llvm-6502/test/Transforms/InstSimplify/compare.ll
David Blaikie 198d8baafb [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00

1167 lines
26 KiB
LLVM

; RUN: opt < %s -instsimplify -S | FileCheck %s
target datalayout = "p:32:32"
define i1 @ptrtoint() {
; CHECK-LABEL: @ptrtoint(
%a = alloca i8
%tmp = ptrtoint i8* %a to i32
%r = icmp eq i32 %tmp, 0
ret i1 %r
; CHECK: ret i1 false
}
define i1 @bitcast() {
; CHECK-LABEL: @bitcast(
%a = alloca i32
%b = alloca i64
%x = bitcast i32* %a to i8*
%y = bitcast i64* %b to i8*
%cmp = icmp eq i8* %x, %y
ret i1 %cmp
; CHECK-NEXT: ret i1 false
}
define i1 @gep() {
; CHECK-LABEL: @gep(
%a = alloca [3 x i8], align 8
%x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
%cmp = icmp eq i8* %x, null
ret i1 %cmp
; CHECK-NEXT: ret i1 false
}
define i1 @gep2() {
; CHECK-LABEL: @gep2(
%a = alloca [3 x i8], align 8
%x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
%y = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
%cmp = icmp eq i8* %x, %y
ret i1 %cmp
; CHECK-NEXT: ret i1 true
}
; PR11238
%gept = type { i32, i32 }
@gepy = global %gept zeroinitializer, align 8
@gepz = extern_weak global %gept
define i1 @gep3() {
; CHECK-LABEL: @gep3(
%x = alloca %gept, align 8
%a = getelementptr %gept, %gept* %x, i64 0, i32 0
%b = getelementptr %gept, %gept* %x, i64 0, i32 1
%equal = icmp eq i32* %a, %b
ret i1 %equal
; CHECK-NEXT: ret i1 false
}
define i1 @gep4() {
; CHECK-LABEL: @gep4(
%x = alloca %gept, align 8
%a = getelementptr %gept, %gept* @gepy, i64 0, i32 0
%b = getelementptr %gept, %gept* @gepy, i64 0, i32 1
%equal = icmp eq i32* %a, %b
ret i1 %equal
; CHECK-NEXT: ret i1 false
}
define i1 @gep5() {
; CHECK-LABEL: @gep5(
%x = alloca %gept, align 8
%a = getelementptr inbounds %gept, %gept* %x, i64 0, i32 1
%b = getelementptr %gept, %gept* @gepy, i64 0, i32 0
%equal = icmp eq i32* %a, %b
ret i1 %equal
; CHECK-NEXT: ret i1 false
}
define i1 @gep6(%gept* %x) {
; Same as @gep3 but potentially null.
; CHECK-LABEL: @gep6(
%a = getelementptr %gept, %gept* %x, i64 0, i32 0
%b = getelementptr %gept, %gept* %x, i64 0, i32 1
%equal = icmp eq i32* %a, %b
ret i1 %equal
; CHECK-NEXT: ret i1 false
}
define i1 @gep7(%gept* %x) {
; CHECK-LABEL: @gep7(
%a = getelementptr %gept, %gept* %x, i64 0, i32 0
%b = getelementptr %gept, %gept* @gepz, i64 0, i32 0
%equal = icmp eq i32* %a, %b
ret i1 %equal
; CHECK: ret i1 %equal
}
define i1 @gep8(%gept* %x) {
; CHECK-LABEL: @gep8(
%a = getelementptr %gept, %gept* %x, i32 1
%b = getelementptr %gept, %gept* %x, i32 -1
%equal = icmp ugt %gept* %a, %b
ret i1 %equal
; CHECK: ret i1 %equal
}
define i1 @gep9(i8* %ptr) {
; CHECK-LABEL: @gep9(
; CHECK-NOT: ret
; CHECK: ret i1 true
entry:
%first1 = getelementptr inbounds i8, i8* %ptr, i32 0
%first2 = getelementptr inbounds i8, i8* %first1, i32 1
%first3 = getelementptr inbounds i8, i8* %first2, i32 2
%first4 = getelementptr inbounds i8, i8* %first3, i32 4
%last1 = getelementptr inbounds i8, i8* %first2, i32 48
%last2 = getelementptr inbounds i8, i8* %last1, i32 8
%last3 = getelementptr inbounds i8, i8* %last2, i32 -4
%last4 = getelementptr inbounds i8, i8* %last3, i32 -4
%first.int = ptrtoint i8* %first4 to i32
%last.int = ptrtoint i8* %last4 to i32
%cmp = icmp ne i32 %last.int, %first.int
ret i1 %cmp
}
define i1 @gep10(i8* %ptr) {
; CHECK-LABEL: @gep10(
; CHECK-NOT: ret
; CHECK: ret i1 true
entry:
%first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
%first2 = getelementptr inbounds i8, i8* %first1, i32 44
%last1 = getelementptr inbounds i8, i8* %ptr, i32 48
%last2 = getelementptr inbounds i8, i8* %last1, i32 -6
%first.int = ptrtoint i8* %first2 to i32
%last.int = ptrtoint i8* %last2 to i32
%cmp = icmp eq i32 %last.int, %first.int
ret i1 %cmp
}
define i1 @gep11(i8* %ptr) {
; CHECK-LABEL: @gep11(
; CHECK-NOT: ret
; CHECK: ret i1 true
entry:
%first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
%last1 = getelementptr inbounds i8, i8* %ptr, i32 48
%last2 = getelementptr inbounds i8, i8* %last1, i32 -6
%cmp = icmp ult i8* %first1, %last2
ret i1 %cmp
}
define i1 @gep12(i8* %ptr) {
; CHECK-LABEL: @gep12(
; CHECK-NOT: ret
; CHECK: ret i1 %cmp
entry:
%first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
%last1 = getelementptr inbounds i8, i8* %ptr, i32 48
%last2 = getelementptr inbounds i8, i8* %last1, i32 -6
%cmp = icmp slt i8* %first1, %last2
ret i1 %cmp
}
define i1 @gep13(i8* %ptr) {
; CHECK-LABEL: @gep13(
; We can prove this GEP is non-null because it is inbounds.
%x = getelementptr inbounds i8, i8* %ptr, i32 1
%cmp = icmp eq i8* %x, null
ret i1 %cmp
; CHECK-NEXT: ret i1 false
}
define i1 @gep14({ {}, i8 }* %ptr) {
; CHECK-LABEL: @gep14(
; We can't simplify this because the offset of one in the GEP actually doesn't
; move the pointer.
%x = getelementptr inbounds { {}, i8 }, { {}, i8 }* %ptr, i32 0, i32 1
%cmp = icmp eq i8* %x, null
ret i1 %cmp
; CHECK-NOT: ret i1 false
}
define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) {
; CHECK-LABEL: @gep15(
; We can prove this GEP is non-null even though there is a user value, as we
; would necessarily violate inbounds on one side or the other.
%x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
%cmp = icmp eq i8* %x, null
ret i1 %cmp
; CHECK-NEXT: ret i1 false
}
define i1 @gep16(i8* %ptr, i32 %a) {
; CHECK-LABEL: @gep16(
; We can prove this GEP is non-null because it is inbounds and because we know
; %b is non-zero even though we don't know its value.
%b = or i32 %a, 1
%x = getelementptr inbounds i8, i8* %ptr, i32 %b
%cmp = icmp eq i8* %x, null
ret i1 %cmp
; CHECK-NEXT: ret i1 false
}
define i1 @zext(i32 %x) {
; CHECK-LABEL: @zext(
%e1 = zext i32 %x to i64
%e2 = zext i32 %x to i64
%r = icmp eq i64 %e1, %e2
ret i1 %r
; CHECK: ret i1 true
}
define i1 @zext2(i1 %x) {
; CHECK-LABEL: @zext2(
%e = zext i1 %x to i32
%c = icmp ne i32 %e, 0
ret i1 %c
; CHECK: ret i1 %x
}
define i1 @zext3() {
; CHECK-LABEL: @zext3(
%e = zext i1 1 to i32
%c = icmp ne i32 %e, 0
ret i1 %c
; CHECK: ret i1 true
}
define i1 @sext(i32 %x) {
; CHECK-LABEL: @sext(
%e1 = sext i32 %x to i64
%e2 = sext i32 %x to i64
%r = icmp eq i64 %e1, %e2
ret i1 %r
; CHECK: ret i1 true
}
define i1 @sext2(i1 %x) {
; CHECK-LABEL: @sext2(
%e = sext i1 %x to i32
%c = icmp ne i32 %e, 0
ret i1 %c
; CHECK: ret i1 %x
}
define i1 @sext3() {
; CHECK-LABEL: @sext3(
%e = sext i1 1 to i32
%c = icmp ne i32 %e, 0
ret i1 %c
; CHECK: ret i1 true
}
define i1 @add(i32 %x, i32 %y) {
; CHECK-LABEL: @add(
%l = lshr i32 %x, 1
%q = lshr i32 %y, 1
%r = or i32 %q, 1
%s = add i32 %l, %r
%c = icmp eq i32 %s, 0
ret i1 %c
; CHECK: ret i1 false
}
define i1 @add2(i8 %x, i8 %y) {
; CHECK-LABEL: @add2(
%l = or i8 %x, 128
%r = or i8 %y, 129
%s = add i8 %l, %r
%c = icmp eq i8 %s, 0
ret i1 %c
; CHECK: ret i1 false
}
define i1 @add3(i8 %x, i8 %y) {
; CHECK-LABEL: @add3(
%l = zext i8 %x to i32
%r = zext i8 %y to i32
%s = add i32 %l, %r
%c = icmp eq i32 %s, 0
ret i1 %c
; CHECK: ret i1 %c
}
define i1 @add4(i32 %x, i32 %y) {
; CHECK-LABEL: @add4(
%z = add nsw i32 %y, 1
%s1 = add nsw i32 %x, %y
%s2 = add nsw i32 %x, %z
%c = icmp slt i32 %s1, %s2
ret i1 %c
; CHECK: ret i1 true
}
define i1 @add5(i32 %x, i32 %y) {
; CHECK-LABEL: @add5(
%z = add nuw i32 %y, 1
%s1 = add nuw i32 %x, %z
%s2 = add nuw i32 %x, %y
%c = icmp ugt i32 %s1, %s2
ret i1 %c
; CHECK: ret i1 true
}
define i1 @add6(i64 %A, i64 %B) {
; CHECK-LABEL: @add6(
%s1 = add i64 %A, %B
%s2 = add i64 %B, %A
%cmp = icmp eq i64 %s1, %s2
ret i1 %cmp
; CHECK: ret i1 true
}
define i1 @addpowtwo(i32 %x, i32 %y) {
; CHECK-LABEL: @addpowtwo(
%l = lshr i32 %x, 1
%r = shl i32 1, %y
%s = add i32 %l, %r
%c = icmp eq i32 %s, 0
ret i1 %c
; CHECK: ret i1 false
}
define i1 @or(i32 %x) {
; CHECK-LABEL: @or(
%o = or i32 %x, 1
%c = icmp eq i32 %o, 0
ret i1 %c
; CHECK: ret i1 false
}
define i1 @shl1(i32 %x) {
; CHECK-LABEL: @shl1(
%s = shl i32 1, %x
%c = icmp eq i32 %s, 0
ret i1 %c
; CHECK: ret i1 false
}
define i1 @shl2(i32 %X) {
; CHECK: @shl2
%sub = shl nsw i32 -1, %X
%cmp = icmp eq i32 %sub, 31
ret i1 %cmp
; CHECK-NEXT: ret i1 false
}
define i1 @shl3(i32 %X) {
; CHECK: @shl3
%sub = shl nuw i32 4, %X
%cmp = icmp eq i32 %sub, 31
ret i1 %cmp
; CHECK-NEXT: ret i1 false
}
define i1 @shl4(i32 %X) {
; CHECK: @shl4
%sub = shl nsw i32 -1, %X
%cmp = icmp sle i32 %sub, -1
ret i1 %cmp
; CHECK-NEXT: ret i1 true
}
define i1 @shl5(i32 %X) {
; CHECK: @shl5
%sub = shl nuw i32 4, %X
%cmp = icmp ugt i32 %sub, 3
ret i1 %cmp
; CHECK-NEXT: ret i1 true
}
define i1 @lshr1(i32 %x) {
; CHECK-LABEL: @lshr1(
%s = lshr i32 -1, %x
%c = icmp eq i32 %s, 0
ret i1 %c
; CHECK: ret i1 false
}
define i1 @lshr2(i32 %x) {
; CHECK-LABEL: @lshr2(
%s = lshr i32 %x, 30
%c = icmp ugt i32 %s, 8
ret i1 %c
; CHECK: ret i1 false
}
define i1 @lshr3(i32 %x) {
; CHECK-LABEL: @lshr3(
%s = lshr i32 %x, %x
%c = icmp eq i32 %s, 0
ret i1 %c
; CHECK: ret i1 true
}
define i1 @ashr1(i32 %x) {
; CHECK-LABEL: @ashr1(
%s = ashr i32 -1, %x
%c = icmp eq i32 %s, 0
ret i1 %c
; CHECK: ret i1 false
}
define i1 @ashr2(i32 %x) {
; CHECK-LABEL: @ashr2(
%s = ashr i32 %x, 30
%c = icmp slt i32 %s, -5
ret i1 %c
; CHECK: ret i1 false
}
define i1 @ashr3(i32 %x) {
; CHECK-LABEL: @ashr3(
%s = ashr i32 %x, %x
%c = icmp eq i32 %s, 0
ret i1 %c
; CHECK: ret i1 true
}
define i1 @select1(i1 %cond) {
; CHECK-LABEL: @select1(
%s = select i1 %cond, i32 1, i32 0
%c = icmp eq i32 %s, 1
ret i1 %c
; CHECK: ret i1 %cond
}
define i1 @select2(i1 %cond) {
; CHECK-LABEL: @select2(
%x = zext i1 %cond to i32
%s = select i1 %cond, i32 %x, i32 0
%c = icmp ne i32 %s, 0
ret i1 %c
; CHECK: ret i1 %cond
}
define i1 @select3(i1 %cond) {
; CHECK-LABEL: @select3(
%x = zext i1 %cond to i32
%s = select i1 %cond, i32 1, i32 %x
%c = icmp ne i32 %s, 0
ret i1 %c
; CHECK: ret i1 %cond
}
define i1 @select4(i1 %cond) {
; CHECK-LABEL: @select4(
%invert = xor i1 %cond, 1
%s = select i1 %invert, i32 0, i32 1
%c = icmp ne i32 %s, 0
ret i1 %c
; CHECK: ret i1 %cond
}
define i1 @select5(i32 %x) {
; CHECK-LABEL: @select5(
%c = icmp eq i32 %x, 0
%s = select i1 %c, i32 1, i32 %x
%c2 = icmp eq i32 %s, 0
ret i1 %c2
; CHECK: ret i1 false
}
define i1 @select6(i32 %x) {
; CHECK-LABEL: @select6(
%c = icmp sgt i32 %x, 0
%s = select i1 %c, i32 %x, i32 4
%c2 = icmp eq i32 %s, 0
ret i1 %c2
; CHECK: ret i1 %c2
}
define i1 @urem1(i32 %X, i32 %Y) {
; CHECK-LABEL: @urem1(
%A = urem i32 %X, %Y
%B = icmp ult i32 %A, %Y
ret i1 %B
; CHECK: ret i1 true
}
define i1 @urem2(i32 %X, i32 %Y) {
; CHECK-LABEL: @urem2(
%A = urem i32 %X, %Y
%B = icmp eq i32 %A, %Y
ret i1 %B
; CHECK: ret i1 false
}
define i1 @urem3(i32 %X) {
; CHECK-LABEL: @urem3(
%A = urem i32 %X, 10
%B = icmp ult i32 %A, 15
ret i1 %B
; CHECK: ret i1 true
}
define i1 @urem4(i32 %X) {
; CHECK-LABEL: @urem4(
%A = urem i32 %X, 15
%B = icmp ult i32 %A, 10
ret i1 %B
; CHECK: ret i1 %B
}
define i1 @urem5(i16 %X, i32 %Y) {
; CHECK-LABEL: @urem5(
%A = zext i16 %X to i32
%B = urem i32 %A, %Y
%C = icmp slt i32 %B, %Y
ret i1 %C
; CHECK-NOT: ret i1 true
}
define i1 @urem6(i32 %X, i32 %Y) {
; CHECK-LABEL: @urem6(
%A = urem i32 %X, %Y
%B = icmp ugt i32 %Y, %A
ret i1 %B
; CHECK: ret i1 true
}
define i1 @urem7(i32 %X) {
; CHECK-LABEL: @urem7(
%A = urem i32 1, %X
%B = icmp sgt i32 %A, %X
ret i1 %B
; CHECK-NOT: ret i1 false
}
define i1 @srem1(i32 %X) {
; CHECK-LABEL: @srem1(
%A = srem i32 %X, -5
%B = icmp sgt i32 %A, 5
ret i1 %B
; CHECK: ret i1 false
}
; PR9343 #15
; CHECK-LABEL: @srem2(
; CHECK: ret i1 false
define i1 @srem2(i16 %X, i32 %Y) {
%A = zext i16 %X to i32
%B = add nsw i32 %A, 1
%C = srem i32 %B, %Y
%D = icmp slt i32 %C, 0
ret i1 %D
}
; CHECK-LABEL: @srem3(
; CHECK-NEXT: ret i1 false
define i1 @srem3(i16 %X, i32 %Y) {
%A = zext i16 %X to i32
%B = or i32 2147483648, %A
%C = sub nsw i32 1, %B
%D = srem i32 %C, %Y
%E = icmp slt i32 %D, 0
ret i1 %E
}
define i1 @udiv1(i32 %X) {
; CHECK-LABEL: @udiv1(
%A = udiv i32 %X, 1000000
%B = icmp ult i32 %A, 5000
ret i1 %B
; CHECK: ret i1 true
}
define i1 @udiv2(i32 %X, i32 %Y, i32 %Z) {
; CHECK-LABEL: @udiv2(
%A = udiv exact i32 10, %Z
%B = udiv exact i32 20, %Z
%C = icmp ult i32 %A, %B
ret i1 %C
; CHECK: ret i1 true
}
define i1 @udiv3(i32 %X, i32 %Y) {
; CHECK-LABEL: @udiv3(
%A = udiv i32 %X, %Y
%C = icmp ugt i32 %A, %X
ret i1 %C
; CHECK: ret i1 false
}
define i1 @udiv4(i32 %X, i32 %Y) {
; CHECK-LABEL: @udiv4(
%A = udiv i32 %X, %Y
%C = icmp ule i32 %A, %X
ret i1 %C
; CHECK: ret i1 true
}
define i1 @udiv5(i32 %X) {
; CHECK-LABEL: @udiv5(
%A = udiv i32 123, %X
%C = icmp ugt i32 %A, 124
ret i1 %C
; CHECK: ret i1 false
}
; PR11340
define i1 @udiv6(i32 %X) nounwind {
; CHECK-LABEL: @udiv6(
%A = udiv i32 1, %X
%C = icmp eq i32 %A, 0
ret i1 %C
; CHECK: ret i1 %C
}
define i1 @sdiv1(i32 %X) {
; CHECK-LABEL: @sdiv1(
%A = sdiv i32 %X, 1000000
%B = icmp slt i32 %A, 3000
ret i1 %B
; CHECK: ret i1 true
}
define i1 @or1(i32 %X) {
; CHECK-LABEL: @or1(
%A = or i32 %X, 62
%B = icmp ult i32 %A, 50
ret i1 %B
; CHECK: ret i1 false
}
define i1 @and1(i32 %X) {
; CHECK-LABEL: @and1(
%A = and i32 %X, 62
%B = icmp ugt i32 %A, 70
ret i1 %B
; CHECK: ret i1 false
}
define i1 @mul1(i32 %X) {
; CHECK-LABEL: @mul1(
; Square of a non-zero number is non-zero if there is no overflow.
%Y = or i32 %X, 1
%M = mul nuw i32 %Y, %Y
%C = icmp eq i32 %M, 0
ret i1 %C
; CHECK: ret i1 false
}
define i1 @mul2(i32 %X) {
; CHECK-LABEL: @mul2(
; Square of a non-zero number is positive if there is no signed overflow.
%Y = or i32 %X, 1
%M = mul nsw i32 %Y, %Y
%C = icmp sgt i32 %M, 0
ret i1 %C
; CHECK: ret i1 true
}
define i1 @mul3(i32 %X, i32 %Y) {
; CHECK-LABEL: @mul3(
; Product of non-negative numbers is non-negative if there is no signed overflow.
%XX = mul nsw i32 %X, %X
%YY = mul nsw i32 %Y, %Y
%M = mul nsw i32 %XX, %YY
%C = icmp sge i32 %M, 0
ret i1 %C
; CHECK: ret i1 true
}
define <2 x i1> @vectorselect1(<2 x i1> %cond) {
; CHECK-LABEL: @vectorselect1(
%invert = xor <2 x i1> %cond, <i1 1, i1 1>
%s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1>
%c = icmp ne <2 x i32> %s, <i32 0, i32 0>
ret <2 x i1> %c
; CHECK: ret <2 x i1> %cond
}
; PR11948
define <2 x i1> @vectorselectcrash(i32 %arg1) {
%tobool40 = icmp ne i32 %arg1, 0
%cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1>
%cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21>
ret <2 x i1> %cmp45
}
; PR12013
define i1 @alloca_compare(i64 %idx) {
%sv = alloca { i32, i32, [124 x i32] }
%1 = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
%2 = icmp eq i32* %1, null
ret i1 %2
; CHECK: alloca_compare
; CHECK: ret i1 false
}
; PR12075
define i1 @infinite_gep() {
ret i1 1
unreachableblock:
%X = getelementptr i32, i32 *%X, i32 1
%Y = icmp eq i32* %X, null
ret i1 %Y
}
; It's not valid to fold a comparison of an argument with an alloca, even though
; that's tempting. An argument can't *alias* an alloca, however the aliasing rule
; relies on restrictions against guessing an object's address and dereferencing.
; There are no restrictions against guessing an object's address and comparing.
define i1 @alloca_argument_compare(i64* %arg) {
%alloc = alloca i64
%cmp = icmp eq i64* %arg, %alloc
ret i1 %cmp
; CHECK: alloca_argument_compare
; CHECK: ret i1 %cmp
}
; As above, but with the operands reversed.
define i1 @alloca_argument_compare_swapped(i64* %arg) {
%alloc = alloca i64
%cmp = icmp eq i64* %alloc, %arg
ret i1 %cmp
; CHECK: alloca_argument_compare_swapped
; CHECK: ret i1 %cmp
}
; Don't assume that a noalias argument isn't equal to a global variable's
; address. This is an example where AliasAnalysis' NoAlias concept is
; different from actual pointer inequality.
@y = external global i32
define zeroext i1 @external_compare(i32* noalias %x) {
%cmp = icmp eq i32* %x, @y
ret i1 %cmp
; CHECK: external_compare
; CHECK: ret i1 %cmp
}
define i1 @alloca_gep(i64 %a, i64 %b) {
; CHECK-LABEL: @alloca_gep(
; We can prove this GEP is non-null because it is inbounds and the pointer
; is non-null.
%strs = alloca [1000 x [1001 x i8]], align 16
%x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b
%cmp = icmp eq i8* %x, null
ret i1 %cmp
; CHECK-NEXT: ret i1 false
}
define i1 @non_inbounds_gep_compare(i64* %a) {
; CHECK-LABEL: @non_inbounds_gep_compare(
; Equality compares with non-inbounds GEPs can be folded.
%x = getelementptr i64, i64* %a, i64 42
%y = getelementptr inbounds i64, i64* %x, i64 -42
%z = getelementptr i64, i64* %a, i64 -42
%w = getelementptr inbounds i64, i64* %z, i64 42
%cmp = icmp eq i64* %y, %w
ret i1 %cmp
; CHECK-NEXT: ret i1 true
}
define i1 @non_inbounds_gep_compare2(i64* %a) {
; CHECK-LABEL: @non_inbounds_gep_compare2(
; Equality compares with non-inbounds GEPs can be folded.
%x = getelementptr i64, i64* %a, i64 4294967297
%y = getelementptr i64, i64* %a, i64 1
%cmp = icmp eq i64* %y, %y
ret i1 %cmp
; CHECK-NEXT: ret i1 true
}
define <4 x i8> @vectorselectfold(<4 x i8> %a, <4 x i8> %b) {
%false = icmp ne <4 x i8> zeroinitializer, zeroinitializer
%sel = select <4 x i1> %false, <4 x i8> %a, <4 x i8> %b
ret <4 x i8> %sel
; CHECK-LABEL: @vectorselectfold
; CHECK-NEXT: ret <4 x i8> %b
}
define <4 x i8> @vectorselectfold2(<4 x i8> %a, <4 x i8> %b) {
%true = icmp eq <4 x i8> zeroinitializer, zeroinitializer
%sel = select <4 x i1> %true, <4 x i8> %a, <4 x i8> %b
ret <4 x i8> %sel
; CHECK-LABEL: @vectorselectfold
; CHECK-NEXT: ret <4 x i8> %a
}
define i1 @compare_always_true_slt(i16 %a) {
%1 = zext i16 %a to i32
%2 = sub nsw i32 0, %1
%3 = icmp slt i32 %2, 1
ret i1 %3
; CHECK-LABEL: @compare_always_true_slt
; CHECK-NEXT: ret i1 true
}
define i1 @compare_always_true_sle(i16 %a) {
%1 = zext i16 %a to i32
%2 = sub nsw i32 0, %1
%3 = icmp sle i32 %2, 0
ret i1 %3
; CHECK-LABEL: @compare_always_true_sle
; CHECK-NEXT: ret i1 true
}
define i1 @compare_always_false_sgt(i16 %a) {
%1 = zext i16 %a to i32
%2 = sub nsw i32 0, %1
%3 = icmp sgt i32 %2, 0
ret i1 %3
; CHECK-LABEL: @compare_always_false_sgt
; CHECK-NEXT: ret i1 false
}
define i1 @compare_always_false_sge(i16 %a) {
%1 = zext i16 %a to i32
%2 = sub nsw i32 0, %1
%3 = icmp sge i32 %2, 1
ret i1 %3
; CHECK-LABEL: @compare_always_false_sge
; CHECK-NEXT: ret i1 false
}
define i1 @compare_always_false_eq(i16 %a) {
%1 = zext i16 %a to i32
%2 = sub nsw i32 0, %1
%3 = icmp eq i32 %2, 1
ret i1 %3
; CHECK-LABEL: @compare_always_false_eq
; CHECK-NEXT: ret i1 false
}
define i1 @compare_always_false_ne(i16 %a) {
%1 = zext i16 %a to i32
%2 = sub nsw i32 0, %1
%3 = icmp ne i32 %2, 1
ret i1 %3
; CHECK-LABEL: @compare_always_false_ne
; CHECK-NEXT: ret i1 true
}
define i1 @compare_dividend(i32 %a) {
%div = sdiv i32 2, %a
%cmp = icmp eq i32 %div, 3
ret i1 %cmp
; CHECK-LABEL: @compare_dividend
; CHECK-NEXT: ret i1 false
}
define i1 @lshr_ugt_false(i32 %a) {
%shr = lshr i32 1, %a
%cmp = icmp ugt i32 %shr, 1
ret i1 %cmp
; CHECK-LABEL: @lshr_ugt_false
; CHECK-NEXT: ret i1 false
}
define i1 @exact_lshr_ugt_false(i32 %a) {
%shr = lshr exact i32 30, %a
%cmp = icmp ult i32 %shr, 15
ret i1 %cmp
; CHECK-LABEL: @exact_lshr_ugt_false
; CHECK-NEXT: ret i1 false
}
define i1 @lshr_sgt_false(i32 %a) {
%shr = lshr i32 1, %a
%cmp = icmp sgt i32 %shr, 1
ret i1 %cmp
; CHECK-LABEL: @lshr_sgt_false
; CHECK-NEXT: ret i1 false
}
define i1 @ashr_sgt_false(i32 %a) {
%shr = ashr i32 -30, %a
%cmp = icmp sgt i32 %shr, -1
ret i1 %cmp
; CHECK-LABEL: @ashr_sgt_false
; CHECK-NEXT: ret i1 false
}
define i1 @exact_ashr_sgt_false(i32 %a) {
%shr = ashr exact i32 -30, %a
%cmp = icmp sgt i32 %shr, -15
ret i1 %cmp
; CHECK-LABEL: @exact_ashr_sgt_false
; CHECK-NEXT: ret i1 false
}
define i1 @nonnull_arg(i32* nonnull %i) {
%cmp = icmp eq i32* %i, null
ret i1 %cmp
; CHECK-LABEL: @nonnull_arg
; CHECK: ret i1 false
}
define i1 @nonnull_deref_arg(i32* dereferenceable(4) %i) {
%cmp = icmp eq i32* %i, null
ret i1 %cmp
; CHECK-LABEL: @nonnull_deref_arg
; CHECK: ret i1 false
}
define i1 @nonnull_deref_as_arg(i32 addrspace(1)* dereferenceable(4) %i) {
%cmp = icmp eq i32 addrspace(1)* %i, null
ret i1 %cmp
; CHECK-LABEL: @nonnull_deref_as_arg
; CHECK: icmp
; CHECK ret
}
declare nonnull i32* @returns_nonnull_helper()
define i1 @returns_nonnull() {
%call = call nonnull i32* @returns_nonnull_helper()
%cmp = icmp eq i32* %call, null
ret i1 %cmp
; CHECK-LABEL: @returns_nonnull
; CHECK: ret i1 false
}
declare dereferenceable(4) i32* @returns_nonnull_deref_helper()
define i1 @returns_nonnull_deref() {
%call = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
%cmp = icmp eq i32* %call, null
ret i1 %cmp
; CHECK-LABEL: @returns_nonnull_deref
; CHECK: ret i1 false
}
declare dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
define i1 @returns_nonnull_as_deref() {
%call = call dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
%cmp = icmp eq i32 addrspace(1)* %call, null
ret i1 %cmp
; CHECK-LABEL: @returns_nonnull_as_deref
; CHECK: icmp
; CHECK: ret
}
define i1 @nonnull_load(i32** %addr) {
%ptr = load i32** %addr, !nonnull !{}
%cmp = icmp eq i32* %ptr, null
ret i1 %cmp
; CHECK-LABEL: @nonnull_load
; CHECK: ret i1 false
}
define i1 @nonnull_load_as_outer(i32* addrspace(1)* %addr) {
%ptr = load i32* addrspace(1)* %addr, !nonnull !{}
%cmp = icmp eq i32* %ptr, null
ret i1 %cmp
; CHECK-LABEL: @nonnull_load_as_outer
; CHECK: ret i1 false
}
define i1 @nonnull_load_as_inner(i32 addrspace(1)** %addr) {
%ptr = load i32 addrspace(1)** %addr, !nonnull !{}
%cmp = icmp eq i32 addrspace(1)* %ptr, null
ret i1 %cmp
; CHECK-LABEL: @nonnull_load_as_inner
; CHECK: ret i1 false
}
; If a bit is known to be zero for A and known to be one for B,
; then A and B cannot be equal.
define i1 @icmp_eq_const(i32 %a) nounwind {
%b = mul nsw i32 %a, -2
%c = icmp eq i32 %b, 1
ret i1 %c
; CHECK-LABEL: @icmp_eq_const
; CHECK-NEXT: ret i1 false
}
define i1 @icmp_ne_const(i32 %a) nounwind {
%b = mul nsw i32 %a, -2
%c = icmp ne i32 %b, 1
ret i1 %c
; CHECK-LABEL: @icmp_ne_const
; CHECK-NEXT: ret i1 true
}
define i1 @icmp_sdiv_int_min(i32 %a) {
%div = sdiv i32 -2147483648, %a
%cmp = icmp ne i32 %div, -1073741824
ret i1 %cmp
; CHECK-LABEL: @icmp_sdiv_int_min
; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 -2147483648, %a
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[DIV]], -1073741824
; CHECK-NEXT: ret i1 [[CMP]]
}
define i1 @icmp_sdiv_pr20288(i64 %a) {
%div = sdiv i64 %a, -8589934592
%cmp = icmp ne i64 %div, 1073741824
ret i1 %cmp
; CHECK-LABEL: @icmp_sdiv_pr20288
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -8589934592
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
; CHECK-NEXT: ret i1 [[CMP]]
}
define i1 @icmp_sdiv_neg1(i64 %a) {
%div = sdiv i64 %a, -1
%cmp = icmp ne i64 %div, 1073741824
ret i1 %cmp
; CHECK-LABEL: @icmp_sdiv_neg1
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -1
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
; CHECK-NEXT: ret i1 [[CMP]]
}
define i1 @icmp_known_bits(i4 %x, i4 %y) {
%and1 = and i4 %y, -7
%and2 = and i4 %x, -7
%or1 = or i4 %and1, 2
%or2 = or i4 %and2, 2
%add = add i4 %or1, %or2
%cmp = icmp eq i4 %add, 0
ret i1 %cmp
; CHECK-LABEL: @icmp_known_bits
; CHECK-NEXT: ret i1 false
}
define i1 @icmp_shl_nuw_1(i64 %a) {
%shl = shl nuw i64 1, %a
%cmp = icmp ne i64 %shl, 0
ret i1 %cmp
; CHECK-LABEL: @icmp_shl_nuw_1
; CHECK-NEXT: ret i1 true
}
define i1 @icmp_shl_nsw_neg1(i64 %a) {
%shl = shl nsw i64 -1, %a
%cmp = icmp sge i64 %shl, 3
ret i1 %cmp
; CHECK-LABEL: @icmp_shl_nsw_neg1
; CHECK-NEXT: ret i1 false
}
define i1 @icmp_shl_nsw_1(i64 %a) {
%shl = shl nsw i64 1, %a
%cmp = icmp sge i64 %shl, 0
ret i1 %cmp
; CHECK-LABEL: @icmp_shl_nsw_1
; CHECK-NEXT: ret i1 true
}
define i1 @icmp_shl_1_V_ugt_2147483648(i32 %V) {
%shl = shl i32 1, %V
%cmp = icmp ugt i32 %shl, 2147483648
ret i1 %cmp
; CHECK-LABEL: @icmp_shl_1_V_ugt_2147483648(
; CHECK-NEXT: ret i1 false
}
define i1 @icmp_shl_1_V_ule_2147483648(i32 %V) {
%shl = shl i32 1, %V
%cmp = icmp ule i32 %shl, 2147483648
ret i1 %cmp
; CHECK-LABEL: @icmp_shl_1_V_ule_2147483648(
; CHECK-NEXT: ret i1 true
}
define i1 @icmp_shl_1_V_eq_31(i32 %V) {
%shl = shl i32 1, %V
%cmp = icmp eq i32 %shl, 31
ret i1 %cmp
; CHECK-LABEL: @icmp_shl_1_V_eq_31(
; CHECK-NEXT: ret i1 false
}
define i1 @icmp_shl_1_V_ne_31(i32 %V) {
%shl = shl i32 1, %V
%cmp = icmp ne i32 %shl, 31
ret i1 %cmp
; CHECK-LABEL: @icmp_shl_1_V_ne_31(
; CHECK-NEXT: ret i1 true
}
define i1 @tautological1(i32 %A, i32 %B) {
%C = and i32 %A, %B
%D = icmp ugt i32 %C, %A
ret i1 %D
; CHECK-LABEL: @tautological1(
; CHECK: ret i1 false
}
define i1 @tautological2(i32 %A, i32 %B) {
%C = and i32 %A, %B
%D = icmp ule i32 %C, %A
ret i1 %D
; CHECK-LABEL: @tautological2(
; CHECK: ret i1 true
}
define i1 @tautological3(i32 %A, i32 %B) {
%C = or i32 %A, %B
%D = icmp ule i32 %A, %C
ret i1 %D
; CHECK-LABEL: @tautological3(
; CHECK: ret i1 true
}
define i1 @tautological4(i32 %A, i32 %B) {
%C = or i32 %A, %B
%D = icmp ugt i32 %A, %C
ret i1 %D
; CHECK-LABEL: @tautological4(
; CHECK: ret i1 false
}
define i1 @tautological5(i32 %A, i32 %B) {
%C = or i32 %A, %B
%D = icmp ult i32 %C, %A
ret i1 %D
; CHECK-LABEL: @tautological5(
; CHECK: ret i1 false
}
define i1 @tautological6(i32 %A, i32 %B) {
%C = or i32 %A, %B
%D = icmp uge i32 %C, %A
ret i1 %D
; CHECK-LABEL: @tautological6(
; CHECK: ret i1 true
}
define i1 @tautological7(i32 %A, i32 %B) {
%C = and i32 %A, %B
%D = icmp uge i32 %A, %C
ret i1 %D
; CHECK-LABEL: @tautological7(
; CHECK: ret i1 true
}
define i1 @tautological8(i32 %A, i32 %B) {
%C = and i32 %A, %B
%D = icmp ult i32 %A, %C
ret i1 %D
; CHECK-LABEL: @tautological8(
; CHECK: ret i1 false
}