mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
3eb87654a5
The terminal barrier of a cmpxchg expansion will be either Acquire or SequentiallyConsistent. In either case it can be skipped if the operation has Monotonic requirements on failure. rdar://problem/15996804 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205535 91177308-0d34-0410-b5e6-96231b3b80d8
407 lines
15 KiB
C++
407 lines
15 KiB
C++
//===-- ARMAtomicExpandPass.cpp - Expand atomic instructions --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass (at IR level) to replace atomic instructions with
|
|
// appropriate (intrinsic-based) ldrex/strex loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arm-atomic-expand"
|
|
#include "ARM.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class ARMAtomicExpandPass : public FunctionPass {
|
|
const TargetLowering *TLI;
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
explicit ARMAtomicExpandPass(const TargetMachine *TM = 0)
|
|
: FunctionPass(ID), TLI(TM->getTargetLowering()) {}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
bool expandAtomicInsts(Function &F);
|
|
|
|
bool expandAtomicLoad(LoadInst *LI);
|
|
bool expandAtomicStore(StoreInst *LI);
|
|
bool expandAtomicRMW(AtomicRMWInst *AI);
|
|
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
|
|
|
|
AtomicOrdering insertLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
|
|
void insertTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
|
|
|
|
/// Perform a load-linked operation on Addr, returning a "Value *" with the
|
|
/// corresponding pointee type. This may entail some non-trivial operations
|
|
/// to truncate or reconstruct illegal types since intrinsics must be legal
|
|
Value *loadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord);
|
|
|
|
/// Perform a store-conditional operation to Addr. Return the status of the
|
|
/// store: 0 if the it succeeded, non-zero otherwise.
|
|
Value *storeConditional(IRBuilder<> &Builder, Value *Val, Value *Addr,
|
|
AtomicOrdering Ord);
|
|
|
|
/// Return true if the given (atomic) instruction should be expanded by this
|
|
/// pass.
|
|
bool shouldExpandAtomic(Instruction *Inst);
|
|
};
|
|
}
|
|
|
|
char ARMAtomicExpandPass::ID = 0;
|
|
|
|
FunctionPass *llvm::createARMAtomicExpandPass(const TargetMachine *TM) {
|
|
return new ARMAtomicExpandPass(TM);
|
|
}
|
|
|
|
bool ARMAtomicExpandPass::runOnFunction(Function &F) {
|
|
SmallVector<Instruction *, 1> AtomicInsts;
|
|
|
|
// Changing control-flow while iterating through it is a bad idea, so gather a
|
|
// list of all atomic instructions before we start.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &Inst : BB) {
|
|
if (isa<AtomicRMWInst>(&Inst) || isa<AtomicCmpXchgInst>(&Inst) ||
|
|
(isa<LoadInst>(&Inst) && cast<LoadInst>(&Inst)->isAtomic()) ||
|
|
(isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic()))
|
|
AtomicInsts.push_back(&Inst);
|
|
}
|
|
|
|
bool MadeChange = false;
|
|
for (Instruction *Inst : AtomicInsts) {
|
|
if (!shouldExpandAtomic(Inst))
|
|
continue;
|
|
|
|
if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
|
|
MadeChange |= expandAtomicRMW(AI);
|
|
else if (AtomicCmpXchgInst *CI = dyn_cast<AtomicCmpXchgInst>(Inst))
|
|
MadeChange |= expandAtomicCmpXchg(CI);
|
|
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
|
|
MadeChange |= expandAtomicLoad(LI);
|
|
else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
|
|
MadeChange |= expandAtomicStore(SI);
|
|
else
|
|
llvm_unreachable("Unknown atomic instruction");
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
bool ARMAtomicExpandPass::expandAtomicLoad(LoadInst *LI) {
|
|
// Load instructions don't actually need a leading fence, even in the
|
|
// SequentiallyConsistent case.
|
|
AtomicOrdering MemOpOrder =
|
|
TLI->getInsertFencesForAtomic() ? Monotonic : LI->getOrdering();
|
|
|
|
// The only 64-bit load guaranteed to be single-copy atomic by the ARM ARM is
|
|
// an ldrexd (A3.5.3).
|
|
IRBuilder<> Builder(LI);
|
|
Value *Val = loadLinked(Builder, LI->getPointerOperand(), MemOpOrder);
|
|
|
|
insertTrailingFence(Builder, LI->getOrdering());
|
|
|
|
LI->replaceAllUsesWith(Val);
|
|
LI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMAtomicExpandPass::expandAtomicStore(StoreInst *SI) {
|
|
// The only atomic 64-bit store on ARM is an strexd that succeeds, which means
|
|
// we need a loop and the entire instruction is essentially an "atomicrmw
|
|
// xchg" that ignores the value loaded.
|
|
IRBuilder<> Builder(SI);
|
|
AtomicRMWInst *AI =
|
|
Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
|
|
SI->getValueOperand(), SI->getOrdering());
|
|
SI->eraseFromParent();
|
|
|
|
// Now we have an appropriate swap instruction, lower it as usual.
|
|
return expandAtomicRMW(AI);
|
|
}
|
|
|
|
bool ARMAtomicExpandPass::expandAtomicRMW(AtomicRMWInst *AI) {
|
|
AtomicOrdering Order = AI->getOrdering();
|
|
Value *Addr = AI->getPointerOperand();
|
|
BasicBlock *BB = AI->getParent();
|
|
Function *F = BB->getParent();
|
|
LLVMContext &Ctx = F->getContext();
|
|
|
|
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
|
|
//
|
|
// The standard expansion we produce is:
|
|
// [...]
|
|
// fence?
|
|
// atomicrmw.start:
|
|
// %loaded = @load.linked(%addr)
|
|
// %new = some_op iN %loaded, %incr
|
|
// %stored = @store_conditional(%new, %addr)
|
|
// %try_again = icmp i32 ne %stored, 0
|
|
// br i1 %try_again, label %loop, label %atomicrmw.end
|
|
// atomicrmw.end:
|
|
// fence?
|
|
// [...]
|
|
BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
|
|
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
|
|
|
|
// This grabs the DebugLoc from AI.
|
|
IRBuilder<> Builder(AI);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we might want a fence too. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
AtomicOrdering MemOpOrder = insertLeadingFence(Builder, Order);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
Value *Loaded = loadLinked(Builder, Addr, MemOpOrder);
|
|
|
|
Value *NewVal;
|
|
switch (AI->getOperation()) {
|
|
case AtomicRMWInst::Xchg:
|
|
NewVal = AI->getValOperand();
|
|
break;
|
|
case AtomicRMWInst::Add:
|
|
NewVal = Builder.CreateAdd(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Sub:
|
|
NewVal = Builder.CreateSub(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::And:
|
|
NewVal = Builder.CreateAnd(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Nand:
|
|
NewVal = Builder.CreateAnd(Loaded, Builder.CreateNot(AI->getValOperand()),
|
|
"new");
|
|
break;
|
|
case AtomicRMWInst::Or:
|
|
NewVal = Builder.CreateOr(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Xor:
|
|
NewVal = Builder.CreateXor(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Max:
|
|
NewVal = Builder.CreateICmpSGT(Loaded, AI->getValOperand());
|
|
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Min:
|
|
NewVal = Builder.CreateICmpSLE(Loaded, AI->getValOperand());
|
|
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::UMax:
|
|
NewVal = Builder.CreateICmpUGT(Loaded, AI->getValOperand());
|
|
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::UMin:
|
|
NewVal = Builder.CreateICmpULE(Loaded, AI->getValOperand());
|
|
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unknown atomic op");
|
|
}
|
|
|
|
Value *StoreSuccess = storeConditional(Builder, NewVal, Addr, MemOpOrder);
|
|
Value *TryAgain = Builder.CreateICmpNE(
|
|
StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
|
|
Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
|
|
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
insertTrailingFence(Builder, Order);
|
|
|
|
AI->replaceAllUsesWith(Loaded);
|
|
AI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMAtomicExpandPass::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
|
|
AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
|
|
AtomicOrdering FailureOrder = CI->getFailureOrdering();
|
|
Value *Addr = CI->getPointerOperand();
|
|
BasicBlock *BB = CI->getParent();
|
|
Function *F = BB->getParent();
|
|
LLVMContext &Ctx = F->getContext();
|
|
|
|
// Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
|
|
//
|
|
// The full expansion we produce is:
|
|
// [...]
|
|
// fence?
|
|
// cmpxchg.start:
|
|
// %loaded = @load.linked(%addr)
|
|
// %should_store = icmp eq %loaded, %desired
|
|
// br i1 %should_store, label %cmpxchg.trystore,
|
|
// label %cmpxchg.end/%cmpxchg.barrier
|
|
// cmpxchg.trystore:
|
|
// %stored = @store_conditional(%new, %addr)
|
|
// %try_again = icmp i32 ne %stored, 0
|
|
// br i1 %try_again, label %loop, label %cmpxchg.end
|
|
// cmpxchg.barrier:
|
|
// fence?
|
|
// br label %cmpxchg.end
|
|
// cmpxchg.end:
|
|
// [...]
|
|
BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
|
|
auto BarrierBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ExitBB);
|
|
auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.barrier", F, BarrierBB);
|
|
auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
|
|
|
|
// This grabs the DebugLoc from CI
|
|
IRBuilder<> Builder(CI);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we might want a fence too. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
AtomicOrdering MemOpOrder = insertLeadingFence(Builder, SuccessOrder);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
Value *Loaded = loadLinked(Builder, Addr, MemOpOrder);
|
|
Value *ShouldStore =
|
|
Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
|
|
|
|
// If the the cmpxchg doesn't actually need any ordering when it fails, we can
|
|
// jump straight past that fence instruction (if it exists).
|
|
BasicBlock *FailureBB = FailureOrder == Monotonic ? ExitBB : BarrierBB;
|
|
Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
|
|
|
|
Builder.SetInsertPoint(TryStoreBB);
|
|
Value *StoreSuccess =
|
|
storeConditional(Builder, CI->getNewValOperand(), Addr, MemOpOrder);
|
|
Value *TryAgain = Builder.CreateICmpNE(
|
|
StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
|
|
Builder.CreateCondBr(TryAgain, LoopBB, BarrierBB);
|
|
|
|
// Finally, make sure later instructions don't get reordered with a fence if
|
|
// necessary.
|
|
Builder.SetInsertPoint(BarrierBB);
|
|
insertTrailingFence(Builder, SuccessOrder);
|
|
Builder.CreateBr(ExitBB);
|
|
|
|
CI->replaceAllUsesWith(Loaded);
|
|
CI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
Value *ARMAtomicExpandPass::loadLinked(IRBuilder<> &Builder, Value *Addr,
|
|
AtomicOrdering Ord) {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
|
|
bool IsAcquire =
|
|
Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
|
|
|
|
// Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
|
|
// intrinsic must return {i32, i32} and we have to recombine them into a
|
|
// single i64 here.
|
|
if (ValTy->getPrimitiveSizeInBits() == 64) {
|
|
Intrinsic::ID Int =
|
|
IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
|
|
Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
|
|
|
|
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
|
|
Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
|
|
|
|
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
|
|
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
|
|
Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
|
|
Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
|
|
return Builder.CreateOr(
|
|
Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
|
|
}
|
|
|
|
Type *Tys[] = { Addr->getType() };
|
|
Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
|
|
Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
|
|
|
|
return Builder.CreateTruncOrBitCast(
|
|
Builder.CreateCall(Ldrex, Addr),
|
|
cast<PointerType>(Addr->getType())->getElementType());
|
|
}
|
|
|
|
Value *ARMAtomicExpandPass::storeConditional(IRBuilder<> &Builder, Value *Val,
|
|
Value *Addr, AtomicOrdering Ord) {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
bool IsRelease =
|
|
Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
|
|
|
|
// Since the intrinsics must have legal type, the i64 intrinsics take two
|
|
// parameters: "i32, i32". We must marshal Val into the appropriate form
|
|
// before the call.
|
|
if (Val->getType()->getPrimitiveSizeInBits() == 64) {
|
|
Intrinsic::ID Int =
|
|
IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
|
|
Function *Strex = Intrinsic::getDeclaration(M, Int);
|
|
Type *Int32Ty = Type::getInt32Ty(M->getContext());
|
|
|
|
Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
|
|
Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
|
|
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
|
|
return Builder.CreateCall3(Strex, Lo, Hi, Addr);
|
|
}
|
|
|
|
Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
|
|
Type *Tys[] = { Addr->getType() };
|
|
Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
|
|
|
|
return Builder.CreateCall2(
|
|
Strex, Builder.CreateZExtOrBitCast(
|
|
Val, Strex->getFunctionType()->getParamType(0)),
|
|
Addr);
|
|
}
|
|
|
|
AtomicOrdering ARMAtomicExpandPass::insertLeadingFence(IRBuilder<> &Builder,
|
|
AtomicOrdering Ord) {
|
|
if (!TLI->getInsertFencesForAtomic())
|
|
return Ord;
|
|
|
|
if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
|
|
Builder.CreateFence(Release);
|
|
|
|
// The exclusive operations don't need any barrier if we're adding separate
|
|
// fences.
|
|
return Monotonic;
|
|
}
|
|
|
|
void ARMAtomicExpandPass::insertTrailingFence(IRBuilder<> &Builder,
|
|
AtomicOrdering Ord) {
|
|
if (!TLI->getInsertFencesForAtomic())
|
|
return;
|
|
|
|
if (Ord == Acquire || Ord == AcquireRelease)
|
|
Builder.CreateFence(Acquire);
|
|
else if (Ord == SequentiallyConsistent)
|
|
Builder.CreateFence(SequentiallyConsistent);
|
|
}
|
|
|
|
bool ARMAtomicExpandPass::shouldExpandAtomic(Instruction *Inst) {
|
|
// Loads and stores less than 64-bits are already atomic; ones above that
|
|
// are doomed anyway, so defer to the default libcall and blame the OS when
|
|
// things go wrong:
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
|
|
return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 64;
|
|
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
|
|
return LI->getType()->getPrimitiveSizeInBits() == 64;
|
|
|
|
// For the real atomic operations, we have ldrex/strex up to 64 bits.
|
|
return Inst->getType()->getPrimitiveSizeInBits() <= 64;
|
|
}
|