relocations, TODO: make this cleaner.
|
|
SDValue ResNode = DAG.getLoad(MVT::i32, dl,
|
|
DAG.getEntryNode(), GA, NULL, 0);
|
|
// On functions and global targets not internal linked only
|
|
// a load from got/GP is necessary for PIC to work.
|
|
if (!GV->hasLocalLinkage() || isa<Function>(GV))
|
|
return ResNode;
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
|
|
}
|
|
|
|
assert(0 && "Dont know how to handle GlobalAddress");
|
|
return SDValue(0,0);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
assert(0 && "TLS not implemented for MIPS.");
|
|
return SDValue(); // Not reached
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerJumpTable(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
SDValue ResNode;
|
|
SDValue HiPart;
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
MVT PtrVT = Op.getValueType();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
|
|
SDVTList VTs = DAG.getVTList(MVT::i32);
|
|
SDValue Ops[] = { JTI };
|
|
HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, Ops, 1);
|
|
} else // Emit Load from Global Pointer
|
|
HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI, NULL, 0);
|
|
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTI);
|
|
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerConstantPool(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
SDValue ResNode;
|
|
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
|
|
Constant *C = N->getConstVal();
|
|
SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment());
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// gp_rel relocation
|
|
// FIXME: we should reference the constant pool using small data sections,
|
|
// but the asm printer currently doens't support this feature without
|
|
// hacking it. This feature should come soon so we can uncomment the
|
|
// stuff below.
|
|
//if (!Subtarget->hasABICall() &&
|
|
// IsInSmallSection(getTargetData()->getTypePaddedSize(C->getType()))) {
|
|
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
|
|
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
|
|
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
|
|
//} else { // %hi/%lo relocation
|
|
SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CP);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CP);
|
|
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
//}
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//
|
|
// The lower operations present on calling convention works on this order:
|
|
// LowerCALL (virt regs --> phys regs, virt regs --> stack)
|
|
// LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
|
|
// LowerRET (virt regs --> phys regs)
|
|
// LowerCALL (phys regs --> virt regs)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MipsGenCallingConv.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TODO: Implement a generic logic using tblgen that can support this.
|
|
// Mips O32 ABI rules:
|
|
// ---
|
|
// i32 - Passed in A0, A1, A2, A3 and stack
|
|
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
|
|
// an argument. Otherwise, passed in A1, A2, A3 and stack.
|
|
// f64 - Only passed in two aliased f32 registers if no int reg has been used
|
|
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
|
|
// not used, it must be shadowed. If only A3 is avaiable, shadow it and
|
|
// go to stack.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
|
|
static const unsigned IntRegsSize=4, FloatRegsSize=2;
|
|
|
|
static const unsigned IntRegs[] = {
|
|
Mips::A0, Mips::A1, Mips::A2, Mips::A3
|
|
};
|
|
static const unsigned F32Regs[] = {
|
|
Mips::F12, Mips::F14
|
|
};
|
|
static const unsigned F64Regs[] = {
|
|
Mips::D6, Mips::D7
|
|
};
|
|
|
|
unsigned Reg=0;
|
|
unsigned UnallocIntReg = State.getFirstUnallocated(IntRegs, IntRegsSize);
|
|
bool IntRegUsed = (IntRegs[UnallocIntReg] != (unsigned (Mips::A0)));
|
|
|
|
// Promote i8 and i16
|
|
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
|
|
LocVT = MVT::i32;
|
|
if (ArgFlags.isSExt())
|
|
LocInfo = CCValAssign::SExt;
|
|
else if (ArgFlags.isZExt())
|
|
LocInfo = CCValAssign::ZExt;
|
|
else
|
|
LocInfo = CCValAssign::AExt;
|
|
}
|
|
|
|
if (ValVT == MVT::i32 || (ValVT == MVT::f32 && IntRegUsed)) {
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
IntRegUsed = true;
|
|
LocVT = MVT::i32;
|
|
}
|
|
|
|
if (ValVT.isFloatingPoint() && !IntRegUsed) {
|
|
if (ValVT == MVT::f32)
|
|
Reg = State.AllocateReg(F32Regs, FloatRegsSize);
|
|
else
|
|
Reg = State.AllocateReg(F64Regs, FloatRegsSize);
|
|
}
|
|
|
|
if (ValVT == MVT::f64 && IntRegUsed) {
|
|
if (UnallocIntReg != IntRegsSize) {
|
|
// If we hit register A3 as the first not allocated, we must
|
|
// mark it as allocated (shadow) and use the stack instead.
|
|
if (IntRegs[UnallocIntReg] != (unsigned (Mips::A3)))
|
|
Reg = Mips::A2;
|
|
for (;UnallocIntReg < IntRegsSize; ++UnallocIntReg)
|
|
State.AllocateReg(UnallocIntReg);
|
|
}
|
|
LocVT = MVT::i32;
|
|
}
|
|
|
|
if (!Reg) {
|
|
unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
|
|
unsigned Offset = State.AllocateStack(SizeInBytes, SizeInBytes);
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
} else
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
|
|
return false; // CC must always match
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CALL Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// LowerCALL - functions arguments are copied from virtual regs to
|
|
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
|
|
/// TODO: isVarArg, isTailCall.
|
|
SDValue MipsTargetLowering::
|
|
LowerCALL(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
|
|
SDValue Chain = TheCall->getChain();
|
|
SDValue Callee = TheCall->getCallee();
|
|
bool isVarArg = TheCall->isVarArg();
|
|
unsigned CC = TheCall->getCallingConv();
|
|
DebugLoc dl = TheCall->getDebugLoc();
|
|
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
|
|
|
|
// To meet O32 ABI, Mips must always allocate 16 bytes on
|
|
// the stack (even if less than 4 are used as arguments)
|
|
if (Subtarget->isABI_O32()) {
|
|
int VTsize = MVT(MVT::i32).getSizeInBits()/8;
|
|
MFI->CreateFixedObject(VTsize, (VTsize*3));
|
|
CCInfo.AnalyzeCallOperands(TheCall, CC_MipsO32);
|
|
} else
|
|
CCInfo.AnalyzeCallOperands(TheCall, CC_Mips);
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
|
|
|
|
// With EABI is it possible to have 16 args on registers.
|
|
SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
// First/LastArgStackLoc contains the first/last
|
|
// "at stack" argument location.
|
|
int LastArgStackLoc = 0;
|
|
unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
SDValue Arg = TheCall->getArg(i);
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: assert(0 && "Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
if (Subtarget->isABI_O32() && VA.isRegLoc()) {
|
|
if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
|
|
Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Arg);
|
|
if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) {
|
|
Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg,
|
|
DAG.getConstant(0, getPointerTy()));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg,
|
|
DAG.getConstant(1, getPointerTy()));
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg()+1, Hi));
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
// Arguments that can be passed on register must be kept at
|
|
// RegsToPass vector
|
|
if (VA.isRegLoc()) {
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
continue;
|
|
}
|
|
|
|
// Register can't get to this point...
|
|
assert(VA.isMemLoc());
|
|
|
|
// Create the frame index object for this incoming parameter
|
|
// This guarantees that when allocating Local Area the firsts
|
|
// 16 bytes which are alwayes reserved won't be overwritten
|
|
// if O32 ABI is used. For EABI the first address is zero.
|
|
LastArgStackLoc = (FirstStackArgLoc + VA.getLocMemOffset());
|
|
int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
|
|
LastArgStackLoc);
|
|
|
|
SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());
|
|
|
|
// emit ISD::STORE whichs stores the
|
|
// parameter value to a stack Location
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
|
|
}
|
|
|
|
// Transform all store nodes into one single node because all store
|
|
// nodes are independent of each other.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token
|
|
// chain and flag operands which copy the outgoing args into registers.
|
|
// The InFlag in necessary since all emited instructions must be
|
|
// stuck together.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
|
|
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
|
|
|
|
// MipsJmpLink = #chain, #target_address, #opt_in_flags...
|
|
// = Chain, Callee, Reg#1, Reg#2, ...
|
|
//
|
|
// Returns a chain & a flag for retval copy to use.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Create the CALLSEQ_END node.
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Create a stack location to hold GP when PIC is used. This stack
|
|
// location is used on function prologue to save GP and also after all
|
|
// emited CALL's to restore GP.
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
|
|
// Function can have an arbitrary number of calls, so
|
|
// hold the LastArgStackLoc with the biggest offset.
|
|
int FI;
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
if (LastArgStackLoc >= MipsFI->getGPStackOffset()) {
|
|
LastArgStackLoc = (!LastArgStackLoc) ? (16) : (LastArgStackLoc+4);
|
|
// Create the frame index only once. SPOffset here can be anything
|
|
// (this will be fixed on processFunctionBeforeFrameFinalized)
|
|
if (MipsFI->getGPStackOffset() == -1) {
|
|
FI = MFI->CreateFixedObject(4, 0);
|
|
MipsFI->setGPFI(FI);
|
|
}
|
|
MipsFI->setGPStackOffset(LastArgStackLoc);
|
|
}
|
|
|
|
// Reload GP value.
|
|
FI = MipsFI->getGPFI();
|
|
SDValue FIN = DAG.getFrameIndex(FI,getPointerTy());
|
|
SDValue GPLoad = DAG.getLoad(MVT::i32, dl, Chain, FIN, NULL, 0);
|
|
Chain = GPLoad.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, DAG.getRegister(Mips::GP, MVT::i32),
|
|
GPLoad, SDValue(0,0));
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), Op.getResNo());
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of an ISD::CALL into the
|
|
/// appropriate copies out of appropriate physical registers. This assumes that
|
|
/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
|
|
/// being lowered. Returns a SDNode with the same number of values as the
|
|
/// ISD::CALL.
|
|
SDNode *MipsTargetLowering::
|
|
LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
|
|
unsigned CallingConv, SelectionDAG &DAG) {
|
|
|
|
bool isVarArg = TheCall->isVarArg();
|
|
DebugLoc dl = TheCall->getDebugLoc();
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
|
|
|
|
CCInfo.AnalyzeCallResult(TheCall, RetCC_Mips);
|
|
SmallVector<SDValue, 8> ResultVals;
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
|
|
RVLocs[i].getValVT(), InFlag).getValue(1);
|
|
InFlag = Chain.getValue(2);
|
|
ResultVals.push_back(Chain.getValue(0));
|
|
}
|
|
|
|
ResultVals.push_back(Chain);
|
|
|
|
// Merge everything together with a MERGE_VALUES node.
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
|
|
&ResultVals[0], ResultVals.size()).getNode();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FORMAL_ARGUMENTS Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// LowerFORMAL_ARGUMENTS - transform physical registers into
|
|
/// virtual registers and generate load operations for
|
|
/// arguments places on the stack.
|
|
/// TODO: isVarArg
|
|
SDValue MipsTargetLowering::
|
|
LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
SDValue Root = Op.getOperand(0);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
|
|
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
|
|
|
|
unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
|
|
|
|
// GP must be live into PIC and non-PIC call target.
|
|
AddLiveIn(MF, Mips::GP, Mips::CPURegsRegisterClass);
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
|
|
|
|
if (Subtarget->isABI_O32())
|
|
CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_MipsO32);
|
|
else
|
|
CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_Mips);
|
|
|
|
SmallVector<SDValue, 16> ArgValues;
|
|
SDValue StackPtr;
|
|
|
|
unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Arguments stored on registers
|
|
if (VA.isRegLoc()) {
|
|
MVT RegVT = VA.getLocVT();
|
|
TargetRegisterClass *RC = 0;
|
|
|
|
if (RegVT == MVT::i32)
|
|
RC = Mips::CPURegsRegisterClass;
|
|
else if (RegVT == MVT::f32)
|
|
RC = Mips::FGR32RegisterClass;
|
|
else if (RegVT == MVT::f64) {
|
|
if (!Subtarget->isSingleFloat())
|
|
RC = Mips::AFGR64RegisterClass;
|
|
} else
|
|
assert(0 && "RegVT not supported by FORMAL_ARGUMENTS Lowering");
|
|
|
|
// Transform the arguments stored on
|
|
// physical registers into virtual ones
|
|
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
|
|
|
|
// If this is an 8 or 16-bit value, it has been passed promoted
|
|
// to 32 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
if (VA.getLocInfo() != CCValAssign::Full) {
|
|
unsigned Opcode = 0;
|
|
if (VA.getLocInfo() == CCValAssign::SExt)
|
|
Opcode = ISD::AssertSext;
|
|
else if (VA.getLocInfo() == CCValAssign::ZExt)
|
|
Opcode = ISD::AssertZext;
|
|
if (Opcode)
|
|
ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
}
|
|
|
|
// Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
|
|
if (Subtarget->isABI_O32()) {
|
|
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32)
|
|
ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue);
|
|
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
|
|
VA.getLocReg()+1, RC);
|
|
SDValue ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg2, RegVT);
|
|
SDValue Hi = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue);
|
|
SDValue Lo = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue2);
|
|
ArgValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::f64, Lo, Hi);
|
|
}
|
|
}
|
|
|
|
ArgValues.push_back(ArgValue);
|
|
|
|
// To meet ABI, when VARARGS are passed on registers, the registers
|
|
// must have their values written to the caller stack frame.
|
|
if ((isVarArg) && (Subtarget->isABI_O32())) {
|
|
if (StackPtr.getNode() == 0)
|
|
StackPtr = DAG.getRegister(StackReg, getPointerTy());
|
|
|
|
// The stack pointer offset is relative to the caller stack frame.
|
|
// Since the real stack size is unknown here, a negative SPOffset
|
|
// is used so there's a way to adjust these offsets when the stack
|
|
// size get known (on EliminateFrameIndex). A dummy SPOffset is
|
|
// used instead of a direct negative address (which is recorded to
|
|
// be used on emitPrologue) to avoid mis-calc of the first stack
|
|
// offset on PEI::calculateFrameObjectOffsets.
|
|
// Arguments are always 32-bit.
|
|
int FI = MFI->CreateFixedObject(4, 0);
|
|
MipsFI->recordStoreVarArgsFI(FI, -(4+(i*4)));
|
|
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
|
|
|
|
// emit ISD::STORE whichs stores the
|
|
// parameter value to a stack Location
|
|
ArgValues.push_back(DAG.getStore(Root, dl, ArgValue, PtrOff, NULL, 0));
|
|
}
|
|
|
|
} else { // VA.isRegLoc()
|
|
|
|
// sanity check
|
|
assert(VA.isMemLoc());
|
|
|
|
// The stack pointer offset is relative to the caller stack frame.
|
|
// Since the real stack size is unknown here, a negative SPOffset
|
|
// is used so there's a way to adjust these offsets when the stack
|
|
// size get known (on EliminateFrameIndex). A dummy SPOffset is
|
|
// used instead of a direct negative address (which is recorded to
|
|
// be used on emitPrologue) to avoid mis-calc of the first stack
|
|
// offset on PEI::calculateFrameObjectOffsets.
|
|
// Arguments are always 32-bit.
|
|
unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
|
|
int FI = MFI->CreateFixedObject(ArgSize, 0);
|
|
MipsFI->recordLoadArgsFI(FI, -(ArgSize+
|
|
(FirstStackArgLoc + VA.getLocMemOffset())));
|
|
|
|
// Create load nodes to retrieve arguments from the stack
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
|
|
}
|
|
}
|
|
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. Save the argument into
|
|
// a virtual register so that we can access it from the return points.
|
|
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
if (!Reg) {
|
|
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
|
|
MipsFI->setSRetReturnReg(Reg);
|
|
}
|
|
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
|
|
Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
|
|
}
|
|
|
|
ArgValues.push_back(Root);
|
|
|
|
// Return the new list of results.
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
|
|
&ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerRET(SDValue Op, SelectionDAG &DAG)
|
|
{
|
|
// CCValAssign - represent the assignment of
|
|
// the return value to a location
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
|
|
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// CCState - Info about the registers and stack slot.
|
|
CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
|
|
|
|
// Analize return values of ISD::RET
|
|
CCInfo.AnalyzeReturn(Op.getNode(), RetCC_Mips);
|
|
|
|
// If this is the first return lowered for this function, add
|
|
// the regs to the liveout set for the function.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
|
if (RVLocs[i].isRegLoc())
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
|
|
}
|
|
|
|
// The chain is always operand #0
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Flag;
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
// ISD::RET => ret chain, (regnum1,val1), ...
|
|
// So i*2+1 index only the regnums
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
Op.getOperand(i*2+1), Flag);
|
|
|
|
// guarantee that all emitted copies are
|
|
// stuck together, avoiding something bad
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. We saved the argument into
|
|
// a virtual register in the entry block, so now we copy the value out
|
|
// and into $v0.
|
|
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
|
|
if (!Reg)
|
|
assert(0 && "sret virtual register not created in the entry block");
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
// Return on Mips is always a "jr $ra"
|
|
if (Flag.getNode())
|
|
return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
|
|
Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
|
|
else // Return Void
|
|
return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
|
|
Chain, DAG.getRegister(Mips::RA, MVT::i32));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
MipsTargetLowering::ConstraintType MipsTargetLowering::
|
|
getConstraintType(const std::string &Constraint) const
|
|
{
|
|
// Mips specific constrainy
|
|
// GCC config/mips/constraints.md
|
|
//
|
|
// 'd' : An address register. Equivalent to r
|
|
// unless generating MIPS16 code.
|
|
// 'y' : Equivalent to r; retained for
|
|
// backwards compatibility.
|
|
// 'f' : Floating Point registers.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default : break;
|
|
case 'd':
|
|
case 'y':
|
|
case 'f':
|
|
return C_RegisterClass;
|
|
break;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
|
|
/// return a list of registers that can be used to satisfy the constraint.
|
|
/// This should only be used for C_RegisterClass constraints.
|
|
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
|
|
getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
|
|
{
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
return std::make_pair(0U, Mips::CPURegsRegisterClass);
|
|
case 'f':
|
|
if (VT == MVT::f32)
|
|
return std::make_pair(0U, Mips::FGR32RegisterClass);
|
|
if (VT == MVT::f64)
|
|
if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
|
|
return std::make_pair(0U, Mips::AFGR64RegisterClass);
|
|
}
|
|
}
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
/// Given a register class constraint, like 'r', if this corresponds directly
|
|
/// to an LLVM register class, return a register of 0 and the register class
|
|
/// pointer.
|
|
std::vector<unsigned> MipsTargetLowering::
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT VT) const
|
|
{
|
|
if (Constraint.size() != 1)
|
|
return std::vector<unsigned>();
|
|
|
|
switch (Constraint[0]) {
|
|
default : break;
|
|
case 'r':
|
|
// GCC Mips Constraint Letters
|
|
case 'd':
|
|
case 'y':
|
|
return make_vector<unsigned>(Mips::T0, Mips::T1, Mips::T2, Mips::T3,
|
|
Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1,
|
|
Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7,
|
|
Mips::T8, 0);
|
|
|
|
case 'f':
|
|
if (VT == MVT::f32) {
|
|
if (Subtarget->isSingleFloat())
|
|
return make_vector<unsigned>(Mips::F2, Mips::F3, Mips::F4, Mips::F5,
|
|
Mips::F6, Mips::F7, Mips::F8, Mips::F9, Mips::F10, Mips::F11,
|
|
Mips::F20, Mips::F21, Mips::F22, Mips::F23, Mips::F24,
|
|
Mips::F25, Mips::F26, Mips::F27, Mips::F28, Mips::F29,
|
|
Mips::F30, Mips::F31, 0);
|
|
else
|
|
return make_vector<unsigned>(Mips::F2, Mips::F4, Mips::F6, Mips::F8,
|
|
Mips::F10, Mips::F20, Mips::F22, Mips::F24, Mips::F26,
|
|
Mips::F28, Mips::F30, 0);
|
|
}
|
|
|
|
if (VT == MVT::f64)
|
|
if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
|
|
return make_vector<unsigned>(Mips::D1, Mips::D2, Mips::D3, Mips::D4,
|
|
Mips::D5, Mips::D10, Mips::D11, Mips::D12, Mips::D13,
|
|
Mips::D14, Mips::D15, 0);
|
|
}
|
|
return std::vector<unsigned>();
|
|
}
|
|
|
|
bool
|
|
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The Mips target isn't yet aware of offsets.
|
|
return false;
|
|
}
|