mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 02:32:08 +00:00
697954c15d
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1503 91177308-0d34-0410-b5e6-96231b3b80d8
274 lines
9.6 KiB
C++
274 lines
9.6 KiB
C++
//===-- WriteInst.cpp - Functions for writing instructions -------*- C++ -*--=//
|
|
//
|
|
// This file implements the routines for encoding instruction opcodes to a
|
|
// bytecode stream.
|
|
//
|
|
// Note that the performance of this library is not terribly important, because
|
|
// it shouldn't be used by JIT type applications... so it is not a huge focus
|
|
// at least. :)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "WriterInternals.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include <algorithm>
|
|
|
|
typedef unsigned char uchar;
|
|
|
|
// outputInstructionFormat0 - Output those wierd instructions that have a large
|
|
// number of operands or have large operands themselves...
|
|
//
|
|
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
|
|
//
|
|
static void outputInstructionFormat0(const Instruction *I,
|
|
const SlotCalculator &Table,
|
|
unsigned Type, std::deque<uchar> &Out) {
|
|
// Opcode must have top two bits clear...
|
|
output_vbr(I->getOpcode() << 2, Out); // Instruction Opcode ID
|
|
output_vbr(Type, Out); // Result type
|
|
|
|
unsigned NumArgs = I->getNumOperands();
|
|
output_vbr(NumArgs + isa<CastInst>(I), Out);
|
|
|
|
for (unsigned i = 0; i < NumArgs; ++i) {
|
|
int Slot = Table.getValSlot(I->getOperand(i));
|
|
assert(Slot >= 0 && "No slot number for value!?!?");
|
|
output_vbr((unsigned)Slot, Out);
|
|
}
|
|
|
|
if (isa<CastInst>(I)) {
|
|
int Slot = Table.getValSlot(I->getType());
|
|
assert(Slot != -1 && "Cast return type unknown?");
|
|
output_vbr((unsigned)Slot, Out);
|
|
}
|
|
|
|
align32(Out); // We must maintain correct alignment!
|
|
}
|
|
|
|
|
|
// outputInstrVarArgsCall - Output the obsurdly annoying varargs method calls.
|
|
// This are more annoying than most because the signature of the call does not
|
|
// tell us anything about the types of the arguments in the varargs portion.
|
|
// Because of this, we encode (as type 0) all of the argument types explicitly
|
|
// before the argument value. This really sucks, but you shouldn't be using
|
|
// varargs functions in your code! *death to printf*!
|
|
//
|
|
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
|
|
//
|
|
static void outputInstrVarArgsCall(const Instruction *I,
|
|
const SlotCalculator &Table, unsigned Type,
|
|
std::deque<uchar> &Out) {
|
|
assert(isa<CallInst>(I) || isa<InvokeInst>(I));
|
|
// Opcode must have top two bits clear...
|
|
output_vbr(I->getOpcode() << 2, Out); // Instruction Opcode ID
|
|
output_vbr(Type, Out); // Result type (varargs type)
|
|
|
|
unsigned NumArgs = I->getNumOperands();
|
|
output_vbr(NumArgs*2, Out);
|
|
// TODO: Don't need to emit types for the fixed types of the varargs method
|
|
// prototype...
|
|
|
|
// The type for the method has already been emitted in the type field of the
|
|
// instruction. Just emit the slot # now.
|
|
int Slot = Table.getValSlot(I->getOperand(0));
|
|
assert(Slot >= 0 && "No slot number for value!?!?");
|
|
output_vbr((unsigned)Slot, Out);
|
|
|
|
// Output a dummy field to fill Arg#2 in the reader that is currently unused
|
|
// for varargs calls. This is a gross hack to make the code simpler, but we
|
|
// aren't really doing very small bytecode for varargs calls anyways.
|
|
// FIXME in the future: Smaller bytecode for varargs calls
|
|
output_vbr(0, Out);
|
|
|
|
for (unsigned i = 1; i < NumArgs; ++i) {
|
|
// Output Arg Type ID
|
|
Slot = Table.getValSlot(I->getOperand(i)->getType());
|
|
assert(Slot >= 0 && "No slot number for value!?!?");
|
|
output_vbr((unsigned)Slot, Out);
|
|
|
|
// Output arg ID itself
|
|
Slot = Table.getValSlot(I->getOperand(i));
|
|
assert(Slot >= 0 && "No slot number for value!?!?");
|
|
output_vbr((unsigned)Slot, Out);
|
|
}
|
|
align32(Out); // We must maintain correct alignment!
|
|
}
|
|
|
|
|
|
// outputInstructionFormat1 - Output one operand instructions, knowing that no
|
|
// operand index is >= 2^12.
|
|
//
|
|
static void outputInstructionFormat1(const Instruction *I,
|
|
const SlotCalculator &Table, int *Slots,
|
|
unsigned Type, std::deque<uchar> &Out) {
|
|
unsigned Opcode = I->getOpcode(); // Instruction Opcode ID
|
|
|
|
// bits Instruction format:
|
|
// --------------------------
|
|
// 01-00: Opcode type, fixed to 1.
|
|
// 07-02: Opcode
|
|
// 19-08: Resulting type plane
|
|
// 31-20: Operand #1 (if set to (2^12-1), then zero operands)
|
|
//
|
|
unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
|
|
// cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
|
|
output(Bits, Out);
|
|
}
|
|
|
|
|
|
// outputInstructionFormat2 - Output two operand instructions, knowing that no
|
|
// operand index is >= 2^8.
|
|
//
|
|
static void outputInstructionFormat2(const Instruction *I,
|
|
const SlotCalculator &Table, int *Slots,
|
|
unsigned Type, std::deque<uchar> &Out) {
|
|
unsigned Opcode = I->getOpcode(); // Instruction Opcode ID
|
|
|
|
// bits Instruction format:
|
|
// --------------------------
|
|
// 01-00: Opcode type, fixed to 2.
|
|
// 07-02: Opcode
|
|
// 15-08: Resulting type plane
|
|
// 23-16: Operand #1
|
|
// 31-24: Operand #2
|
|
//
|
|
unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
|
|
(Slots[0] << 16) | (Slots[1] << 24);
|
|
// cerr << "2 " << IType << " " << Type << " " << Slots[0] << " "
|
|
// << Slots[1] << endl;
|
|
output(Bits, Out);
|
|
}
|
|
|
|
|
|
// outputInstructionFormat3 - Output three operand instructions, knowing that no
|
|
// operand index is >= 2^6.
|
|
//
|
|
static void outputInstructionFormat3(const Instruction *I,
|
|
const SlotCalculator &Table, int *Slots,
|
|
unsigned Type, std::deque<uchar> &Out) {
|
|
unsigned Opcode = I->getOpcode(); // Instruction Opcode ID
|
|
|
|
// bits Instruction format:
|
|
// --------------------------
|
|
// 01-00: Opcode type, fixed to 3.
|
|
// 07-02: Opcode
|
|
// 13-08: Resulting type plane
|
|
// 19-14: Operand #1
|
|
// 25-20: Operand #2
|
|
// 31-26: Operand #3
|
|
//
|
|
unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
|
|
(Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
|
|
//cerr << "3 " << IType << " " << Type << " " << Slots[0] << " "
|
|
// << Slots[1] << " " << Slots[2] << endl;
|
|
output(Bits, Out);
|
|
}
|
|
|
|
void BytecodeWriter::processInstruction(const Instruction *I) {
|
|
assert(I->getOpcode() < 64 && "Opcode too big???");
|
|
|
|
unsigned NumOperands = I->getNumOperands();
|
|
int MaxOpSlot = 0;
|
|
int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
|
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
const Value *Def = I->getOperand(i);
|
|
int slot = Table.getValSlot(Def);
|
|
assert(slot != -1 && "Broken bytecode!");
|
|
if (slot > MaxOpSlot) MaxOpSlot = slot;
|
|
if (i < 3) Slots[i] = slot;
|
|
}
|
|
|
|
// Figure out which type to encode with the instruction. Typically we want
|
|
// the type of the first parameter, as opposed to the type of the instruction
|
|
// (for example, with setcc, we always know it returns bool, but the type of
|
|
// the first param is actually interesting). But if we have no arguments
|
|
// we take the type of the instruction itself.
|
|
//
|
|
const Type *Ty;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Malloc:
|
|
case Instruction::Alloca:
|
|
Ty = I->getType(); // Malloc & Alloca ALWAYS want to encode the return type
|
|
break;
|
|
case Instruction::Store:
|
|
Ty = I->getOperand(1)->getType(); // Encode the pointer type...
|
|
assert(Ty->isPointerType() && "Store to nonpointer type!?!?");
|
|
break;
|
|
default: // Otherwise use the default behavior...
|
|
Ty = NumOperands ? I->getOperand(0)->getType() : I->getType();
|
|
break;
|
|
}
|
|
|
|
unsigned Type;
|
|
int Slot = Table.getValSlot(Ty);
|
|
assert(Slot != -1 && "Type not available!!?!");
|
|
Type = (unsigned)Slot;
|
|
|
|
// Make sure that we take the type number into consideration. We don't want
|
|
// to overflow the field size for the instruction format we select.
|
|
//
|
|
if (Slot > MaxOpSlot) MaxOpSlot = Slot;
|
|
|
|
// Handle the special case for cast...
|
|
if (isa<CastInst>(I)) {
|
|
// Cast has to encode the destination type as the second argument in the
|
|
// packet, or else we won't know what type to cast to!
|
|
Slots[1] = Table.getValSlot(I->getType());
|
|
assert(Slots[1] != -1 && "Cast return type unknown?");
|
|
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
|
NumOperands++;
|
|
} else if (const CallInst *CI = dyn_cast<CallInst>(I)) {// Handle VarArg calls
|
|
PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
|
|
if (cast<MethodType>(Ty->getElementType())->isVarArg()) {
|
|
outputInstrVarArgsCall(I, Table, Type, Out);
|
|
return;
|
|
}
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) { // ... & Invokes
|
|
PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
|
|
if (cast<MethodType>(Ty->getElementType())->isVarArg()) {
|
|
outputInstrVarArgsCall(I, Table, Type, Out);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Decide which instruction encoding to use. This is determined primarily by
|
|
// the number of operands, and secondarily by whether or not the max operand
|
|
// will fit into the instruction encoding. More operands == fewer bits per
|
|
// operand.
|
|
//
|
|
switch (NumOperands) {
|
|
case 0:
|
|
case 1:
|
|
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
|
outputInstructionFormat1(I, Table, Slots, Type, Out);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
if (MaxOpSlot < (1 << 8)) {
|
|
outputInstructionFormat2(I, Table, Slots, Type, Out);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
if (MaxOpSlot < (1 << 6)) {
|
|
outputInstructionFormat3(I, Table, Slots, Type, Out);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If we weren't handled before here, we either have a large number of
|
|
// operands or a large operand index that we are refering to.
|
|
outputInstructionFormat0(I, Table, Type, Out);
|
|
}
|