llvm-6502/lib/Target/ARM/ARMTargetMachine.cpp
Rafael Espindola 8e0f67dcec Make the llvm mangler depend only on DataLayout.
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.

This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.

With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198438 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-03 19:21:54 +00:00

268 lines
8.8 KiB
C++

//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "ARMTargetMachine.h"
#include "ARM.h"
#include "ARMFrameLowering.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
static cl::opt<bool>
EnableGlobalMerge("global-merge", cl::Hidden,
cl::desc("Enable global merge pass"),
cl::init(true));
static cl::opt<bool>
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
cl::desc("Inhibit optimization of S->D register accesses on A15"),
cl::init(false));
extern "C" void LLVMInitializeARMTarget() {
// Register the target.
RegisterTargetMachine<ARMTargetMachine> X(TheARMTarget);
RegisterTargetMachine<ThumbTargetMachine> Y(TheThumbTarget);
}
/// TargetMachine ctor - Create an ARM architecture model.
///
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
Subtarget(TT, CPU, FS, Options),
JITInfo(),
InstrItins(Subtarget.getInstrItineraryData()) {
// Default to triple-appropriate float ABI
if (Options.FloatABIType == FloatABI::Default)
this->Options.FloatABIType =
Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
}
void ARMBaseTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
// Add first the target-independent BasicTTI pass, then our ARM pass. This
// allows the ARM pass to delegate to the target independent layer when
// appropriate.
PM.add(createBasicTargetTransformInfoPass(this));
PM.add(createARMTargetTransformInfoPass(this));
}
void ARMTargetMachine::anchor() { }
static std::string computeDataLayout(ARMSubtarget &ST) {
// Little endian.
std::string Ret = "e";
Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
// Pointers are 32 bits and aligned to 32 bits.
Ret += "-p:32:32";
// On thumb, i16,i18 and i1 have natural aligment requirements, but we try to
// align to 32.
if (ST.isThumb())
Ret += "-i1:8:32-i8:8:32-i16:16:32";
// ABIs other than APC have 64 bit integers with natural alignment.
if (!ST.isAPCS_ABI())
Ret += "-i64:64";
// We have 64 bits floats. The APCS ABI requires them to be aligned to 32
// bits, others to 64 bits. We always try to align to 64 bits.
if (ST.isAPCS_ABI())
Ret += "-f64:32:64";
// We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
// to 64. We always ty to give them natural alignment.
if (ST.isAPCS_ABI())
Ret += "-v64:32:64-v128:32:128";
else
Ret += "-v128:64:128";
// On thumb and APCS, only try to align aggregates to 32 bits (the default is
// 64 bits).
if (ST.isThumb() || ST.isAPCS_ABI())
Ret += "-a:0:32";
// Integer registers are 32 bits.
Ret += "-n32";
// The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
// aligned everywhere else.
if (ST.isTargetNaCl())
Ret += "-S128";
else if (ST.isAAPCS_ABI())
Ret += "-S64";
else
Ret += "-S32";
return Ret;
}
ARMTargetMachine::ARMTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
InstrInfo(Subtarget),
DL(computeDataLayout(Subtarget)),
TLInfo(*this),
TSInfo(*this),
FrameLowering(Subtarget) {
initAsmInfo();
if (!Subtarget.hasARMOps())
report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
"support ARM mode execution!");
}
void ThumbTargetMachine::anchor() { }
ThumbTargetMachine::ThumbTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
InstrInfo(Subtarget.hasThumb2()
? ((ARMBaseInstrInfo*)new Thumb2InstrInfo(Subtarget))
: ((ARMBaseInstrInfo*)new Thumb1InstrInfo(Subtarget))),
DL(computeDataLayout(Subtarget)),
TLInfo(*this),
TSInfo(*this),
FrameLowering(Subtarget.hasThumb2()
? new ARMFrameLowering(Subtarget)
: (ARMFrameLowering*)new Thumb1FrameLowering(Subtarget)) {
initAsmInfo();
}
namespace {
/// ARM Code Generator Pass Configuration Options.
class ARMPassConfig : public TargetPassConfig {
public:
ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
ARMBaseTargetMachine &getARMTargetMachine() const {
return getTM<ARMBaseTargetMachine>();
}
const ARMSubtarget &getARMSubtarget() const {
return *getARMTargetMachine().getSubtargetImpl();
}
virtual bool addPreISel();
virtual bool addInstSelector();
virtual bool addPreRegAlloc();
virtual bool addPreSched2();
virtual bool addPreEmitPass();
};
} // namespace
TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
return new ARMPassConfig(this, PM);
}
bool ARMPassConfig::addPreISel() {
if (TM->getOptLevel() != CodeGenOpt::None && EnableGlobalMerge)
addPass(createGlobalMergePass(TM));
return false;
}
bool ARMPassConfig::addInstSelector() {
addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
const ARMSubtarget *Subtarget = &getARMSubtarget();
if (Subtarget->isTargetELF() && !Subtarget->isThumb1Only() &&
TM->Options.EnableFastISel)
addPass(createARMGlobalBaseRegPass());
return false;
}
bool ARMPassConfig::addPreRegAlloc() {
// FIXME: temporarily disabling load / store optimization pass for Thumb1.
if (getOptLevel() != CodeGenOpt::None && !getARMSubtarget().isThumb1Only())
addPass(createARMLoadStoreOptimizationPass(true));
if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA9())
addPass(createMLxExpansionPass());
// Since the A15SDOptimizer pass can insert VDUP instructions, it can only be
// enabled when NEON is available.
if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA15() &&
getARMSubtarget().hasNEON() && !DisableA15SDOptimization) {
addPass(createA15SDOptimizerPass());
}
return true;
}
bool ARMPassConfig::addPreSched2() {
// FIXME: temporarily disabling load / store optimization pass for Thumb1.
if (getOptLevel() != CodeGenOpt::None) {
if (!getARMSubtarget().isThumb1Only()) {
addPass(createARMLoadStoreOptimizationPass());
printAndVerify("After ARM load / store optimizer");
}
if (getARMSubtarget().hasNEON())
addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
}
// Expand some pseudo instructions into multiple instructions to allow
// proper scheduling.
addPass(createARMExpandPseudoPass());
if (getOptLevel() != CodeGenOpt::None) {
if (!getARMSubtarget().isThumb1Only()) {
// in v8, IfConversion depends on Thumb instruction widths
if (getARMSubtarget().restrictIT() &&
!getARMSubtarget().prefers32BitThumb())
addPass(createThumb2SizeReductionPass());
addPass(&IfConverterID);
}
}
if (getARMSubtarget().isThumb2())
addPass(createThumb2ITBlockPass());
return true;
}
bool ARMPassConfig::addPreEmitPass() {
if (getARMSubtarget().isThumb2()) {
if (!getARMSubtarget().prefers32BitThumb())
addPass(createThumb2SizeReductionPass());
// Constant island pass work on unbundled instructions.
addPass(&UnpackMachineBundlesID);
}
addPass(createARMConstantIslandPass());
return true;
}
bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
JITCodeEmitter &JCE) {
// Machine code emitter pass for ARM.
PM.add(createARMJITCodeEmitterPass(*this, JCE));
return false;
}