mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
50f8308628
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205165 91177308-0d34-0410-b5e6-96231b3b80d8
2813 lines
103 KiB
C++
2813 lines
103 KiB
C++
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a DAG pattern matching instruction selector for X86,
|
|
// converting from a legalized dag to a X86 dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86-isel"
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern Matcher Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
|
|
/// SDValue's instead of register numbers for the leaves of the matched
|
|
/// tree.
|
|
struct X86ISelAddressMode {
|
|
enum {
|
|
RegBase,
|
|
FrameIndexBase
|
|
} BaseType;
|
|
|
|
// This is really a union, discriminated by BaseType!
|
|
SDValue Base_Reg;
|
|
int Base_FrameIndex;
|
|
|
|
unsigned Scale;
|
|
SDValue IndexReg;
|
|
int32_t Disp;
|
|
SDValue Segment;
|
|
const GlobalValue *GV;
|
|
const Constant *CP;
|
|
const BlockAddress *BlockAddr;
|
|
const char *ES;
|
|
int JT;
|
|
unsigned Align; // CP alignment.
|
|
unsigned char SymbolFlags; // X86II::MO_*
|
|
|
|
X86ISelAddressMode()
|
|
: BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
|
|
Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
|
|
SymbolFlags(X86II::MO_NO_FLAG) {
|
|
}
|
|
|
|
bool hasSymbolicDisplacement() const {
|
|
return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
|
|
}
|
|
|
|
bool hasBaseOrIndexReg() const {
|
|
return BaseType == FrameIndexBase ||
|
|
IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
|
|
}
|
|
|
|
/// isRIPRelative - Return true if this addressing mode is already RIP
|
|
/// relative.
|
|
bool isRIPRelative() const {
|
|
if (BaseType != RegBase) return false;
|
|
if (RegisterSDNode *RegNode =
|
|
dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
|
|
return RegNode->getReg() == X86::RIP;
|
|
return false;
|
|
}
|
|
|
|
void setBaseReg(SDValue Reg) {
|
|
BaseType = RegBase;
|
|
Base_Reg = Reg;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void dump() {
|
|
dbgs() << "X86ISelAddressMode " << this << '\n';
|
|
dbgs() << "Base_Reg ";
|
|
if (Base_Reg.getNode() != 0)
|
|
Base_Reg.getNode()->dump();
|
|
else
|
|
dbgs() << "nul";
|
|
dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
|
|
<< " Scale" << Scale << '\n'
|
|
<< "IndexReg ";
|
|
if (IndexReg.getNode() != 0)
|
|
IndexReg.getNode()->dump();
|
|
else
|
|
dbgs() << "nul";
|
|
dbgs() << " Disp " << Disp << '\n'
|
|
<< "GV ";
|
|
if (GV)
|
|
GV->dump();
|
|
else
|
|
dbgs() << "nul";
|
|
dbgs() << " CP ";
|
|
if (CP)
|
|
CP->dump();
|
|
else
|
|
dbgs() << "nul";
|
|
dbgs() << '\n'
|
|
<< "ES ";
|
|
if (ES)
|
|
dbgs() << ES;
|
|
else
|
|
dbgs() << "nul";
|
|
dbgs() << " JT" << JT << " Align" << Align << '\n';
|
|
}
|
|
#endif
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISel - X86 specific code to select X86 machine instructions for
|
|
/// SelectionDAG operations.
|
|
///
|
|
class X86DAGToDAGISel final : public SelectionDAGISel {
|
|
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const X86Subtarget *Subtarget;
|
|
|
|
/// OptForSize - If true, selector should try to optimize for code size
|
|
/// instead of performance.
|
|
bool OptForSize;
|
|
|
|
public:
|
|
explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel),
|
|
Subtarget(&tm.getSubtarget<X86Subtarget>()),
|
|
OptForSize(false) {}
|
|
|
|
const char *getPassName() const override {
|
|
return "X86 DAG->DAG Instruction Selection";
|
|
}
|
|
|
|
void EmitFunctionEntryCode() override;
|
|
|
|
bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
|
|
|
|
void PreprocessISelDAG() override;
|
|
|
|
inline bool immSext8(SDNode *N) const {
|
|
return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
|
|
}
|
|
|
|
// i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
|
|
// sign extended field.
|
|
inline bool i64immSExt32(SDNode *N) const {
|
|
uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
|
|
return (int64_t)v == (int32_t)v;
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "X86GenDAGISel.inc"
|
|
|
|
private:
|
|
SDNode *Select(SDNode *N) override;
|
|
SDNode *SelectGather(SDNode *N, unsigned Opc);
|
|
SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
|
|
SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
|
|
|
|
bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
|
|
bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
|
|
bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
|
|
bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
|
|
bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
|
|
unsigned Depth);
|
|
bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
|
|
bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment);
|
|
bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
|
|
bool SelectLEAAddr(SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment);
|
|
bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment);
|
|
bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment);
|
|
bool SelectScalarSSELoad(SDNode *Root, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment,
|
|
SDValue &NodeWithChain);
|
|
|
|
bool TryFoldLoad(SDNode *P, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment);
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) override;
|
|
|
|
void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
|
|
|
|
inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &Segment) {
|
|
Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
|
|
CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
|
|
getTargetLowering()->getPointerTy()) :
|
|
AM.Base_Reg;
|
|
Scale = getI8Imm(AM.Scale);
|
|
Index = AM.IndexReg;
|
|
// These are 32-bit even in 64-bit mode since RIP relative offset
|
|
// is 32-bit.
|
|
if (AM.GV)
|
|
Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
|
|
MVT::i32, AM.Disp,
|
|
AM.SymbolFlags);
|
|
else if (AM.CP)
|
|
Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
|
|
AM.Align, AM.Disp, AM.SymbolFlags);
|
|
else if (AM.ES) {
|
|
assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
|
|
Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
|
|
} else if (AM.JT != -1) {
|
|
assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
|
|
Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
|
|
} else if (AM.BlockAddr)
|
|
Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
|
|
AM.SymbolFlags);
|
|
else
|
|
Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
|
|
|
|
if (AM.Segment.getNode())
|
|
Segment = AM.Segment;
|
|
else
|
|
Segment = CurDAG->getRegister(0, MVT::i32);
|
|
}
|
|
|
|
/// getI8Imm - Return a target constant with the specified value, of type
|
|
/// i8.
|
|
inline SDValue getI8Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i8);
|
|
}
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDValue getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
/// getGlobalBaseReg - Return an SDNode that returns the value of
|
|
/// the global base register. Output instructions required to
|
|
/// initialize the global base register, if necessary.
|
|
///
|
|
SDNode *getGlobalBaseReg();
|
|
|
|
/// getTargetMachine - Return a reference to the TargetMachine, casted
|
|
/// to the target-specific type.
|
|
const X86TargetMachine &getTargetMachine() const {
|
|
return static_cast<const X86TargetMachine &>(TM);
|
|
}
|
|
|
|
/// getInstrInfo - Return a reference to the TargetInstrInfo, casted
|
|
/// to the target-specific type.
|
|
const X86InstrInfo *getInstrInfo() const {
|
|
return getTargetMachine().getInstrInfo();
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
bool
|
|
X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
|
|
if (OptLevel == CodeGenOpt::None) return false;
|
|
|
|
if (!N.hasOneUse())
|
|
return false;
|
|
|
|
if (N.getOpcode() != ISD::LOAD)
|
|
return true;
|
|
|
|
// If N is a load, do additional profitability checks.
|
|
if (U == Root) {
|
|
switch (U->getOpcode()) {
|
|
default: break;
|
|
case X86ISD::ADD:
|
|
case X86ISD::SUB:
|
|
case X86ISD::AND:
|
|
case X86ISD::XOR:
|
|
case X86ISD::OR:
|
|
case ISD::ADD:
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
SDValue Op1 = U->getOperand(1);
|
|
|
|
// If the other operand is a 8-bit immediate we should fold the immediate
|
|
// instead. This reduces code size.
|
|
// e.g.
|
|
// movl 4(%esp), %eax
|
|
// addl $4, %eax
|
|
// vs.
|
|
// movl $4, %eax
|
|
// addl 4(%esp), %eax
|
|
// The former is 2 bytes shorter. In case where the increment is 1, then
|
|
// the saving can be 4 bytes (by using incl %eax).
|
|
if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
|
|
if (Imm->getAPIntValue().isSignedIntN(8))
|
|
return false;
|
|
|
|
// If the other operand is a TLS address, we should fold it instead.
|
|
// This produces
|
|
// movl %gs:0, %eax
|
|
// leal i@NTPOFF(%eax), %eax
|
|
// instead of
|
|
// movl $i@NTPOFF, %eax
|
|
// addl %gs:0, %eax
|
|
// if the block also has an access to a second TLS address this will save
|
|
// a load.
|
|
// FIXME: This is probably also true for non-TLS addresses.
|
|
if (Op1.getOpcode() == X86ISD::Wrapper) {
|
|
SDValue Val = Op1.getOperand(0);
|
|
if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
|
|
/// load's chain operand and move load below the call's chain operand.
|
|
static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
|
|
SDValue Call, SDValue OrigChain) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
SDValue Chain = OrigChain.getOperand(0);
|
|
if (Chain.getNode() == Load.getNode())
|
|
Ops.push_back(Load.getOperand(0));
|
|
else {
|
|
assert(Chain.getOpcode() == ISD::TokenFactor &&
|
|
"Unexpected chain operand");
|
|
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
|
|
if (Chain.getOperand(i).getNode() == Load.getNode())
|
|
Ops.push_back(Load.getOperand(0));
|
|
else
|
|
Ops.push_back(Chain.getOperand(i));
|
|
SDValue NewChain =
|
|
CurDAG->getNode(ISD::TokenFactor, SDLoc(Load),
|
|
MVT::Other, &Ops[0], Ops.size());
|
|
Ops.clear();
|
|
Ops.push_back(NewChain);
|
|
}
|
|
for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
|
|
Ops.push_back(OrigChain.getOperand(i));
|
|
CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
|
|
CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
|
|
Load.getOperand(1), Load.getOperand(2));
|
|
|
|
unsigned NumOps = Call.getNode()->getNumOperands();
|
|
Ops.clear();
|
|
Ops.push_back(SDValue(Load.getNode(), 1));
|
|
for (unsigned i = 1, e = NumOps; i != e; ++i)
|
|
Ops.push_back(Call.getOperand(i));
|
|
CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
|
|
}
|
|
|
|
/// isCalleeLoad - Return true if call address is a load and it can be
|
|
/// moved below CALLSEQ_START and the chains leading up to the call.
|
|
/// Return the CALLSEQ_START by reference as a second output.
|
|
/// In the case of a tail call, there isn't a callseq node between the call
|
|
/// chain and the load.
|
|
static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
|
|
// The transformation is somewhat dangerous if the call's chain was glued to
|
|
// the call. After MoveBelowOrigChain the load is moved between the call and
|
|
// the chain, this can create a cycle if the load is not folded. So it is
|
|
// *really* important that we are sure the load will be folded.
|
|
if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
|
|
return false;
|
|
LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
|
|
if (!LD ||
|
|
LD->isVolatile() ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED ||
|
|
LD->getExtensionType() != ISD::NON_EXTLOAD)
|
|
return false;
|
|
|
|
// Now let's find the callseq_start.
|
|
while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
|
|
if (!Chain.hasOneUse())
|
|
return false;
|
|
Chain = Chain.getOperand(0);
|
|
}
|
|
|
|
if (!Chain.getNumOperands())
|
|
return false;
|
|
// Since we are not checking for AA here, conservatively abort if the chain
|
|
// writes to memory. It's not safe to move the callee (a load) across a store.
|
|
if (isa<MemSDNode>(Chain.getNode()) &&
|
|
cast<MemSDNode>(Chain.getNode())->writeMem())
|
|
return false;
|
|
if (Chain.getOperand(0).getNode() == Callee.getNode())
|
|
return true;
|
|
if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
|
|
Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
|
|
Callee.getValue(1).hasOneUse())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void X86DAGToDAGISel::PreprocessISelDAG() {
|
|
// OptForSize is used in pattern predicates that isel is matching.
|
|
OptForSize = MF->getFunction()->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
|
|
|
|
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
|
|
E = CurDAG->allnodes_end(); I != E; ) {
|
|
SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
|
|
|
|
if (OptLevel != CodeGenOpt::None &&
|
|
// Only does this when target favors doesn't favor register indirect
|
|
// call.
|
|
((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
|
|
(N->getOpcode() == X86ISD::TC_RETURN &&
|
|
// Only does this if load can be folded into TC_RETURN.
|
|
(Subtarget->is64Bit() ||
|
|
getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
|
|
/// Also try moving call address load from outside callseq_start to just
|
|
/// before the call to allow it to be folded.
|
|
///
|
|
/// [Load chain]
|
|
/// ^
|
|
/// |
|
|
/// [Load]
|
|
/// ^ ^
|
|
/// | |
|
|
/// / \--
|
|
/// / |
|
|
///[CALLSEQ_START] |
|
|
/// ^ |
|
|
/// | |
|
|
/// [LOAD/C2Reg] |
|
|
/// | |
|
|
/// \ /
|
|
/// \ /
|
|
/// [CALL]
|
|
bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Load = N->getOperand(1);
|
|
if (!isCalleeLoad(Load, Chain, HasCallSeq))
|
|
continue;
|
|
MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
|
|
++NumLoadMoved;
|
|
continue;
|
|
}
|
|
|
|
// Lower fpround and fpextend nodes that target the FP stack to be store and
|
|
// load to the stack. This is a gross hack. We would like to simply mark
|
|
// these as being illegal, but when we do that, legalize produces these when
|
|
// it expands calls, then expands these in the same legalize pass. We would
|
|
// like dag combine to be able to hack on these between the call expansion
|
|
// and the node legalization. As such this pass basically does "really
|
|
// late" legalization of these inline with the X86 isel pass.
|
|
// FIXME: This should only happen when not compiled with -O0.
|
|
if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
|
|
continue;
|
|
|
|
MVT SrcVT = N->getOperand(0).getSimpleValueType();
|
|
MVT DstVT = N->getSimpleValueType(0);
|
|
|
|
// If any of the sources are vectors, no fp stack involved.
|
|
if (SrcVT.isVector() || DstVT.isVector())
|
|
continue;
|
|
|
|
// If the source and destination are SSE registers, then this is a legal
|
|
// conversion that should not be lowered.
|
|
const X86TargetLowering *X86Lowering =
|
|
static_cast<const X86TargetLowering *>(getTargetLowering());
|
|
bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
|
|
bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
|
|
if (SrcIsSSE && DstIsSSE)
|
|
continue;
|
|
|
|
if (!SrcIsSSE && !DstIsSSE) {
|
|
// If this is an FPStack extension, it is a noop.
|
|
if (N->getOpcode() == ISD::FP_EXTEND)
|
|
continue;
|
|
// If this is a value-preserving FPStack truncation, it is a noop.
|
|
if (N->getConstantOperandVal(1))
|
|
continue;
|
|
}
|
|
|
|
// Here we could have an FP stack truncation or an FPStack <-> SSE convert.
|
|
// FPStack has extload and truncstore. SSE can fold direct loads into other
|
|
// operations. Based on this, decide what we want to do.
|
|
MVT MemVT;
|
|
if (N->getOpcode() == ISD::FP_ROUND)
|
|
MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
|
|
else
|
|
MemVT = SrcIsSSE ? SrcVT : DstVT;
|
|
|
|
SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
|
|
SDLoc dl(N);
|
|
|
|
// FIXME: optimize the case where the src/dest is a load or store?
|
|
SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
|
|
N->getOperand(0),
|
|
MemTmp, MachinePointerInfo(), MemVT,
|
|
false, false, 0);
|
|
SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
|
|
MachinePointerInfo(),
|
|
MemVT, false, false, 0);
|
|
|
|
// We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
|
|
// extload we created. This will cause general havok on the dag because
|
|
// anything below the conversion could be folded into other existing nodes.
|
|
// To avoid invalidating 'I', back it up to the convert node.
|
|
--I;
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
|
|
|
|
// Now that we did that, the node is dead. Increment the iterator to the
|
|
// next node to process, then delete N.
|
|
++I;
|
|
CurDAG->DeleteNode(N);
|
|
}
|
|
}
|
|
|
|
|
|
/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
|
|
/// the main function.
|
|
void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
|
|
MachineFrameInfo *MFI) {
|
|
const TargetInstrInfo *TII = TM.getInstrInfo();
|
|
if (Subtarget->isTargetCygMing()) {
|
|
unsigned CallOp =
|
|
Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
|
|
BuildMI(BB, DebugLoc(),
|
|
TII->get(CallOp)).addExternalSymbol("__main");
|
|
}
|
|
}
|
|
|
|
void X86DAGToDAGISel::EmitFunctionEntryCode() {
|
|
// If this is main, emit special code for main.
|
|
if (const Function *Fn = MF->getFunction())
|
|
if (Fn->hasExternalLinkage() && Fn->getName() == "main")
|
|
EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
|
|
}
|
|
|
|
static bool isDispSafeForFrameIndex(int64_t Val) {
|
|
// On 64-bit platforms, we can run into an issue where a frame index
|
|
// includes a displacement that, when added to the explicit displacement,
|
|
// will overflow the displacement field. Assuming that the frame index
|
|
// displacement fits into a 31-bit integer (which is only slightly more
|
|
// aggressive than the current fundamental assumption that it fits into
|
|
// a 32-bit integer), a 31-bit disp should always be safe.
|
|
return isInt<31>(Val);
|
|
}
|
|
|
|
bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
|
|
X86ISelAddressMode &AM) {
|
|
int64_t Val = AM.Disp + Offset;
|
|
CodeModel::Model M = TM.getCodeModel();
|
|
if (Subtarget->is64Bit()) {
|
|
if (!X86::isOffsetSuitableForCodeModel(Val, M,
|
|
AM.hasSymbolicDisplacement()))
|
|
return true;
|
|
// In addition to the checks required for a register base, check that
|
|
// we do not try to use an unsafe Disp with a frame index.
|
|
if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
|
|
!isDispSafeForFrameIndex(Val))
|
|
return true;
|
|
}
|
|
AM.Disp = Val;
|
|
return false;
|
|
|
|
}
|
|
|
|
bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
|
|
SDValue Address = N->getOperand(1);
|
|
|
|
// load gs:0 -> GS segment register.
|
|
// load fs:0 -> FS segment register.
|
|
//
|
|
// This optimization is valid because the GNU TLS model defines that
|
|
// gs:0 (or fs:0 on X86-64) contains its own address.
|
|
// For more information see http://people.redhat.com/drepper/tls.pdf
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
|
|
if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
|
|
Subtarget->isTargetLinux())
|
|
switch (N->getPointerInfo().getAddrSpace()) {
|
|
case 256:
|
|
AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
|
|
return false;
|
|
case 257:
|
|
AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
|
|
/// into an addressing mode. These wrap things that will resolve down into a
|
|
/// symbol reference. If no match is possible, this returns true, otherwise it
|
|
/// returns false.
|
|
bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
|
|
// If the addressing mode already has a symbol as the displacement, we can
|
|
// never match another symbol.
|
|
if (AM.hasSymbolicDisplacement())
|
|
return true;
|
|
|
|
SDValue N0 = N.getOperand(0);
|
|
CodeModel::Model M = TM.getCodeModel();
|
|
|
|
// Handle X86-64 rip-relative addresses. We check this before checking direct
|
|
// folding because RIP is preferable to non-RIP accesses.
|
|
if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
|
|
// Under X86-64 non-small code model, GV (and friends) are 64-bits, so
|
|
// they cannot be folded into immediate fields.
|
|
// FIXME: This can be improved for kernel and other models?
|
|
(M == CodeModel::Small || M == CodeModel::Kernel)) {
|
|
// Base and index reg must be 0 in order to use %rip as base.
|
|
if (AM.hasBaseOrIndexReg())
|
|
return true;
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
|
|
X86ISelAddressMode Backup = AM;
|
|
AM.GV = G->getGlobal();
|
|
AM.SymbolFlags = G->getTargetFlags();
|
|
if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
|
|
AM = Backup;
|
|
return true;
|
|
}
|
|
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
|
|
X86ISelAddressMode Backup = AM;
|
|
AM.CP = CP->getConstVal();
|
|
AM.Align = CP->getAlignment();
|
|
AM.SymbolFlags = CP->getTargetFlags();
|
|
if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
|
|
AM = Backup;
|
|
return true;
|
|
}
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
|
|
AM.ES = S->getSymbol();
|
|
AM.SymbolFlags = S->getTargetFlags();
|
|
} else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
|
|
AM.JT = J->getIndex();
|
|
AM.SymbolFlags = J->getTargetFlags();
|
|
} else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
|
|
X86ISelAddressMode Backup = AM;
|
|
AM.BlockAddr = BA->getBlockAddress();
|
|
AM.SymbolFlags = BA->getTargetFlags();
|
|
if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
|
|
AM = Backup;
|
|
return true;
|
|
}
|
|
} else
|
|
llvm_unreachable("Unhandled symbol reference node.");
|
|
|
|
if (N.getOpcode() == X86ISD::WrapperRIP)
|
|
AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
|
|
return false;
|
|
}
|
|
|
|
// Handle the case when globals fit in our immediate field: This is true for
|
|
// X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit
|
|
// mode, this only applies to a non-RIP-relative computation.
|
|
if (!Subtarget->is64Bit() ||
|
|
M == CodeModel::Small || M == CodeModel::Kernel) {
|
|
assert(N.getOpcode() != X86ISD::WrapperRIP &&
|
|
"RIP-relative addressing already handled");
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
|
|
AM.GV = G->getGlobal();
|
|
AM.Disp += G->getOffset();
|
|
AM.SymbolFlags = G->getTargetFlags();
|
|
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
|
|
AM.CP = CP->getConstVal();
|
|
AM.Align = CP->getAlignment();
|
|
AM.Disp += CP->getOffset();
|
|
AM.SymbolFlags = CP->getTargetFlags();
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
|
|
AM.ES = S->getSymbol();
|
|
AM.SymbolFlags = S->getTargetFlags();
|
|
} else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
|
|
AM.JT = J->getIndex();
|
|
AM.SymbolFlags = J->getTargetFlags();
|
|
} else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
|
|
AM.BlockAddr = BA->getBlockAddress();
|
|
AM.Disp += BA->getOffset();
|
|
AM.SymbolFlags = BA->getTargetFlags();
|
|
} else
|
|
llvm_unreachable("Unhandled symbol reference node.");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// MatchAddress - Add the specified node to the specified addressing mode,
|
|
/// returning true if it cannot be done. This just pattern matches for the
|
|
/// addressing mode.
|
|
bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
|
|
if (MatchAddressRecursively(N, AM, 0))
|
|
return true;
|
|
|
|
// Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
|
|
// a smaller encoding and avoids a scaled-index.
|
|
if (AM.Scale == 2 &&
|
|
AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base_Reg.getNode() == 0) {
|
|
AM.Base_Reg = AM.IndexReg;
|
|
AM.Scale = 1;
|
|
}
|
|
|
|
// Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
|
|
// because it has a smaller encoding.
|
|
// TODO: Which other code models can use this?
|
|
if (TM.getCodeModel() == CodeModel::Small &&
|
|
Subtarget->is64Bit() &&
|
|
AM.Scale == 1 &&
|
|
AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base_Reg.getNode() == 0 &&
|
|
AM.IndexReg.getNode() == 0 &&
|
|
AM.SymbolFlags == X86II::MO_NO_FLAG &&
|
|
AM.hasSymbolicDisplacement())
|
|
AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
|
|
|
|
return false;
|
|
}
|
|
|
|
// Insert a node into the DAG at least before the Pos node's position. This
|
|
// will reposition the node as needed, and will assign it a node ID that is <=
|
|
// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
|
|
// IDs! The selection DAG must no longer depend on their uniqueness when this
|
|
// is used.
|
|
static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
|
|
if (N.getNode()->getNodeId() == -1 ||
|
|
N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
|
|
DAG.RepositionNode(Pos.getNode(), N.getNode());
|
|
N.getNode()->setNodeId(Pos.getNode()->getNodeId());
|
|
}
|
|
}
|
|
|
|
// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
|
|
// allows us to convert the shift and and into an h-register extract and
|
|
// a scaled index. Returns false if the simplification is performed.
|
|
static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
|
|
uint64_t Mask,
|
|
SDValue Shift, SDValue X,
|
|
X86ISelAddressMode &AM) {
|
|
if (Shift.getOpcode() != ISD::SRL ||
|
|
!isa<ConstantSDNode>(Shift.getOperand(1)) ||
|
|
!Shift.hasOneUse())
|
|
return true;
|
|
|
|
int ScaleLog = 8 - Shift.getConstantOperandVal(1);
|
|
if (ScaleLog <= 0 || ScaleLog >= 4 ||
|
|
Mask != (0xffu << ScaleLog))
|
|
return true;
|
|
|
|
MVT VT = N.getSimpleValueType();
|
|
SDLoc DL(N);
|
|
SDValue Eight = DAG.getConstant(8, MVT::i8);
|
|
SDValue NewMask = DAG.getConstant(0xff, VT);
|
|
SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
|
|
SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
|
|
SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
|
|
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
|
|
|
|
// Insert the new nodes into the topological ordering. We must do this in
|
|
// a valid topological ordering as nothing is going to go back and re-sort
|
|
// these nodes. We continually insert before 'N' in sequence as this is
|
|
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
|
|
// hierarchy left to express.
|
|
InsertDAGNode(DAG, N, Eight);
|
|
InsertDAGNode(DAG, N, Srl);
|
|
InsertDAGNode(DAG, N, NewMask);
|
|
InsertDAGNode(DAG, N, And);
|
|
InsertDAGNode(DAG, N, ShlCount);
|
|
InsertDAGNode(DAG, N, Shl);
|
|
DAG.ReplaceAllUsesWith(N, Shl);
|
|
AM.IndexReg = And;
|
|
AM.Scale = (1 << ScaleLog);
|
|
return false;
|
|
}
|
|
|
|
// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
|
|
// allows us to fold the shift into this addressing mode. Returns false if the
|
|
// transform succeeded.
|
|
static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
|
|
uint64_t Mask,
|
|
SDValue Shift, SDValue X,
|
|
X86ISelAddressMode &AM) {
|
|
if (Shift.getOpcode() != ISD::SHL ||
|
|
!isa<ConstantSDNode>(Shift.getOperand(1)))
|
|
return true;
|
|
|
|
// Not likely to be profitable if either the AND or SHIFT node has more
|
|
// than one use (unless all uses are for address computation). Besides,
|
|
// isel mechanism requires their node ids to be reused.
|
|
if (!N.hasOneUse() || !Shift.hasOneUse())
|
|
return true;
|
|
|
|
// Verify that the shift amount is something we can fold.
|
|
unsigned ShiftAmt = Shift.getConstantOperandVal(1);
|
|
if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
|
|
return true;
|
|
|
|
MVT VT = N.getSimpleValueType();
|
|
SDLoc DL(N);
|
|
SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
|
|
SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
|
|
SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
|
|
|
|
// Insert the new nodes into the topological ordering. We must do this in
|
|
// a valid topological ordering as nothing is going to go back and re-sort
|
|
// these nodes. We continually insert before 'N' in sequence as this is
|
|
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
|
|
// hierarchy left to express.
|
|
InsertDAGNode(DAG, N, NewMask);
|
|
InsertDAGNode(DAG, N, NewAnd);
|
|
InsertDAGNode(DAG, N, NewShift);
|
|
DAG.ReplaceAllUsesWith(N, NewShift);
|
|
|
|
AM.Scale = 1 << ShiftAmt;
|
|
AM.IndexReg = NewAnd;
|
|
return false;
|
|
}
|
|
|
|
// Implement some heroics to detect shifts of masked values where the mask can
|
|
// be replaced by extending the shift and undoing that in the addressing mode
|
|
// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
|
|
// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
|
|
// the addressing mode. This results in code such as:
|
|
//
|
|
// int f(short *y, int *lookup_table) {
|
|
// ...
|
|
// return *y + lookup_table[*y >> 11];
|
|
// }
|
|
//
|
|
// Turning into:
|
|
// movzwl (%rdi), %eax
|
|
// movl %eax, %ecx
|
|
// shrl $11, %ecx
|
|
// addl (%rsi,%rcx,4), %eax
|
|
//
|
|
// Instead of:
|
|
// movzwl (%rdi), %eax
|
|
// movl %eax, %ecx
|
|
// shrl $9, %ecx
|
|
// andl $124, %rcx
|
|
// addl (%rsi,%rcx), %eax
|
|
//
|
|
// Note that this function assumes the mask is provided as a mask *after* the
|
|
// value is shifted. The input chain may or may not match that, but computing
|
|
// such a mask is trivial.
|
|
static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
|
|
uint64_t Mask,
|
|
SDValue Shift, SDValue X,
|
|
X86ISelAddressMode &AM) {
|
|
if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
|
|
!isa<ConstantSDNode>(Shift.getOperand(1)))
|
|
return true;
|
|
|
|
unsigned ShiftAmt = Shift.getConstantOperandVal(1);
|
|
unsigned MaskLZ = countLeadingZeros(Mask);
|
|
unsigned MaskTZ = countTrailingZeros(Mask);
|
|
|
|
// The amount of shift we're trying to fit into the addressing mode is taken
|
|
// from the trailing zeros of the mask.
|
|
unsigned AMShiftAmt = MaskTZ;
|
|
|
|
// There is nothing we can do here unless the mask is removing some bits.
|
|
// Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
|
|
if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
|
|
|
|
// We also need to ensure that mask is a continuous run of bits.
|
|
if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
|
|
|
|
// Scale the leading zero count down based on the actual size of the value.
|
|
// Also scale it down based on the size of the shift.
|
|
MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
|
|
|
|
// The final check is to ensure that any masked out high bits of X are
|
|
// already known to be zero. Otherwise, the mask has a semantic impact
|
|
// other than masking out a couple of low bits. Unfortunately, because of
|
|
// the mask, zero extensions will be removed from operands in some cases.
|
|
// This code works extra hard to look through extensions because we can
|
|
// replace them with zero extensions cheaply if necessary.
|
|
bool ReplacingAnyExtend = false;
|
|
if (X.getOpcode() == ISD::ANY_EXTEND) {
|
|
unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
|
|
X.getOperand(0).getSimpleValueType().getSizeInBits();
|
|
// Assume that we'll replace the any-extend with a zero-extend, and
|
|
// narrow the search to the extended value.
|
|
X = X.getOperand(0);
|
|
MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
|
|
ReplacingAnyExtend = true;
|
|
}
|
|
APInt MaskedHighBits =
|
|
APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
|
|
APInt KnownZero, KnownOne;
|
|
DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
|
|
if (MaskedHighBits != KnownZero) return true;
|
|
|
|
// We've identified a pattern that can be transformed into a single shift
|
|
// and an addressing mode. Make it so.
|
|
MVT VT = N.getSimpleValueType();
|
|
if (ReplacingAnyExtend) {
|
|
assert(X.getValueType() != VT);
|
|
// We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
|
|
SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
|
|
InsertDAGNode(DAG, N, NewX);
|
|
X = NewX;
|
|
}
|
|
SDLoc DL(N);
|
|
SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
|
|
SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
|
|
SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
|
|
SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
|
|
|
|
// Insert the new nodes into the topological ordering. We must do this in
|
|
// a valid topological ordering as nothing is going to go back and re-sort
|
|
// these nodes. We continually insert before 'N' in sequence as this is
|
|
// essentially a pre-flattened and pre-sorted sequence of nodes. There is no
|
|
// hierarchy left to express.
|
|
InsertDAGNode(DAG, N, NewSRLAmt);
|
|
InsertDAGNode(DAG, N, NewSRL);
|
|
InsertDAGNode(DAG, N, NewSHLAmt);
|
|
InsertDAGNode(DAG, N, NewSHL);
|
|
DAG.ReplaceAllUsesWith(N, NewSHL);
|
|
|
|
AM.Scale = 1 << AMShiftAmt;
|
|
AM.IndexReg = NewSRL;
|
|
return false;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
|
|
unsigned Depth) {
|
|
SDLoc dl(N);
|
|
DEBUG({
|
|
dbgs() << "MatchAddress: ";
|
|
AM.dump();
|
|
});
|
|
// Limit recursion.
|
|
if (Depth > 5)
|
|
return MatchAddressBase(N, AM);
|
|
|
|
// If this is already a %rip relative address, we can only merge immediates
|
|
// into it. Instead of handling this in every case, we handle it here.
|
|
// RIP relative addressing: %rip + 32-bit displacement!
|
|
if (AM.isRIPRelative()) {
|
|
// FIXME: JumpTable and ExternalSymbol address currently don't like
|
|
// displacements. It isn't very important, but this should be fixed for
|
|
// consistency.
|
|
if (!AM.ES && AM.JT != -1) return true;
|
|
|
|
if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
|
|
if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
switch (N.getOpcode()) {
|
|
default: break;
|
|
case ISD::Constant: {
|
|
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
if (!FoldOffsetIntoAddress(Val, AM))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
case X86ISD::Wrapper:
|
|
case X86ISD::WrapperRIP:
|
|
if (!MatchWrapper(N, AM))
|
|
return false;
|
|
break;
|
|
|
|
case ISD::LOAD:
|
|
if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
|
|
return false;
|
|
break;
|
|
|
|
case ISD::FrameIndex:
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base_Reg.getNode() == 0 &&
|
|
(!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
|
|
AM.BaseType = X86ISelAddressMode::FrameIndexBase;
|
|
AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case ISD::SHL:
|
|
if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
|
|
break;
|
|
|
|
if (ConstantSDNode
|
|
*CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
|
|
unsigned Val = CN->getZExtValue();
|
|
// Note that we handle x<<1 as (,x,2) rather than (x,x) here so
|
|
// that the base operand remains free for further matching. If
|
|
// the base doesn't end up getting used, a post-processing step
|
|
// in MatchAddress turns (,x,2) into (x,x), which is cheaper.
|
|
if (Val == 1 || Val == 2 || Val == 3) {
|
|
AM.Scale = 1 << Val;
|
|
SDValue ShVal = N.getNode()->getOperand(0);
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (CurDAG->isBaseWithConstantOffset(ShVal)) {
|
|
AM.IndexReg = ShVal.getNode()->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
|
|
uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
|
|
if (!FoldOffsetIntoAddress(Disp, AM))
|
|
return false;
|
|
}
|
|
|
|
AM.IndexReg = ShVal;
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ISD::SRL: {
|
|
// Scale must not be used already.
|
|
if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
|
|
|
|
SDValue And = N.getOperand(0);
|
|
if (And.getOpcode() != ISD::AND) break;
|
|
SDValue X = And.getOperand(0);
|
|
|
|
// We only handle up to 64-bit values here as those are what matter for
|
|
// addressing mode optimizations.
|
|
if (X.getSimpleValueType().getSizeInBits() > 64) break;
|
|
|
|
// The mask used for the transform is expected to be post-shift, but we
|
|
// found the shift first so just apply the shift to the mask before passing
|
|
// it down.
|
|
if (!isa<ConstantSDNode>(N.getOperand(1)) ||
|
|
!isa<ConstantSDNode>(And.getOperand(1)))
|
|
break;
|
|
uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
|
|
|
|
// Try to fold the mask and shift into the scale, and return false if we
|
|
// succeed.
|
|
if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
case ISD::SMUL_LOHI:
|
|
case ISD::UMUL_LOHI:
|
|
// A mul_lohi where we need the low part can be folded as a plain multiply.
|
|
if (N.getResNo() != 0) break;
|
|
// FALL THROUGH
|
|
case ISD::MUL:
|
|
case X86ISD::MUL_IMM:
|
|
// X*[3,5,9] -> X+X*[2,4,8]
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base_Reg.getNode() == 0 &&
|
|
AM.IndexReg.getNode() == 0) {
|
|
if (ConstantSDNode
|
|
*CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
|
|
if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
|
|
CN->getZExtValue() == 9) {
|
|
AM.Scale = unsigned(CN->getZExtValue())-1;
|
|
|
|
SDValue MulVal = N.getNode()->getOperand(0);
|
|
SDValue Reg;
|
|
|
|
// Okay, we know that we have a scale by now. However, if the scaled
|
|
// value is an add of something and a constant, we can fold the
|
|
// constant into the disp field here.
|
|
if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
|
|
isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
|
|
Reg = MulVal.getNode()->getOperand(0);
|
|
ConstantSDNode *AddVal =
|
|
cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
|
|
uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
|
|
if (FoldOffsetIntoAddress(Disp, AM))
|
|
Reg = N.getNode()->getOperand(0);
|
|
} else {
|
|
Reg = N.getNode()->getOperand(0);
|
|
}
|
|
|
|
AM.IndexReg = AM.Base_Reg = Reg;
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ISD::SUB: {
|
|
// Given A-B, if A can be completely folded into the address and
|
|
// the index field with the index field unused, use -B as the index.
|
|
// This is a win if a has multiple parts that can be folded into
|
|
// the address. Also, this saves a mov if the base register has
|
|
// other uses, since it avoids a two-address sub instruction, however
|
|
// it costs an additional mov if the index register has other uses.
|
|
|
|
// Add an artificial use to this node so that we can keep track of
|
|
// it if it gets CSE'd with a different node.
|
|
HandleSDNode Handle(N);
|
|
|
|
// Test if the LHS of the sub can be folded.
|
|
X86ISelAddressMode Backup = AM;
|
|
if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
// Test if the index field is free for use.
|
|
if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
|
|
int Cost = 0;
|
|
SDValue RHS = Handle.getValue().getNode()->getOperand(1);
|
|
// If the RHS involves a register with multiple uses, this
|
|
// transformation incurs an extra mov, due to the neg instruction
|
|
// clobbering its operand.
|
|
if (!RHS.getNode()->hasOneUse() ||
|
|
RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
|
|
RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
|
|
RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
|
|
(RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
|
|
RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
|
|
++Cost;
|
|
// If the base is a register with multiple uses, this
|
|
// transformation may save a mov.
|
|
if ((AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
AM.Base_Reg.getNode() &&
|
|
!AM.Base_Reg.getNode()->hasOneUse()) ||
|
|
AM.BaseType == X86ISelAddressMode::FrameIndexBase)
|
|
--Cost;
|
|
// If the folded LHS was interesting, this transformation saves
|
|
// address arithmetic.
|
|
if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
|
|
((AM.Disp != 0) && (Backup.Disp == 0)) +
|
|
(AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
|
|
--Cost;
|
|
// If it doesn't look like it may be an overall win, don't do it.
|
|
if (Cost >= 0) {
|
|
AM = Backup;
|
|
break;
|
|
}
|
|
|
|
// Ok, the transformation is legal and appears profitable. Go for it.
|
|
SDValue Zero = CurDAG->getConstant(0, N.getValueType());
|
|
SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
|
|
AM.IndexReg = Neg;
|
|
AM.Scale = 1;
|
|
|
|
// Insert the new nodes into the topological ordering.
|
|
InsertDAGNode(*CurDAG, N, Zero);
|
|
InsertDAGNode(*CurDAG, N, Neg);
|
|
return false;
|
|
}
|
|
|
|
case ISD::ADD: {
|
|
// Add an artificial use to this node so that we can keep track of
|
|
// it if it gets CSE'd with a different node.
|
|
HandleSDNode Handle(N);
|
|
|
|
X86ISelAddressMode Backup = AM;
|
|
if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
|
|
!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
|
|
return false;
|
|
AM = Backup;
|
|
|
|
// Try again after commuting the operands.
|
|
if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
|
|
!MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
|
|
return false;
|
|
AM = Backup;
|
|
|
|
// If we couldn't fold both operands into the address at the same time,
|
|
// see if we can just put each operand into a register and fold at least
|
|
// the add.
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase &&
|
|
!AM.Base_Reg.getNode() &&
|
|
!AM.IndexReg.getNode()) {
|
|
N = Handle.getValue();
|
|
AM.Base_Reg = N.getOperand(0);
|
|
AM.IndexReg = N.getOperand(1);
|
|
AM.Scale = 1;
|
|
return false;
|
|
}
|
|
N = Handle.getValue();
|
|
break;
|
|
}
|
|
|
|
case ISD::OR:
|
|
// Handle "X | C" as "X + C" iff X is known to have C bits clear.
|
|
if (CurDAG->isBaseWithConstantOffset(N)) {
|
|
X86ISelAddressMode Backup = AM;
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
|
|
|
|
// Start with the LHS as an addr mode.
|
|
if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
|
|
!FoldOffsetIntoAddress(CN->getSExtValue(), AM))
|
|
return false;
|
|
AM = Backup;
|
|
}
|
|
break;
|
|
|
|
case ISD::AND: {
|
|
// Perform some heroic transforms on an and of a constant-count shift
|
|
// with a constant to enable use of the scaled offset field.
|
|
|
|
// Scale must not be used already.
|
|
if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
|
|
|
|
SDValue Shift = N.getOperand(0);
|
|
if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
|
|
SDValue X = Shift.getOperand(0);
|
|
|
|
// We only handle up to 64-bit values here as those are what matter for
|
|
// addressing mode optimizations.
|
|
if (X.getSimpleValueType().getSizeInBits() > 64) break;
|
|
|
|
if (!isa<ConstantSDNode>(N.getOperand(1)))
|
|
break;
|
|
uint64_t Mask = N.getConstantOperandVal(1);
|
|
|
|
// Try to fold the mask and shift into an extract and scale.
|
|
if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
|
|
return false;
|
|
|
|
// Try to fold the mask and shift directly into the scale.
|
|
if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
|
|
return false;
|
|
|
|
// Try to swap the mask and shift to place shifts which can be done as
|
|
// a scale on the outside of the mask.
|
|
if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return MatchAddressBase(N, AM);
|
|
}
|
|
|
|
/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
|
|
/// specified addressing mode without any further recursion.
|
|
bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
|
|
// Is the base register already occupied?
|
|
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
|
|
// If so, check to see if the scale index register is set.
|
|
if (AM.IndexReg.getNode() == 0) {
|
|
AM.IndexReg = N;
|
|
AM.Scale = 1;
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we cannot select it.
|
|
return true;
|
|
}
|
|
|
|
// Default, generate it as a register.
|
|
AM.BaseType = X86ISelAddressMode::RegBase;
|
|
AM.Base_Reg = N;
|
|
return false;
|
|
}
|
|
|
|
/// SelectAddr - returns true if it is able pattern match an addressing mode.
|
|
/// It returns the operands which make up the maximal addressing mode it can
|
|
/// match by reference.
|
|
///
|
|
/// Parent is the parent node of the addr operand that is being matched. It
|
|
/// is always a load, store, atomic node, or null. It is only null when
|
|
/// checking memory operands for inline asm nodes.
|
|
bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &Segment) {
|
|
X86ISelAddressMode AM;
|
|
|
|
if (Parent &&
|
|
// This list of opcodes are all the nodes that have an "addr:$ptr" operand
|
|
// that are not a MemSDNode, and thus don't have proper addrspace info.
|
|
Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
|
|
Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
|
|
Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
|
|
Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
|
|
Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
|
|
unsigned AddrSpace =
|
|
cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
|
|
// AddrSpace 256 -> GS, 257 -> FS.
|
|
if (AddrSpace == 256)
|
|
AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
|
|
if (AddrSpace == 257)
|
|
AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
|
|
}
|
|
|
|
if (MatchAddress(N, AM))
|
|
return false;
|
|
|
|
MVT VT = N.getSimpleValueType();
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase) {
|
|
if (!AM.Base_Reg.getNode())
|
|
AM.Base_Reg = CurDAG->getRegister(0, VT);
|
|
}
|
|
|
|
if (!AM.IndexReg.getNode())
|
|
AM.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
|
|
return true;
|
|
}
|
|
|
|
/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
|
|
/// match a load whose top elements are either undef or zeros. The load flavor
|
|
/// is derived from the type of N, which is either v4f32 or v2f64.
|
|
///
|
|
/// We also return:
|
|
/// PatternChainNode: this is the matched node that has a chain input and
|
|
/// output.
|
|
bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
|
|
SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &Segment,
|
|
SDValue &PatternNodeWithChain) {
|
|
if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
PatternNodeWithChain = N.getOperand(0);
|
|
if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
|
|
PatternNodeWithChain.hasOneUse() &&
|
|
IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
|
|
IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
|
|
if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
|
|
return false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Also handle the case where we explicitly require zeros in the top
|
|
// elements. This is a vector shuffle from the zero vector.
|
|
if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
|
|
// Check to see if the top elements are all zeros (or bitcast of zeros).
|
|
N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
N.getOperand(0).getNode()->hasOneUse() &&
|
|
ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
|
|
N.getOperand(0).getOperand(0).hasOneUse() &&
|
|
IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
|
|
IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
|
|
// Okay, this is a zero extending load. Fold it.
|
|
LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
|
|
if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
|
|
return false;
|
|
PatternNodeWithChain = SDValue(LD, 0);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
|
|
if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
uint64_t ImmVal = CN->getZExtValue();
|
|
if ((uint32_t)ImmVal != (uint64_t)ImmVal)
|
|
return false;
|
|
|
|
Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
|
|
return true;
|
|
}
|
|
|
|
// In static codegen with small code model, we can get the address of a label
|
|
// into a register with 'movl'. TableGen has already made sure we're looking
|
|
// at a label of some kind.
|
|
assert(N->getOpcode() == X86ISD::Wrapper &&
|
|
"Unexpected node type for MOV32ri64");
|
|
N = N.getOperand(0);
|
|
|
|
if (N->getOpcode() != ISD::TargetConstantPool &&
|
|
N->getOpcode() != ISD::TargetJumpTable &&
|
|
N->getOpcode() != ISD::TargetGlobalAddress &&
|
|
N->getOpcode() != ISD::TargetExternalSymbol &&
|
|
N->getOpcode() != ISD::TargetBlockAddress)
|
|
return false;
|
|
|
|
Imm = N;
|
|
return TM.getCodeModel() == CodeModel::Small;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &Segment) {
|
|
if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
|
|
return false;
|
|
|
|
SDLoc DL(N);
|
|
RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
|
|
if (RN && RN->getReg() == 0)
|
|
Base = CurDAG->getRegister(0, MVT::i64);
|
|
else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
|
|
// Base could already be %rip, particularly in the x32 ABI.
|
|
Base = SDValue(CurDAG->getMachineNode(
|
|
TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
|
|
CurDAG->getTargetConstant(0, MVT::i64),
|
|
Base,
|
|
CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
|
|
0);
|
|
}
|
|
|
|
RN = dyn_cast<RegisterSDNode>(Index);
|
|
if (RN && RN->getReg() == 0)
|
|
Index = CurDAG->getRegister(0, MVT::i64);
|
|
else {
|
|
assert(Index.getValueType() == MVT::i32 &&
|
|
"Expect to be extending 32-bit registers for use in LEA");
|
|
Index = SDValue(CurDAG->getMachineNode(
|
|
TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
|
|
CurDAG->getTargetConstant(0, MVT::i64),
|
|
Index,
|
|
CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
|
|
0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
|
|
/// mode it matches can be cost effectively emitted as an LEA instruction.
|
|
bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment) {
|
|
X86ISelAddressMode AM;
|
|
|
|
// Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
|
|
// segments.
|
|
SDValue Copy = AM.Segment;
|
|
SDValue T = CurDAG->getRegister(0, MVT::i32);
|
|
AM.Segment = T;
|
|
if (MatchAddress(N, AM))
|
|
return false;
|
|
assert (T == AM.Segment);
|
|
AM.Segment = Copy;
|
|
|
|
MVT VT = N.getSimpleValueType();
|
|
unsigned Complexity = 0;
|
|
if (AM.BaseType == X86ISelAddressMode::RegBase)
|
|
if (AM.Base_Reg.getNode())
|
|
Complexity = 1;
|
|
else
|
|
AM.Base_Reg = CurDAG->getRegister(0, VT);
|
|
else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
|
|
Complexity = 4;
|
|
|
|
if (AM.IndexReg.getNode())
|
|
Complexity++;
|
|
else
|
|
AM.IndexReg = CurDAG->getRegister(0, VT);
|
|
|
|
// Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
|
|
// a simple shift.
|
|
if (AM.Scale > 1)
|
|
Complexity++;
|
|
|
|
// FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
|
|
// to a LEA. This is determined with some expermentation but is by no means
|
|
// optimal (especially for code size consideration). LEA is nice because of
|
|
// its three-address nature. Tweak the cost function again when we can run
|
|
// convertToThreeAddress() at register allocation time.
|
|
if (AM.hasSymbolicDisplacement()) {
|
|
// For X86-64, we should always use lea to materialize RIP relative
|
|
// addresses.
|
|
if (Subtarget->is64Bit())
|
|
Complexity = 4;
|
|
else
|
|
Complexity += 2;
|
|
}
|
|
|
|
if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
|
|
Complexity++;
|
|
|
|
// If it isn't worth using an LEA, reject it.
|
|
if (Complexity <= 2)
|
|
return false;
|
|
|
|
getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
|
|
return true;
|
|
}
|
|
|
|
/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
|
|
bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
|
|
SDValue &Scale, SDValue &Index,
|
|
SDValue &Disp, SDValue &Segment) {
|
|
assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
|
|
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
|
|
|
|
X86ISelAddressMode AM;
|
|
AM.GV = GA->getGlobal();
|
|
AM.Disp += GA->getOffset();
|
|
AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
|
|
AM.SymbolFlags = GA->getTargetFlags();
|
|
|
|
if (N.getValueType() == MVT::i32) {
|
|
AM.Scale = 1;
|
|
AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
|
|
} else {
|
|
AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
|
|
}
|
|
|
|
getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
|
|
SDValue &Base, SDValue &Scale,
|
|
SDValue &Index, SDValue &Disp,
|
|
SDValue &Segment) {
|
|
if (!ISD::isNON_EXTLoad(N.getNode()) ||
|
|
!IsProfitableToFold(N, P, P) ||
|
|
!IsLegalToFold(N, P, P, OptLevel))
|
|
return false;
|
|
|
|
return SelectAddr(N.getNode(),
|
|
N.getOperand(1), Base, Scale, Index, Disp, Segment);
|
|
}
|
|
|
|
/// getGlobalBaseReg - Return an SDNode that returns the value of
|
|
/// the global base register. Output instructions required to
|
|
/// initialize the global base register, if necessary.
|
|
///
|
|
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
|
|
unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
|
|
return CurDAG->getRegister(GlobalBaseReg,
|
|
getTargetLowering()->getPointerTy()).getNode();
|
|
}
|
|
|
|
SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue In1 = Node->getOperand(1);
|
|
SDValue In2L = Node->getOperand(2);
|
|
SDValue In2H = Node->getOperand(3);
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
|
|
if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
|
|
return NULL;
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
|
|
const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
|
|
SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
|
|
MVT::i32, MVT::i32, MVT::Other, Ops);
|
|
cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
|
|
return ResNode;
|
|
}
|
|
|
|
/// Atomic opcode table
|
|
///
|
|
enum AtomicOpc {
|
|
ADD,
|
|
SUB,
|
|
INC,
|
|
DEC,
|
|
OR,
|
|
AND,
|
|
XOR,
|
|
AtomicOpcEnd
|
|
};
|
|
|
|
enum AtomicSz {
|
|
ConstantI8,
|
|
I8,
|
|
SextConstantI16,
|
|
ConstantI16,
|
|
I16,
|
|
SextConstantI32,
|
|
ConstantI32,
|
|
I32,
|
|
SextConstantI64,
|
|
ConstantI64,
|
|
I64,
|
|
AtomicSzEnd
|
|
};
|
|
|
|
static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
|
|
{
|
|
X86::LOCK_ADD8mi,
|
|
X86::LOCK_ADD8mr,
|
|
X86::LOCK_ADD16mi8,
|
|
X86::LOCK_ADD16mi,
|
|
X86::LOCK_ADD16mr,
|
|
X86::LOCK_ADD32mi8,
|
|
X86::LOCK_ADD32mi,
|
|
X86::LOCK_ADD32mr,
|
|
X86::LOCK_ADD64mi8,
|
|
X86::LOCK_ADD64mi32,
|
|
X86::LOCK_ADD64mr,
|
|
},
|
|
{
|
|
X86::LOCK_SUB8mi,
|
|
X86::LOCK_SUB8mr,
|
|
X86::LOCK_SUB16mi8,
|
|
X86::LOCK_SUB16mi,
|
|
X86::LOCK_SUB16mr,
|
|
X86::LOCK_SUB32mi8,
|
|
X86::LOCK_SUB32mi,
|
|
X86::LOCK_SUB32mr,
|
|
X86::LOCK_SUB64mi8,
|
|
X86::LOCK_SUB64mi32,
|
|
X86::LOCK_SUB64mr,
|
|
},
|
|
{
|
|
0,
|
|
X86::LOCK_INC8m,
|
|
0,
|
|
0,
|
|
X86::LOCK_INC16m,
|
|
0,
|
|
0,
|
|
X86::LOCK_INC32m,
|
|
0,
|
|
0,
|
|
X86::LOCK_INC64m,
|
|
},
|
|
{
|
|
0,
|
|
X86::LOCK_DEC8m,
|
|
0,
|
|
0,
|
|
X86::LOCK_DEC16m,
|
|
0,
|
|
0,
|
|
X86::LOCK_DEC32m,
|
|
0,
|
|
0,
|
|
X86::LOCK_DEC64m,
|
|
},
|
|
{
|
|
X86::LOCK_OR8mi,
|
|
X86::LOCK_OR8mr,
|
|
X86::LOCK_OR16mi8,
|
|
X86::LOCK_OR16mi,
|
|
X86::LOCK_OR16mr,
|
|
X86::LOCK_OR32mi8,
|
|
X86::LOCK_OR32mi,
|
|
X86::LOCK_OR32mr,
|
|
X86::LOCK_OR64mi8,
|
|
X86::LOCK_OR64mi32,
|
|
X86::LOCK_OR64mr,
|
|
},
|
|
{
|
|
X86::LOCK_AND8mi,
|
|
X86::LOCK_AND8mr,
|
|
X86::LOCK_AND16mi8,
|
|
X86::LOCK_AND16mi,
|
|
X86::LOCK_AND16mr,
|
|
X86::LOCK_AND32mi8,
|
|
X86::LOCK_AND32mi,
|
|
X86::LOCK_AND32mr,
|
|
X86::LOCK_AND64mi8,
|
|
X86::LOCK_AND64mi32,
|
|
X86::LOCK_AND64mr,
|
|
},
|
|
{
|
|
X86::LOCK_XOR8mi,
|
|
X86::LOCK_XOR8mr,
|
|
X86::LOCK_XOR16mi8,
|
|
X86::LOCK_XOR16mi,
|
|
X86::LOCK_XOR16mr,
|
|
X86::LOCK_XOR32mi8,
|
|
X86::LOCK_XOR32mi,
|
|
X86::LOCK_XOR32mr,
|
|
X86::LOCK_XOR64mi8,
|
|
X86::LOCK_XOR64mi32,
|
|
X86::LOCK_XOR64mr,
|
|
}
|
|
};
|
|
|
|
// Return the target constant operand for atomic-load-op and do simple
|
|
// translations, such as from atomic-load-add to lock-sub. The return value is
|
|
// one of the following 3 cases:
|
|
// + target-constant, the operand could be supported as a target constant.
|
|
// + empty, the operand is not needed any more with the new op selected.
|
|
// + non-empty, otherwise.
|
|
static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
|
|
SDLoc dl,
|
|
enum AtomicOpc &Op, MVT NVT,
|
|
SDValue Val) {
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
|
|
int64_t CNVal = CN->getSExtValue();
|
|
// Quit if not 32-bit imm.
|
|
if ((int32_t)CNVal != CNVal)
|
|
return Val;
|
|
// For atomic-load-add, we could do some optimizations.
|
|
if (Op == ADD) {
|
|
// Translate to INC/DEC if ADD by 1 or -1.
|
|
if ((CNVal == 1) || (CNVal == -1)) {
|
|
Op = (CNVal == 1) ? INC : DEC;
|
|
// No more constant operand after being translated into INC/DEC.
|
|
return SDValue();
|
|
}
|
|
// Translate to SUB if ADD by negative value.
|
|
if (CNVal < 0) {
|
|
Op = SUB;
|
|
CNVal = -CNVal;
|
|
}
|
|
}
|
|
return CurDAG->getTargetConstant(CNVal, NVT);
|
|
}
|
|
|
|
// If the value operand is single-used, try to optimize it.
|
|
if (Op == ADD && Val.hasOneUse()) {
|
|
// Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
|
|
if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
|
|
Op = SUB;
|
|
return Val.getOperand(1);
|
|
}
|
|
// A special case for i16, which needs truncating as, in most cases, it's
|
|
// promoted to i32. We will translate
|
|
// (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
|
|
if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
|
|
Val.getOperand(0).getOpcode() == ISD::SUB &&
|
|
X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
|
|
Op = SUB;
|
|
Val = Val.getOperand(0);
|
|
return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
|
|
Val.getOperand(1));
|
|
}
|
|
}
|
|
|
|
return Val;
|
|
}
|
|
|
|
SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
|
|
if (Node->hasAnyUseOfValue(0))
|
|
return 0;
|
|
|
|
SDLoc dl(Node);
|
|
|
|
// Optimize common patterns for __sync_or_and_fetch and similar arith
|
|
// operations where the result is not used. This allows us to use the "lock"
|
|
// version of the arithmetic instruction.
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue Ptr = Node->getOperand(1);
|
|
SDValue Val = Node->getOperand(2);
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
|
|
if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
|
|
return 0;
|
|
|
|
// Which index into the table.
|
|
enum AtomicOpc Op;
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
return 0;
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
Op = OR;
|
|
break;
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
Op = AND;
|
|
break;
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
Op = XOR;
|
|
break;
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
Op = ADD;
|
|
break;
|
|
}
|
|
|
|
Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
|
|
bool isUnOp = !Val.getNode();
|
|
bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
|
|
|
|
unsigned Opc = 0;
|
|
switch (NVT.SimpleTy) {
|
|
default: return 0;
|
|
case MVT::i8:
|
|
if (isCN)
|
|
Opc = AtomicOpcTbl[Op][ConstantI8];
|
|
else
|
|
Opc = AtomicOpcTbl[Op][I8];
|
|
break;
|
|
case MVT::i16:
|
|
if (isCN) {
|
|
if (immSext8(Val.getNode()))
|
|
Opc = AtomicOpcTbl[Op][SextConstantI16];
|
|
else
|
|
Opc = AtomicOpcTbl[Op][ConstantI16];
|
|
} else
|
|
Opc = AtomicOpcTbl[Op][I16];
|
|
break;
|
|
case MVT::i32:
|
|
if (isCN) {
|
|
if (immSext8(Val.getNode()))
|
|
Opc = AtomicOpcTbl[Op][SextConstantI32];
|
|
else
|
|
Opc = AtomicOpcTbl[Op][ConstantI32];
|
|
} else
|
|
Opc = AtomicOpcTbl[Op][I32];
|
|
break;
|
|
case MVT::i64:
|
|
Opc = AtomicOpcTbl[Op][I64];
|
|
if (isCN) {
|
|
if (immSext8(Val.getNode()))
|
|
Opc = AtomicOpcTbl[Op][SextConstantI64];
|
|
else if (i64immSExt32(Val.getNode()))
|
|
Opc = AtomicOpcTbl[Op][ConstantI64];
|
|
}
|
|
break;
|
|
}
|
|
|
|
assert(Opc != 0 && "Invalid arith lock transform!");
|
|
|
|
SDValue Ret;
|
|
SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
|
|
dl, NVT), 0);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
|
|
if (isUnOp) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
|
|
Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
|
|
} else {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
|
|
Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
|
|
}
|
|
cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
|
|
SDValue RetVals[] = { Undef, Ret };
|
|
return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
|
|
}
|
|
|
|
/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
|
|
/// any uses which require the SF or OF bits to be accurate.
|
|
static bool HasNoSignedComparisonUses(SDNode *N) {
|
|
// Examine each user of the node.
|
|
for (SDNode::use_iterator UI = N->use_begin(),
|
|
UE = N->use_end(); UI != UE; ++UI) {
|
|
// Only examine CopyToReg uses.
|
|
if (UI->getOpcode() != ISD::CopyToReg)
|
|
return false;
|
|
// Only examine CopyToReg uses that copy to EFLAGS.
|
|
if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
|
|
X86::EFLAGS)
|
|
return false;
|
|
// Examine each user of the CopyToReg use.
|
|
for (SDNode::use_iterator FlagUI = UI->use_begin(),
|
|
FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
|
|
// Only examine the Flag result.
|
|
if (FlagUI.getUse().getResNo() != 1) continue;
|
|
// Anything unusual: assume conservatively.
|
|
if (!FlagUI->isMachineOpcode()) return false;
|
|
// Examine the opcode of the user.
|
|
switch (FlagUI->getMachineOpcode()) {
|
|
// These comparisons don't treat the most significant bit specially.
|
|
case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
|
|
case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
|
|
case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
|
|
case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
|
|
case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
|
|
case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
|
|
case X86::CMOVA16rr: case X86::CMOVA16rm:
|
|
case X86::CMOVA32rr: case X86::CMOVA32rm:
|
|
case X86::CMOVA64rr: case X86::CMOVA64rm:
|
|
case X86::CMOVAE16rr: case X86::CMOVAE16rm:
|
|
case X86::CMOVAE32rr: case X86::CMOVAE32rm:
|
|
case X86::CMOVAE64rr: case X86::CMOVAE64rm:
|
|
case X86::CMOVB16rr: case X86::CMOVB16rm:
|
|
case X86::CMOVB32rr: case X86::CMOVB32rm:
|
|
case X86::CMOVB64rr: case X86::CMOVB64rm:
|
|
case X86::CMOVBE16rr: case X86::CMOVBE16rm:
|
|
case X86::CMOVBE32rr: case X86::CMOVBE32rm:
|
|
case X86::CMOVBE64rr: case X86::CMOVBE64rm:
|
|
case X86::CMOVE16rr: case X86::CMOVE16rm:
|
|
case X86::CMOVE32rr: case X86::CMOVE32rm:
|
|
case X86::CMOVE64rr: case X86::CMOVE64rm:
|
|
case X86::CMOVNE16rr: case X86::CMOVNE16rm:
|
|
case X86::CMOVNE32rr: case X86::CMOVNE32rm:
|
|
case X86::CMOVNE64rr: case X86::CMOVNE64rm:
|
|
case X86::CMOVNP16rr: case X86::CMOVNP16rm:
|
|
case X86::CMOVNP32rr: case X86::CMOVNP32rm:
|
|
case X86::CMOVNP64rr: case X86::CMOVNP64rm:
|
|
case X86::CMOVP16rr: case X86::CMOVP16rm:
|
|
case X86::CMOVP32rr: case X86::CMOVP32rm:
|
|
case X86::CMOVP64rr: case X86::CMOVP64rm:
|
|
continue;
|
|
// Anything else: assume conservatively.
|
|
default: return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
|
|
/// is suitable for doing the {load; increment or decrement; store} to modify
|
|
/// transformation.
|
|
static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
|
|
SDValue StoredVal, SelectionDAG *CurDAG,
|
|
LoadSDNode* &LoadNode, SDValue &InputChain) {
|
|
|
|
// is the value stored the result of a DEC or INC?
|
|
if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
|
|
|
|
// is the stored value result 0 of the load?
|
|
if (StoredVal.getResNo() != 0) return false;
|
|
|
|
// are there other uses of the loaded value than the inc or dec?
|
|
if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
|
|
|
|
// is the store non-extending and non-indexed?
|
|
if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
|
|
return false;
|
|
|
|
SDValue Load = StoredVal->getOperand(0);
|
|
// Is the stored value a non-extending and non-indexed load?
|
|
if (!ISD::isNormalLoad(Load.getNode())) return false;
|
|
|
|
// Return LoadNode by reference.
|
|
LoadNode = cast<LoadSDNode>(Load);
|
|
// is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
|
|
EVT LdVT = LoadNode->getMemoryVT();
|
|
if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
|
|
LdVT != MVT::i8)
|
|
return false;
|
|
|
|
// Is store the only read of the loaded value?
|
|
if (!Load.hasOneUse())
|
|
return false;
|
|
|
|
// Is the address of the store the same as the load?
|
|
if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
|
|
LoadNode->getOffset() != StoreNode->getOffset())
|
|
return false;
|
|
|
|
// Check if the chain is produced by the load or is a TokenFactor with
|
|
// the load output chain as an operand. Return InputChain by reference.
|
|
SDValue Chain = StoreNode->getChain();
|
|
|
|
bool ChainCheck = false;
|
|
if (Chain == Load.getValue(1)) {
|
|
ChainCheck = true;
|
|
InputChain = LoadNode->getChain();
|
|
} else if (Chain.getOpcode() == ISD::TokenFactor) {
|
|
SmallVector<SDValue, 4> ChainOps;
|
|
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
|
|
SDValue Op = Chain.getOperand(i);
|
|
if (Op == Load.getValue(1)) {
|
|
ChainCheck = true;
|
|
continue;
|
|
}
|
|
|
|
// Make sure using Op as part of the chain would not cause a cycle here.
|
|
// In theory, we could check whether the chain node is a predecessor of
|
|
// the load. But that can be very expensive. Instead visit the uses and
|
|
// make sure they all have smaller node id than the load.
|
|
int LoadId = LoadNode->getNodeId();
|
|
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
|
|
UE = UI->use_end(); UI != UE; ++UI) {
|
|
if (UI.getUse().getResNo() != 0)
|
|
continue;
|
|
if (UI->getNodeId() > LoadId)
|
|
return false;
|
|
}
|
|
|
|
ChainOps.push_back(Op);
|
|
}
|
|
|
|
if (ChainCheck)
|
|
// Make a new TokenFactor with all the other input chains except
|
|
// for the load.
|
|
InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
|
|
MVT::Other, &ChainOps[0], ChainOps.size());
|
|
}
|
|
if (!ChainCheck)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
|
|
/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
|
|
static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
|
|
if (Opc == X86ISD::DEC) {
|
|
if (LdVT == MVT::i64) return X86::DEC64m;
|
|
if (LdVT == MVT::i32) return X86::DEC32m;
|
|
if (LdVT == MVT::i16) return X86::DEC16m;
|
|
if (LdVT == MVT::i8) return X86::DEC8m;
|
|
} else {
|
|
assert(Opc == X86ISD::INC && "unrecognized opcode");
|
|
if (LdVT == MVT::i64) return X86::INC64m;
|
|
if (LdVT == MVT::i32) return X86::INC32m;
|
|
if (LdVT == MVT::i16) return X86::INC16m;
|
|
if (LdVT == MVT::i8) return X86::INC8m;
|
|
}
|
|
llvm_unreachable("unrecognized size for LdVT");
|
|
}
|
|
|
|
/// SelectGather - Customized ISel for GATHER operations.
|
|
///
|
|
SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
|
|
// Operands of Gather: VSrc, Base, VIdx, VMask, Scale
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue VSrc = Node->getOperand(2);
|
|
SDValue Base = Node->getOperand(3);
|
|
SDValue VIdx = Node->getOperand(4);
|
|
SDValue VMask = Node->getOperand(5);
|
|
ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
|
|
if (!Scale)
|
|
return 0;
|
|
|
|
SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
|
|
MVT::Other);
|
|
|
|
// Memory Operands: Base, Scale, Index, Disp, Segment
|
|
SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
|
|
SDValue Segment = CurDAG->getRegister(0, MVT::i32);
|
|
const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
|
|
Disp, Segment, VMask, Chain};
|
|
SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
|
|
// Node has 2 outputs: VDst and MVT::Other.
|
|
// ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
|
|
// We replace VDst of Node with VDst of ResNode, and Other of Node with Other
|
|
// of ResNode.
|
|
ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
|
|
ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
|
|
return ResNode;
|
|
}
|
|
|
|
SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
|
|
MVT NVT = Node->getSimpleValueType(0);
|
|
unsigned Opc, MOpc;
|
|
unsigned Opcode = Node->getOpcode();
|
|
SDLoc dl(Node);
|
|
|
|
DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
|
|
|
|
if (Node->isMachineOpcode()) {
|
|
DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
|
|
Node->setNodeId(-1);
|
|
return NULL; // Already selected.
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: break;
|
|
case Intrinsic::x86_avx2_gather_d_pd:
|
|
case Intrinsic::x86_avx2_gather_d_pd_256:
|
|
case Intrinsic::x86_avx2_gather_q_pd:
|
|
case Intrinsic::x86_avx2_gather_q_pd_256:
|
|
case Intrinsic::x86_avx2_gather_d_ps:
|
|
case Intrinsic::x86_avx2_gather_d_ps_256:
|
|
case Intrinsic::x86_avx2_gather_q_ps:
|
|
case Intrinsic::x86_avx2_gather_q_ps_256:
|
|
case Intrinsic::x86_avx2_gather_d_q:
|
|
case Intrinsic::x86_avx2_gather_d_q_256:
|
|
case Intrinsic::x86_avx2_gather_q_q:
|
|
case Intrinsic::x86_avx2_gather_q_q_256:
|
|
case Intrinsic::x86_avx2_gather_d_d:
|
|
case Intrinsic::x86_avx2_gather_d_d_256:
|
|
case Intrinsic::x86_avx2_gather_q_d:
|
|
case Intrinsic::x86_avx2_gather_q_d_256: {
|
|
if (!Subtarget->hasAVX2())
|
|
break;
|
|
unsigned Opc;
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("Impossible intrinsic");
|
|
case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break;
|
|
case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
|
|
case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break;
|
|
case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
|
|
case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break;
|
|
case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
|
|
case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break;
|
|
case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
|
|
case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break;
|
|
case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break;
|
|
case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break;
|
|
case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break;
|
|
case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break;
|
|
case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break;
|
|
case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break;
|
|
case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break;
|
|
}
|
|
SDNode *RetVal = SelectGather(Node, Opc);
|
|
if (RetVal)
|
|
// We already called ReplaceUses inside SelectGather.
|
|
return NULL;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case X86ISD::GlobalBaseReg:
|
|
return getGlobalBaseReg();
|
|
|
|
|
|
case X86ISD::ATOMOR64_DAG:
|
|
case X86ISD::ATOMXOR64_DAG:
|
|
case X86ISD::ATOMADD64_DAG:
|
|
case X86ISD::ATOMSUB64_DAG:
|
|
case X86ISD::ATOMNAND64_DAG:
|
|
case X86ISD::ATOMAND64_DAG:
|
|
case X86ISD::ATOMMAX64_DAG:
|
|
case X86ISD::ATOMMIN64_DAG:
|
|
case X86ISD::ATOMUMAX64_DAG:
|
|
case X86ISD::ATOMUMIN64_DAG:
|
|
case X86ISD::ATOMSWAP64_DAG: {
|
|
unsigned Opc;
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Impossible opcode");
|
|
case X86ISD::ATOMOR64_DAG: Opc = X86::ATOMOR6432; break;
|
|
case X86ISD::ATOMXOR64_DAG: Opc = X86::ATOMXOR6432; break;
|
|
case X86ISD::ATOMADD64_DAG: Opc = X86::ATOMADD6432; break;
|
|
case X86ISD::ATOMSUB64_DAG: Opc = X86::ATOMSUB6432; break;
|
|
case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
|
|
case X86ISD::ATOMAND64_DAG: Opc = X86::ATOMAND6432; break;
|
|
case X86ISD::ATOMMAX64_DAG: Opc = X86::ATOMMAX6432; break;
|
|
case X86ISD::ATOMMIN64_DAG: Opc = X86::ATOMMIN6432; break;
|
|
case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
|
|
case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
|
|
case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
|
|
}
|
|
SDNode *RetVal = SelectAtomic64(Node, Opc);
|
|
if (RetVal)
|
|
return RetVal;
|
|
break;
|
|
}
|
|
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_ADD: {
|
|
SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
|
|
if (RetVal)
|
|
return RetVal;
|
|
break;
|
|
}
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
// For operations of the form (x << C1) op C2, check if we can use a smaller
|
|
// encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
|
|
break;
|
|
|
|
// i8 is unshrinkable, i16 should be promoted to i32.
|
|
if (NVT != MVT::i32 && NVT != MVT::i64)
|
|
break;
|
|
|
|
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
|
|
ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
if (!Cst || !ShlCst)
|
|
break;
|
|
|
|
int64_t Val = Cst->getSExtValue();
|
|
uint64_t ShlVal = ShlCst->getZExtValue();
|
|
|
|
// Make sure that we don't change the operation by removing bits.
|
|
// This only matters for OR and XOR, AND is unaffected.
|
|
uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
|
|
if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
|
|
break;
|
|
|
|
unsigned ShlOp, Op;
|
|
MVT CstVT = NVT;
|
|
|
|
// Check the minimum bitwidth for the new constant.
|
|
// TODO: AND32ri is the same as AND64ri32 with zext imm.
|
|
// TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
|
|
// TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
|
|
if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
|
|
CstVT = MVT::i8;
|
|
else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
|
|
CstVT = MVT::i32;
|
|
|
|
// Bail if there is no smaller encoding.
|
|
if (NVT == CstVT)
|
|
break;
|
|
|
|
switch (NVT.SimpleTy) {
|
|
default: llvm_unreachable("Unsupported VT!");
|
|
case MVT::i32:
|
|
assert(CstVT == MVT::i8);
|
|
ShlOp = X86::SHL32ri;
|
|
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Impossible opcode");
|
|
case ISD::AND: Op = X86::AND32ri8; break;
|
|
case ISD::OR: Op = X86::OR32ri8; break;
|
|
case ISD::XOR: Op = X86::XOR32ri8; break;
|
|
}
|
|
break;
|
|
case MVT::i64:
|
|
assert(CstVT == MVT::i8 || CstVT == MVT::i32);
|
|
ShlOp = X86::SHL64ri;
|
|
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Impossible opcode");
|
|
case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
|
|
case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
|
|
case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Emit the smaller op and the shift.
|
|
SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
|
|
SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
|
|
return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
|
|
getI8Imm(ShlVal));
|
|
}
|
|
case X86ISD::UMUL: {
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
unsigned LoReg;
|
|
switch (NVT.SimpleTy) {
|
|
default: llvm_unreachable("Unsupported VT!");
|
|
case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
|
|
case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
|
|
case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
|
|
case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
|
|
}
|
|
|
|
SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
|
|
N0, SDValue()).getValue(1);
|
|
|
|
SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
|
|
SDValue Ops[] = {N1, InFlag};
|
|
SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
|
|
|
|
ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
|
|
ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
|
|
ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
|
|
return NULL;
|
|
}
|
|
|
|
case ISD::SMUL_LOHI:
|
|
case ISD::UMUL_LOHI: {
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
bool isSigned = Opcode == ISD::SMUL_LOHI;
|
|
bool hasBMI2 = Subtarget->hasBMI2();
|
|
if (!isSigned) {
|
|
switch (NVT.SimpleTy) {
|
|
default: llvm_unreachable("Unsupported VT!");
|
|
case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
|
|
case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
|
|
case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
|
|
MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
|
|
case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
|
|
MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
|
|
}
|
|
} else {
|
|
switch (NVT.SimpleTy) {
|
|
default: llvm_unreachable("Unsupported VT!");
|
|
case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
|
|
case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
|
|
case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
|
|
case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
|
|
}
|
|
}
|
|
|
|
unsigned SrcReg, LoReg, HiReg;
|
|
switch (Opc) {
|
|
default: llvm_unreachable("Unknown MUL opcode!");
|
|
case X86::IMUL8r:
|
|
case X86::MUL8r:
|
|
SrcReg = LoReg = X86::AL; HiReg = X86::AH;
|
|
break;
|
|
case X86::IMUL16r:
|
|
case X86::MUL16r:
|
|
SrcReg = LoReg = X86::AX; HiReg = X86::DX;
|
|
break;
|
|
case X86::IMUL32r:
|
|
case X86::MUL32r:
|
|
SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
|
|
break;
|
|
case X86::IMUL64r:
|
|
case X86::MUL64r:
|
|
SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
|
|
break;
|
|
case X86::MULX32rr:
|
|
SrcReg = X86::EDX; LoReg = HiReg = 0;
|
|
break;
|
|
case X86::MULX64rr:
|
|
SrcReg = X86::RDX; LoReg = HiReg = 0;
|
|
break;
|
|
}
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
|
|
bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
|
|
// Multiply is commmutative.
|
|
if (!foldedLoad) {
|
|
foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
|
|
if (foldedLoad)
|
|
std::swap(N0, N1);
|
|
}
|
|
|
|
SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
|
|
N0, SDValue()).getValue(1);
|
|
SDValue ResHi, ResLo;
|
|
|
|
if (foldedLoad) {
|
|
SDValue Chain;
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
|
|
InFlag };
|
|
if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
|
|
SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
|
|
SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
|
|
ResHi = SDValue(CNode, 0);
|
|
ResLo = SDValue(CNode, 1);
|
|
Chain = SDValue(CNode, 2);
|
|
InFlag = SDValue(CNode, 3);
|
|
} else {
|
|
SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
|
|
SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
|
|
Chain = SDValue(CNode, 0);
|
|
InFlag = SDValue(CNode, 1);
|
|
}
|
|
|
|
// Update the chain.
|
|
ReplaceUses(N1.getValue(1), Chain);
|
|
} else {
|
|
SDValue Ops[] = { N1, InFlag };
|
|
if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
|
|
SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
|
|
SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
|
|
ResHi = SDValue(CNode, 0);
|
|
ResLo = SDValue(CNode, 1);
|
|
InFlag = SDValue(CNode, 2);
|
|
} else {
|
|
SDVTList VTs = CurDAG->getVTList(MVT::Glue);
|
|
SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
|
|
InFlag = SDValue(CNode, 0);
|
|
}
|
|
}
|
|
|
|
// Prevent use of AH in a REX instruction by referencing AX instead.
|
|
if (HiReg == X86::AH && Subtarget->is64Bit() &&
|
|
!SDValue(Node, 1).use_empty()) {
|
|
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
X86::AX, MVT::i16, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
// Get the low part if needed. Don't use getCopyFromReg for aliasing
|
|
// registers.
|
|
if (!SDValue(Node, 0).use_empty())
|
|
ReplaceUses(SDValue(Node, 1),
|
|
CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
|
|
|
|
// Shift AX down 8 bits.
|
|
Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
|
|
Result,
|
|
CurDAG->getTargetConstant(8, MVT::i8)), 0);
|
|
// Then truncate it down to i8.
|
|
ReplaceUses(SDValue(Node, 1),
|
|
CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
|
|
}
|
|
// Copy the low half of the result, if it is needed.
|
|
if (!SDValue(Node, 0).use_empty()) {
|
|
if (ResLo.getNode() == 0) {
|
|
assert(LoReg && "Register for low half is not defined!");
|
|
ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
|
|
InFlag);
|
|
InFlag = ResLo.getValue(2);
|
|
}
|
|
ReplaceUses(SDValue(Node, 0), ResLo);
|
|
DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
|
|
}
|
|
// Copy the high half of the result, if it is needed.
|
|
if (!SDValue(Node, 1).use_empty()) {
|
|
if (ResHi.getNode() == 0) {
|
|
assert(HiReg && "Register for high half is not defined!");
|
|
ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
|
|
InFlag);
|
|
InFlag = ResHi.getValue(2);
|
|
}
|
|
ReplaceUses(SDValue(Node, 1), ResHi);
|
|
DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM: {
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
bool isSigned = Opcode == ISD::SDIVREM;
|
|
if (!isSigned) {
|
|
switch (NVT.SimpleTy) {
|
|
default: llvm_unreachable("Unsupported VT!");
|
|
case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
|
|
case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
|
|
case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
|
|
case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
|
|
}
|
|
} else {
|
|
switch (NVT.SimpleTy) {
|
|
default: llvm_unreachable("Unsupported VT!");
|
|
case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
|
|
case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
|
|
case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
|
|
case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
|
|
}
|
|
}
|
|
|
|
unsigned LoReg, HiReg, ClrReg;
|
|
unsigned SExtOpcode;
|
|
switch (NVT.SimpleTy) {
|
|
default: llvm_unreachable("Unsupported VT!");
|
|
case MVT::i8:
|
|
LoReg = X86::AL; ClrReg = HiReg = X86::AH;
|
|
SExtOpcode = X86::CBW;
|
|
break;
|
|
case MVT::i16:
|
|
LoReg = X86::AX; HiReg = X86::DX;
|
|
ClrReg = X86::DX;
|
|
SExtOpcode = X86::CWD;
|
|
break;
|
|
case MVT::i32:
|
|
LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
|
|
SExtOpcode = X86::CDQ;
|
|
break;
|
|
case MVT::i64:
|
|
LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
|
|
SExtOpcode = X86::CQO;
|
|
break;
|
|
}
|
|
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
|
|
bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
|
|
bool signBitIsZero = CurDAG->SignBitIsZero(N0);
|
|
|
|
SDValue InFlag;
|
|
if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
|
|
// Special case for div8, just use a move with zero extension to AX to
|
|
// clear the upper 8 bits (AH).
|
|
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
|
|
if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
|
|
Move =
|
|
SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
|
|
MVT::Other, Ops), 0);
|
|
Chain = Move.getValue(1);
|
|
ReplaceUses(N0.getValue(1), Chain);
|
|
} else {
|
|
Move =
|
|
SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
|
|
Chain = CurDAG->getEntryNode();
|
|
}
|
|
Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
InFlag =
|
|
CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
|
|
LoReg, N0, SDValue()).getValue(1);
|
|
if (isSigned && !signBitIsZero) {
|
|
// Sign extend the low part into the high part.
|
|
InFlag =
|
|
SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
|
|
} else {
|
|
// Zero out the high part, effectively zero extending the input.
|
|
SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
|
|
switch (NVT.SimpleTy) {
|
|
case MVT::i16:
|
|
ClrNode =
|
|
SDValue(CurDAG->getMachineNode(
|
|
TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
|
|
CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
|
|
0);
|
|
break;
|
|
case MVT::i32:
|
|
break;
|
|
case MVT::i64:
|
|
ClrNode =
|
|
SDValue(CurDAG->getMachineNode(
|
|
TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
|
|
CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
|
|
CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
|
|
0);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected division source");
|
|
}
|
|
|
|
InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
|
|
ClrNode, InFlag).getValue(1);
|
|
}
|
|
}
|
|
|
|
if (foldedLoad) {
|
|
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
|
|
InFlag };
|
|
SDNode *CNode =
|
|
CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
|
|
InFlag = SDValue(CNode, 1);
|
|
// Update the chain.
|
|
ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
|
|
} else {
|
|
InFlag =
|
|
SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
|
|
}
|
|
|
|
// Prevent use of AH in a REX instruction by referencing AX instead.
|
|
// Shift it down 8 bits.
|
|
//
|
|
// The current assumption of the register allocator is that isel
|
|
// won't generate explicit references to the GPR8_NOREX registers. If
|
|
// the allocator and/or the backend get enhanced to be more robust in
|
|
// that regard, this can be, and should be, removed.
|
|
if (HiReg == X86::AH && Subtarget->is64Bit() &&
|
|
!SDValue(Node, 1).use_empty()) {
|
|
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
X86::AX, MVT::i16, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
|
|
// If we also need AL (the quotient), get it by extracting a subreg from
|
|
// Result. The fast register allocator does not like multiple CopyFromReg
|
|
// nodes using aliasing registers.
|
|
if (!SDValue(Node, 0).use_empty())
|
|
ReplaceUses(SDValue(Node, 0),
|
|
CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
|
|
|
|
// Shift AX right by 8 bits instead of using AH.
|
|
Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
|
|
Result,
|
|
CurDAG->getTargetConstant(8, MVT::i8)),
|
|
0);
|
|
ReplaceUses(SDValue(Node, 1),
|
|
CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
|
|
}
|
|
// Copy the division (low) result, if it is needed.
|
|
if (!SDValue(Node, 0).use_empty()) {
|
|
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
LoReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
ReplaceUses(SDValue(Node, 0), Result);
|
|
DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
|
|
}
|
|
// Copy the remainder (high) result, if it is needed.
|
|
if (!SDValue(Node, 1).use_empty()) {
|
|
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
|
|
HiReg, NVT, InFlag);
|
|
InFlag = Result.getValue(2);
|
|
ReplaceUses(SDValue(Node, 1), Result);
|
|
DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
case X86ISD::CMP:
|
|
case X86ISD::SUB: {
|
|
// Sometimes a SUB is used to perform comparison.
|
|
if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
|
|
// This node is not a CMP.
|
|
break;
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
|
|
// Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
|
|
// use a smaller encoding.
|
|
if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
|
|
HasNoSignedComparisonUses(Node))
|
|
// Look past the truncate if CMP is the only use of it.
|
|
N0 = N0.getOperand(0);
|
|
if ((N0.getNode()->getOpcode() == ISD::AND ||
|
|
(N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
|
|
N0.getNode()->hasOneUse() &&
|
|
N0.getValueType() != MVT::i8 &&
|
|
X86::isZeroNode(N1)) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
|
|
if (!C) break;
|
|
|
|
// For example, convert "testl %eax, $8" to "testb %al, $8"
|
|
if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
|
|
(!(C->getZExtValue() & 0x80) ||
|
|
HasNoSignedComparisonUses(Node))) {
|
|
SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
|
|
SDValue Reg = N0.getNode()->getOperand(0);
|
|
|
|
// On x86-32, only the ABCD registers have 8-bit subregisters.
|
|
if (!Subtarget->is64Bit()) {
|
|
const TargetRegisterClass *TRC;
|
|
switch (N0.getSimpleValueType().SimpleTy) {
|
|
case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
|
|
case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
|
|
default: llvm_unreachable("Unsupported TEST operand type!");
|
|
}
|
|
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
|
|
Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
|
|
Reg.getValueType(), Reg, RC), 0);
|
|
}
|
|
|
|
// Extract the l-register.
|
|
SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
|
|
MVT::i8, Reg);
|
|
|
|
// Emit a testb.
|
|
SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
|
|
Subreg, Imm);
|
|
// Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
|
|
// one, do not call ReplaceAllUsesWith.
|
|
ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
|
|
SDValue(NewNode, 0));
|
|
return NULL;
|
|
}
|
|
|
|
// For example, "testl %eax, $2048" to "testb %ah, $8".
|
|
if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
|
|
(!(C->getZExtValue() & 0x8000) ||
|
|
HasNoSignedComparisonUses(Node))) {
|
|
// Shift the immediate right by 8 bits.
|
|
SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
|
|
MVT::i8);
|
|
SDValue Reg = N0.getNode()->getOperand(0);
|
|
|
|
// Put the value in an ABCD register.
|
|
const TargetRegisterClass *TRC;
|
|
switch (N0.getSimpleValueType().SimpleTy) {
|
|
case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
|
|
case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
|
|
case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
|
|
default: llvm_unreachable("Unsupported TEST operand type!");
|
|
}
|
|
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
|
|
Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
|
|
Reg.getValueType(), Reg, RC), 0);
|
|
|
|
// Extract the h-register.
|
|
SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
|
|
MVT::i8, Reg);
|
|
|
|
// Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only
|
|
// target GR8_NOREX registers, so make sure the register class is
|
|
// forced.
|
|
SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
|
|
MVT::i32, Subreg, ShiftedImm);
|
|
// Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
|
|
// one, do not call ReplaceAllUsesWith.
|
|
ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
|
|
SDValue(NewNode, 0));
|
|
return NULL;
|
|
}
|
|
|
|
// For example, "testl %eax, $32776" to "testw %ax, $32776".
|
|
if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
|
|
N0.getValueType() != MVT::i16 &&
|
|
(!(C->getZExtValue() & 0x8000) ||
|
|
HasNoSignedComparisonUses(Node))) {
|
|
SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
|
|
SDValue Reg = N0.getNode()->getOperand(0);
|
|
|
|
// Extract the 16-bit subregister.
|
|
SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
|
|
MVT::i16, Reg);
|
|
|
|
// Emit a testw.
|
|
SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
|
|
Subreg, Imm);
|
|
// Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
|
|
// one, do not call ReplaceAllUsesWith.
|
|
ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
|
|
SDValue(NewNode, 0));
|
|
return NULL;
|
|
}
|
|
|
|
// For example, "testq %rax, $268468232" to "testl %eax, $268468232".
|
|
if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
|
|
N0.getValueType() == MVT::i64 &&
|
|
(!(C->getZExtValue() & 0x80000000) ||
|
|
HasNoSignedComparisonUses(Node))) {
|
|
SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
|
|
SDValue Reg = N0.getNode()->getOperand(0);
|
|
|
|
// Extract the 32-bit subregister.
|
|
SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
|
|
MVT::i32, Reg);
|
|
|
|
// Emit a testl.
|
|
SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
|
|
Subreg, Imm);
|
|
// Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
|
|
// one, do not call ReplaceAllUsesWith.
|
|
ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
|
|
SDValue(NewNode, 0));
|
|
return NULL;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::STORE: {
|
|
// Change a chain of {load; incr or dec; store} of the same value into
|
|
// a simple increment or decrement through memory of that value, if the
|
|
// uses of the modified value and its address are suitable.
|
|
// The DEC64m tablegen pattern is currently not able to match the case where
|
|
// the EFLAGS on the original DEC are used. (This also applies to
|
|
// {INC,DEC}X{64,32,16,8}.)
|
|
// We'll need to improve tablegen to allow flags to be transferred from a
|
|
// node in the pattern to the result node. probably with a new keyword
|
|
// for example, we have this
|
|
// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
|
|
// [(store (add (loadi64 addr:$dst), -1), addr:$dst),
|
|
// (implicit EFLAGS)]>;
|
|
// but maybe need something like this
|
|
// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
|
|
// [(store (add (loadi64 addr:$dst), -1), addr:$dst),
|
|
// (transferrable EFLAGS)]>;
|
|
|
|
StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
|
|
SDValue StoredVal = StoreNode->getOperand(1);
|
|
unsigned Opc = StoredVal->getOpcode();
|
|
|
|
LoadSDNode *LoadNode = 0;
|
|
SDValue InputChain;
|
|
if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
|
|
LoadNode, InputChain))
|
|
break;
|
|
|
|
SDValue Base, Scale, Index, Disp, Segment;
|
|
if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
|
|
Base, Scale, Index, Disp, Segment))
|
|
break;
|
|
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
|
|
MemOp[0] = StoreNode->getMemOperand();
|
|
MemOp[1] = LoadNode->getMemOperand();
|
|
const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
|
|
EVT LdVT = LoadNode->getMemoryVT();
|
|
unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
|
|
MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
|
|
SDLoc(Node),
|
|
MVT::i32, MVT::Other, Ops);
|
|
Result->setMemRefs(MemOp, MemOp + 2);
|
|
|
|
ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
|
|
ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
|
|
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
SDNode *ResNode = SelectCode(Node);
|
|
|
|
DEBUG(dbgs() << "=> ";
|
|
if (ResNode == NULL || ResNode == Node)
|
|
Node->dump(CurDAG);
|
|
else
|
|
ResNode->dump(CurDAG);
|
|
dbgs() << '\n');
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
bool X86DAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
SDValue Op0, Op1, Op2, Op3, Op4;
|
|
switch (ConstraintCode) {
|
|
case 'o': // offsetable ??
|
|
case 'v': // not offsetable ??
|
|
default: return true;
|
|
case 'm': // memory
|
|
if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
OutOps.push_back(Op0);
|
|
OutOps.push_back(Op1);
|
|
OutOps.push_back(Op2);
|
|
OutOps.push_back(Op3);
|
|
OutOps.push_back(Op4);
|
|
return false;
|
|
}
|
|
|
|
/// createX86ISelDag - This pass converts a legalized DAG into a
|
|
/// X86-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new X86DAGToDAGISel(TM, OptLevel);
|
|
}
|