llvm-6502/lib/Transforms/Scalar/MemCpyOptimizer.cpp
Ahmed Bougacha 6eb095d7ae [MemCpyOpt] Look at any dependency -not just source- for memset+memcpy.
This fixes another miscompile introduced by r235232: when there was a
dependency on the memcpy destination other than the memset, we would
ignore it, because we only looked at the source dependency.

It was a mistake to use SrcDepInfo.  Instead, just use DepInfo.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237066 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-11 23:09:46 +00:00

1158 lines
43 KiB
C++

//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs various transformations related to eliminating memcpy
// calls, or transforming sets of stores into memset's.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include <list>
using namespace llvm;
#define DEBUG_TYPE "memcpyopt"
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
bool &VariableIdxFound,
const DataLayout &DL) {
// Skip over the first indices.
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned i = 1; i != Idx; ++i, ++GTI)
/*skip along*/;
// Compute the offset implied by the rest of the indices.
int64_t Offset = 0;
for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!OpC)
return VariableIdxFound = true;
if (OpC->isZero()) continue; // No offset.
// Handle struct indices, which add their field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
continue;
}
// Otherwise, we have a sequential type like an array or vector. Multiply
// the index by the ElementSize.
uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*OpC->getSExtValue();
}
return Offset;
}
/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
/// constant offset, and return that constant offset. For example, Ptr1 might
/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
const DataLayout &DL) {
Ptr1 = Ptr1->stripPointerCasts();
Ptr2 = Ptr2->stripPointerCasts();
// Handle the trivial case first.
if (Ptr1 == Ptr2) {
Offset = 0;
return true;
}
GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
bool VariableIdxFound = false;
// If one pointer is a GEP and the other isn't, then see if the GEP is a
// constant offset from the base, as in "P" and "gep P, 1".
if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
return !VariableIdxFound;
}
if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
return !VariableIdxFound;
}
// Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
// base. After that base, they may have some number of common (and
// potentially variable) indices. After that they handle some constant
// offset, which determines their offset from each other. At this point, we
// handle no other case.
if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
return false;
// Skip any common indices and track the GEP types.
unsigned Idx = 1;
for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
break;
int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
if (VariableIdxFound) return false;
Offset = Offset2-Offset1;
return true;
}
/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
/// This allows us to analyze stores like:
/// store 0 -> P+1
/// store 0 -> P+0
/// store 0 -> P+3
/// store 0 -> P+2
/// which sometimes happens with stores to arrays of structs etc. When we see
/// the first store, we make a range [1, 2). The second store extends the range
/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
/// two ranges into [0, 3) which is memset'able.
namespace {
struct MemsetRange {
// Start/End - A semi range that describes the span that this range covers.
// The range is closed at the start and open at the end: [Start, End).
int64_t Start, End;
/// StartPtr - The getelementptr instruction that points to the start of the
/// range.
Value *StartPtr;
/// Alignment - The known alignment of the first store.
unsigned Alignment;
/// TheStores - The actual stores that make up this range.
SmallVector<Instruction*, 16> TheStores;
bool isProfitableToUseMemset(const DataLayout &DL) const;
};
} // end anon namespace
bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
// If we found more than 4 stores to merge or 16 bytes, use memset.
if (TheStores.size() >= 4 || End-Start >= 16) return true;
// If there is nothing to merge, don't do anything.
if (TheStores.size() < 2) return false;
// If any of the stores are a memset, then it is always good to extend the
// memset.
for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
if (!isa<StoreInst>(TheStores[i]))
return true;
// Assume that the code generator is capable of merging pairs of stores
// together if it wants to.
if (TheStores.size() == 2) return false;
// If we have fewer than 8 stores, it can still be worthwhile to do this.
// For example, merging 4 i8 stores into an i32 store is useful almost always.
// However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
// memset will be split into 2 32-bit stores anyway) and doing so can
// pessimize the llvm optimizer.
//
// Since we don't have perfect knowledge here, make some assumptions: assume
// the maximum GPR width is the same size as the largest legal integer
// size. If so, check to see whether we will end up actually reducing the
// number of stores used.
unsigned Bytes = unsigned(End-Start);
unsigned MaxIntSize = DL.getLargestLegalIntTypeSize();
if (MaxIntSize == 0)
MaxIntSize = 1;
unsigned NumPointerStores = Bytes / MaxIntSize;
// Assume the remaining bytes if any are done a byte at a time.
unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize;
// If we will reduce the # stores (according to this heuristic), do the
// transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
// etc.
return TheStores.size() > NumPointerStores+NumByteStores;
}
namespace {
class MemsetRanges {
/// Ranges - A sorted list of the memset ranges. We use std::list here
/// because each element is relatively large and expensive to copy.
std::list<MemsetRange> Ranges;
typedef std::list<MemsetRange>::iterator range_iterator;
const DataLayout &DL;
public:
MemsetRanges(const DataLayout &DL) : DL(DL) {}
typedef std::list<MemsetRange>::const_iterator const_iterator;
const_iterator begin() const { return Ranges.begin(); }
const_iterator end() const { return Ranges.end(); }
bool empty() const { return Ranges.empty(); }
void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
addStore(OffsetFromFirst, SI);
else
addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
}
void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
addRange(OffsetFromFirst, StoreSize,
SI->getPointerOperand(), SI->getAlignment(), SI);
}
void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
}
void addRange(int64_t Start, int64_t Size, Value *Ptr,
unsigned Alignment, Instruction *Inst);
};
} // end anon namespace
/// addRange - Add a new store to the MemsetRanges data structure. This adds a
/// new range for the specified store at the specified offset, merging into
/// existing ranges as appropriate.
///
/// Do a linear search of the ranges to see if this can be joined and/or to
/// find the insertion point in the list. We keep the ranges sorted for
/// simplicity here. This is a linear search of a linked list, which is ugly,
/// however the number of ranges is limited, so this won't get crazy slow.
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
unsigned Alignment, Instruction *Inst) {
int64_t End = Start+Size;
range_iterator I = Ranges.begin(), E = Ranges.end();
while (I != E && Start > I->End)
++I;
// We now know that I == E, in which case we didn't find anything to merge
// with, or that Start <= I->End. If End < I->Start or I == E, then we need
// to insert a new range. Handle this now.
if (I == E || End < I->Start) {
MemsetRange &R = *Ranges.insert(I, MemsetRange());
R.Start = Start;
R.End = End;
R.StartPtr = Ptr;
R.Alignment = Alignment;
R.TheStores.push_back(Inst);
return;
}
// This store overlaps with I, add it.
I->TheStores.push_back(Inst);
// At this point, we may have an interval that completely contains our store.
// If so, just add it to the interval and return.
if (I->Start <= Start && I->End >= End)
return;
// Now we know that Start <= I->End and End >= I->Start so the range overlaps
// but is not entirely contained within the range.
// See if the range extends the start of the range. In this case, it couldn't
// possibly cause it to join the prior range, because otherwise we would have
// stopped on *it*.
if (Start < I->Start) {
I->Start = Start;
I->StartPtr = Ptr;
I->Alignment = Alignment;
}
// Now we know that Start <= I->End and Start >= I->Start (so the startpoint
// is in or right at the end of I), and that End >= I->Start. Extend I out to
// End.
if (End > I->End) {
I->End = End;
range_iterator NextI = I;
while (++NextI != E && End >= NextI->Start) {
// Merge the range in.
I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
if (NextI->End > I->End)
I->End = NextI->End;
Ranges.erase(NextI);
NextI = I;
}
}
}
//===----------------------------------------------------------------------===//
// MemCpyOpt Pass
//===----------------------------------------------------------------------===//
namespace {
class MemCpyOpt : public FunctionPass {
MemoryDependenceAnalysis *MD;
TargetLibraryInfo *TLI;
public:
static char ID; // Pass identification, replacement for typeid
MemCpyOpt() : FunctionPass(ID) {
initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
MD = nullptr;
TLI = nullptr;
}
bool runOnFunction(Function &F) override;
private:
// This transformation requires dominator postdominator info
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<MemoryDependenceAnalysis>();
}
// Helper fuctions
bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
bool processMemCpy(MemCpyInst *M);
bool processMemMove(MemMoveInst *M);
bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
uint64_t MSize);
bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
bool processByValArgument(CallSite CS, unsigned ArgNo);
Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
Value *ByteVal);
bool iterateOnFunction(Function &F);
};
char MemCpyOpt::ID = 0;
}
// createMemCpyOptPass - The public interface to this file...
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
false, false)
/// tryMergingIntoMemset - When scanning forward over instructions, we look for
/// some other patterns to fold away. In particular, this looks for stores to
/// neighboring locations of memory. If it sees enough consecutive ones, it
/// attempts to merge them together into a memcpy/memset.
Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
Value *StartPtr, Value *ByteVal) {
const DataLayout &DL = StartInst->getModule()->getDataLayout();
// Okay, so we now have a single store that can be splatable. Scan to find
// all subsequent stores of the same value to offset from the same pointer.
// Join these together into ranges, so we can decide whether contiguous blocks
// are stored.
MemsetRanges Ranges(DL);
BasicBlock::iterator BI = StartInst;
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
// If the instruction is readnone, ignore it, otherwise bail out. We
// don't even allow readonly here because we don't want something like:
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
break;
continue;
}
if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
// If this is a store, see if we can merge it in.
if (!NextStore->isSimple()) break;
// Check to see if this stored value is of the same byte-splattable value.
if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
break;
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
DL))
break;
Ranges.addStore(Offset, NextStore);
} else {
MemSetInst *MSI = cast<MemSetInst>(BI);
if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
!isa<ConstantInt>(MSI->getLength()))
break;
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
break;
Ranges.addMemSet(Offset, MSI);
}
}
// If we have no ranges, then we just had a single store with nothing that
// could be merged in. This is a very common case of course.
if (Ranges.empty())
return nullptr;
// If we had at least one store that could be merged in, add the starting
// store as well. We try to avoid this unless there is at least something
// interesting as a small compile-time optimization.
Ranges.addInst(0, StartInst);
// If we create any memsets, we put it right before the first instruction that
// isn't part of the memset block. This ensure that the memset is dominated
// by any addressing instruction needed by the start of the block.
IRBuilder<> Builder(BI);
// Now that we have full information about ranges, loop over the ranges and
// emit memset's for anything big enough to be worthwhile.
Instruction *AMemSet = nullptr;
for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
I != E; ++I) {
const MemsetRange &Range = *I;
if (Range.TheStores.size() == 1) continue;
// If it is profitable to lower this range to memset, do so now.
if (!Range.isProfitableToUseMemset(DL))
continue;
// Otherwise, we do want to transform this! Create a new memset.
// Get the starting pointer of the block.
StartPtr = Range.StartPtr;
// Determine alignment
unsigned Alignment = Range.Alignment;
if (Alignment == 0) {
Type *EltType =
cast<PointerType>(StartPtr->getType())->getElementType();
Alignment = DL.getABITypeAlignment(EltType);
}
AMemSet =
Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
DEBUG(dbgs() << "Replace stores:\n";
for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
dbgs() << *Range.TheStores[i] << '\n';
dbgs() << "With: " << *AMemSet << '\n');
if (!Range.TheStores.empty())
AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
// Zap all the stores.
for (SmallVectorImpl<Instruction *>::const_iterator
SI = Range.TheStores.begin(),
SE = Range.TheStores.end(); SI != SE; ++SI) {
MD->removeInstruction(*SI);
(*SI)->eraseFromParent();
}
++NumMemSetInfer;
}
return AMemSet;
}
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (!SI->isSimple()) return false;
const DataLayout &DL = SI->getModule()->getDataLayout();
// Detect cases where we're performing call slot forwarding, but
// happen to be using a load-store pair to implement it, rather than
// a memcpy.
if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
if (LI->isSimple() && LI->hasOneUse() &&
LI->getParent() == SI->getParent()) {
MemDepResult ldep = MD->getDependency(LI);
CallInst *C = nullptr;
if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
C = dyn_cast<CallInst>(ldep.getInst());
if (C) {
// Check that nothing touches the dest of the "copy" between
// the call and the store.
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
E = C; I != E; --I) {
if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
C = nullptr;
break;
}
}
}
if (C) {
unsigned storeAlign = SI->getAlignment();
if (!storeAlign)
storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
unsigned loadAlign = LI->getAlignment();
if (!loadAlign)
loadAlign = DL.getABITypeAlignment(LI->getType());
bool changed = performCallSlotOptzn(
LI, SI->getPointerOperand()->stripPointerCasts(),
LI->getPointerOperand()->stripPointerCasts(),
DL.getTypeStoreSize(SI->getOperand(0)->getType()),
std::min(storeAlign, loadAlign), C);
if (changed) {
MD->removeInstruction(SI);
SI->eraseFromParent();
MD->removeInstruction(LI);
LI->eraseFromParent();
++NumMemCpyInstr;
return true;
}
}
}
}
// There are two cases that are interesting for this code to handle: memcpy
// and memset. Right now we only handle memset.
// Ensure that the value being stored is something that can be memset'able a
// byte at a time like "0" or "-1" or any width, as well as things like
// 0xA0A0A0A0 and 0.0.
if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
ByteVal)) {
BBI = I; // Don't invalidate iterator.
return true;
}
return false;
}
bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
// See if there is another memset or store neighboring this memset which
// allows us to widen out the memset to do a single larger store.
if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
MSI->getValue())) {
BBI = I; // Don't invalidate iterator.
return true;
}
return false;
}
/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
/// and checks for the possibility of a call slot optimization by having
/// the call write its result directly into the destination of the memcpy.
bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
Value *cpyDest, Value *cpySrc,
uint64_t cpyLen, unsigned cpyAlign,
CallInst *C) {
// The general transformation to keep in mind is
//
// call @func(..., src, ...)
// memcpy(dest, src, ...)
//
// ->
//
// memcpy(dest, src, ...)
// call @func(..., dest, ...)
//
// Since moving the memcpy is technically awkward, we additionally check that
// src only holds uninitialized values at the moment of the call, meaning that
// the memcpy can be discarded rather than moved.
// Deliberately get the source and destination with bitcasts stripped away,
// because we'll need to do type comparisons based on the underlying type.
CallSite CS(C);
// Require that src be an alloca. This simplifies the reasoning considerably.
AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
if (!srcAlloca)
return false;
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
if (!srcArraySize)
return false;
const DataLayout &DL = cpy->getModule()->getDataLayout();
uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
srcArraySize->getZExtValue();
if (cpyLen < srcSize)
return false;
// Check that accessing the first srcSize bytes of dest will not cause a
// trap. Otherwise the transform is invalid since it might cause a trap
// to occur earlier than it otherwise would.
if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
// The destination is an alloca. Check it is larger than srcSize.
ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
if (!destArraySize)
return false;
uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
destArraySize->getZExtValue();
if (destSize < srcSize)
return false;
} else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
if (A->getDereferenceableBytes() < srcSize) {
// If the destination is an sret parameter then only accesses that are
// outside of the returned struct type can trap.
if (!A->hasStructRetAttr())
return false;
Type *StructTy = cast<PointerType>(A->getType())->getElementType();
if (!StructTy->isSized()) {
// The call may never return and hence the copy-instruction may never
// be executed, and therefore it's not safe to say "the destination
// has at least <cpyLen> bytes, as implied by the copy-instruction",
return false;
}
uint64_t destSize = DL.getTypeAllocSize(StructTy);
if (destSize < srcSize)
return false;
}
} else {
return false;
}
// Check that dest points to memory that is at least as aligned as src.
unsigned srcAlign = srcAlloca->getAlignment();
if (!srcAlign)
srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
// If dest is not aligned enough and we can't increase its alignment then
// bail out.
if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
return false;
// Check that src is not accessed except via the call and the memcpy. This
// guarantees that it holds only undefined values when passed in (so the final
// memcpy can be dropped), that it is not read or written between the call and
// the memcpy, and that writing beyond the end of it is undefined.
SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
srcAlloca->user_end());
while (!srcUseList.empty()) {
User *U = srcUseList.pop_back_val();
if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
for (User *UU : U->users())
srcUseList.push_back(UU);
continue;
}
if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
if (!G->hasAllZeroIndices())
return false;
for (User *UU : U->users())
srcUseList.push_back(UU);
continue;
}
if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
IT->getIntrinsicID() == Intrinsic::lifetime_end)
continue;
if (U != C && U != cpy)
return false;
}
// Check that src isn't captured by the called function since the
// transformation can cause aliasing issues in that case.
for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
return false;
// Since we're changing the parameter to the callsite, we need to make sure
// that what would be the new parameter dominates the callsite.
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
if (!DT.dominates(cpyDestInst, C))
return false;
// In addition to knowing that the call does not access src in some
// unexpected manner, for example via a global, which we deduce from
// the use analysis, we also need to know that it does not sneakily
// access dest. We rely on AA to figure this out for us.
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
// If necessary, perform additional analysis.
if (MR != AliasAnalysis::NoModRef)
MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
if (MR != AliasAnalysis::NoModRef)
return false;
// All the checks have passed, so do the transformation.
bool changedArgument = false;
for (unsigned i = 0; i < CS.arg_size(); ++i)
if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
: CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
cpyDest->getName(), C);
changedArgument = true;
if (CS.getArgument(i)->getType() == Dest->getType())
CS.setArgument(i, Dest);
else
CS.setArgument(i, CastInst::CreatePointerCast(Dest,
CS.getArgument(i)->getType(), Dest->getName(), C));
}
if (!changedArgument)
return false;
// If the destination wasn't sufficiently aligned then increase its alignment.
if (!isDestSufficientlyAligned) {
assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
}
// Drop any cached information about the call, because we may have changed
// its dependence information by changing its parameter.
MD->removeInstruction(C);
// Update AA metadata
// FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
// handled here, but combineMetadata doesn't support them yet
unsigned KnownIDs[] = {
LLVMContext::MD_tbaa,
LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias,
};
combineMetadata(C, cpy, KnownIDs);
// Remove the memcpy.
MD->removeInstruction(cpy);
++NumMemCpyInstr;
return true;
}
/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
/// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
/// copy from MDep's input if we can. MSize is the size of M's copy.
///
bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
uint64_t MSize) {
// We can only transforms memcpy's where the dest of one is the source of the
// other.
if (M->getSource() != MDep->getDest() || MDep->isVolatile())
return false;
// If dep instruction is reading from our current input, then it is a noop
// transfer and substituting the input won't change this instruction. Just
// ignore the input and let someone else zap MDep. This handles cases like:
// memcpy(a <- a)
// memcpy(b <- a)
if (M->getSource() == MDep->getSource())
return false;
// Second, the length of the memcpy's must be the same, or the preceding one
// must be larger than the following one.
ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
return false;
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
// Verify that the copied-from memory doesn't change in between the two
// transfers. For example, in:
// memcpy(a <- b)
// *b = 42;
// memcpy(c <- a)
// It would be invalid to transform the second memcpy into memcpy(c <- b).
//
// TODO: If the code between M and MDep is transparent to the destination "c",
// then we could still perform the xform by moving M up to the first memcpy.
//
// NOTE: This is conservative, it will stop on any read from the source loc,
// not just the defining memcpy.
MemDepResult SourceDep =
MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
false, M, M->getParent());
if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
return false;
// If the dest of the second might alias the source of the first, then the
// source and dest might overlap. We still want to eliminate the intermediate
// value, but we have to generate a memmove instead of memcpy.
bool UseMemMove = false;
if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
UseMemMove = true;
// If all checks passed, then we can transform M.
// Make sure to use the lesser of the alignment of the source and the dest
// since we're changing where we're reading from, but don't want to increase
// the alignment past what can be read from or written to.
// TODO: Is this worth it if we're creating a less aligned memcpy? For
// example we could be moving from movaps -> movq on x86.
unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
IRBuilder<> Builder(M);
if (UseMemMove)
Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
Align, M->isVolatile());
else
Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
Align, M->isVolatile());
// Remove the instruction we're replacing.
MD->removeInstruction(M);
M->eraseFromParent();
++NumMemCpyInstr;
return true;
}
/// We've found that the (upward scanning) memory dependence of \p MemCpy is
/// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
/// weren't copied over by \p MemCpy.
///
/// In other words, transform:
/// \code
/// memset(dst, c, dst_size);
/// memcpy(dst, src, src_size);
/// \endcode
/// into:
/// \code
/// memcpy(dst, src, src_size);
/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
/// \endcode
bool MemCpyOpt::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
MemSetInst *MemSet) {
// We can only transform memset/memcpy with the same destination.
if (MemSet->getDest() != MemCpy->getDest())
return false;
// Use the same i8* dest as the memcpy, killing the memset dest if different.
Value *Dest = MemCpy->getRawDest();
Value *DestSize = MemSet->getLength();
Value *SrcSize = MemCpy->getLength();
// By default, create an unaligned memset.
unsigned Align = 1;
// If Dest is aligned, and SrcSize is constant, use the minimum alignment
// of the sum.
const unsigned DestAlign =
std::max(MemSet->getAlignment(), MemCpy->getAlignment());
if (DestAlign > 1)
if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
IRBuilder<> Builder(MemCpy->getNextNode());
// If the sizes have different types, zext the smaller one.
if (DestSize->getType() != SrcSize->getType()) {
if (DestSize->getType()->getIntegerBitWidth() >
SrcSize->getType()->getIntegerBitWidth())
SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
else
DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
}
Value *MemsetLen =
Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize),
ConstantInt::getNullValue(DestSize->getType()),
Builder.CreateSub(DestSize, SrcSize));
Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
MemsetLen, Align);
MD->removeInstruction(MemSet);
MemSet->eraseFromParent();
return true;
}
/// processMemCpy - perform simplification of memcpy's. If we have memcpy A
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
/// circumstances). This allows later passes to remove the first memcpy
/// altogether.
bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
// We can only optimize non-volatile memcpy's.
if (M->isVolatile()) return false;
// If the source and destination of the memcpy are the same, then zap it.
if (M->getSource() == M->getDest()) {
MD->removeInstruction(M);
M->eraseFromParent();
return false;
}
// If copying from a constant, try to turn the memcpy into a memset.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
IRBuilder<> Builder(M);
Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
M->getAlignment(), false);
MD->removeInstruction(M);
M->eraseFromParent();
++NumCpyToSet;
return true;
}
MemDepResult DepInfo = MD->getDependency(M);
// Try to turn a partially redundant memset + memcpy into
// memcpy + smaller memset. We don't need the memcpy size for this.
if (DepInfo.isClobber())
if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
if (processMemSetMemCpyDependence(M, MDep))
return true;
// The optimizations after this point require the memcpy size.
ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
if (!CopySize) return false;
// The are three possible optimizations we can do for memcpy:
// a) memcpy-memcpy xform which exposes redundance for DSE.
// b) call-memcpy xform for return slot optimization.
// c) memcpy from freshly alloca'd space or space that has just started its
// lifetime copies undefined data, and we can therefore eliminate the
// memcpy in favor of the data that was already at the destination.
if (DepInfo.isClobber()) {
if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
CopySize->getZExtValue(), M->getAlignment(),
C)) {
MD->removeInstruction(M);
M->eraseFromParent();
return true;
}
}
}
AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
M, M->getParent());
if (SrcDepInfo.isClobber()) {
if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
} else if (SrcDepInfo.isDef()) {
Instruction *I = SrcDepInfo.getInst();
bool hasUndefContents = false;
if (isa<AllocaInst>(I)) {
hasUndefContents = true;
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_start)
if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
if (LTSize->getZExtValue() >= CopySize->getZExtValue())
hasUndefContents = true;
}
if (hasUndefContents) {
MD->removeInstruction(M);
M->eraseFromParent();
++NumMemCpyInstr;
return true;
}
}
return false;
}
/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
/// are guaranteed not to alias.
bool MemCpyOpt::processMemMove(MemMoveInst *M) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
if (!TLI->has(LibFunc::memmove))
return false;
// See if the pointers alias.
if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
return false;
DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
// If not, then we know we can transform this.
Module *Mod = M->getParent()->getParent()->getParent();
Type *ArgTys[3] = { M->getRawDest()->getType(),
M->getRawSource()->getType(),
M->getLength()->getType() };
M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
ArgTys));
// MemDep may have over conservative information about this instruction, just
// conservatively flush it from the cache.
MD->removeInstruction(M);
++NumMoveToCpy;
return true;
}
/// processByValArgument - This is called on every byval argument in call sites.
bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
// Find out what feeds this byval argument.
Value *ByValArg = CS.getArgument(ArgNo);
Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
MemDepResult DepInfo =
MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
true, CS.getInstruction(),
CS.getInstruction()->getParent());
if (!DepInfo.isClobber())
return false;
// If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
// a memcpy, see if we can byval from the source of the memcpy instead of the
// result.
MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
if (!MDep || MDep->isVolatile() ||
ByValArg->stripPointerCasts() != MDep->getDest())
return false;
// The length of the memcpy must be larger or equal to the size of the byval.
ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
if (!C1 || C1->getValue().getZExtValue() < ByValSize)
return false;
// Get the alignment of the byval. If the call doesn't specify the alignment,
// then it is some target specific value that we can't know.
unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
if (ByValAlign == 0) return false;
// If it is greater than the memcpy, then we check to see if we can force the
// source of the memcpy to the alignment we need. If we fail, we bail out.
AssumptionCache &AC =
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
*CS->getParent()->getParent());
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
if (MDep->getAlignment() < ByValAlign &&
getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
CS.getInstruction(), &AC, &DT) < ByValAlign)
return false;
// Verify that the copied-from memory doesn't change in between the memcpy and
// the byval call.
// memcpy(a <- b)
// *b = 42;
// foo(*a)
// It would be invalid to transform the second memcpy into foo(*b).
//
// NOTE: This is conservative, it will stop on any read from the source loc,
// not just the defining memcpy.
MemDepResult SourceDep =
MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
false, CS.getInstruction(), MDep->getParent());
if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
return false;
Value *TmpCast = MDep->getSource();
if (MDep->getSource()->getType() != ByValArg->getType())
TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
"tmpcast", CS.getInstruction());
DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
<< " " << *MDep << "\n"
<< " " << *CS.getInstruction() << "\n");
// Otherwise we're good! Update the byval argument.
CS.setArgument(ArgNo, TmpCast);
++NumMemCpyInstr;
return true;
}
/// iterateOnFunction - Executes one iteration of MemCpyOpt.
bool MemCpyOpt::iterateOnFunction(Function &F) {
bool MadeChange = false;
// Walk all instruction in the function.
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
// Avoid invalidating the iterator.
Instruction *I = BI++;
bool RepeatInstruction = false;
if (StoreInst *SI = dyn_cast<StoreInst>(I))
MadeChange |= processStore(SI, BI);
else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
RepeatInstruction = processMemSet(M, BI);
else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
RepeatInstruction = processMemCpy(M);
else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
RepeatInstruction = processMemMove(M);
else if (auto CS = CallSite(I)) {
for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
if (CS.isByValArgument(i))
MadeChange |= processByValArgument(CS, i);
}
// Reprocess the instruction if desired.
if (RepeatInstruction) {
if (BI != BB->begin()) --BI;
MadeChange = true;
}
}
}
return MadeChange;
}
// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
// function.
//
bool MemCpyOpt::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
bool MadeChange = false;
MD = &getAnalysis<MemoryDependenceAnalysis>();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
// If we don't have at least memset and memcpy, there is little point of doing
// anything here. These are required by a freestanding implementation, so if
// even they are disabled, there is no point in trying hard.
if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
return false;
while (1) {
if (!iterateOnFunction(F))
break;
MadeChange = true;
}
MD = nullptr;
return MadeChange;
}