llvm-6502/lib/CodeGen/TargetRegisterInfo.cpp
Jakob Stoklund Olesen 7eafc3e7be Add a new hook for providing register allocator hints more flexibly.
The TargetRegisterInfo::getRegAllocationHints() function is going to
replace the existing mechanisms for providing target-dependent hints to
the register allocator: ResolveRegAllocHint() and
getRawAllocationOrder().

The new hook is more flexible because it allows the target to provide
multiple preferred candidate registers for each virtual register, and it
is easier to use because targets are not required to return a reference
to a constant array like getRawAllocationOrder().

An optional VirtRegMap argument can be used to provide target-dependent
hints that depend on the provisional assignments of other virtual
registers.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169154 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 21:17:00 +00:00

287 lines
10 KiB
C++

//===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetRegisterInfo interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
regclass_iterator RCB, regclass_iterator RCE,
const char *const *SRINames,
const unsigned *SRILaneMasks)
: InfoDesc(ID), SubRegIndexNames(SRINames),
SubRegIndexLaneMasks(SRILaneMasks),
RegClassBegin(RCB), RegClassEnd(RCE) {
}
TargetRegisterInfo::~TargetRegisterInfo() {}
void PrintReg::print(raw_ostream &OS) const {
if (!Reg)
OS << "%noreg";
else if (TargetRegisterInfo::isStackSlot(Reg))
OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
else if (TargetRegisterInfo::isVirtualRegister(Reg))
OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
else if (TRI && Reg < TRI->getNumRegs())
OS << '%' << TRI->getName(Reg);
else
OS << "%physreg" << Reg;
if (SubIdx) {
if (TRI)
OS << ':' << TRI->getSubRegIndexName(SubIdx);
else
OS << ":sub(" << SubIdx << ')';
}
}
void PrintRegUnit::print(raw_ostream &OS) const {
// Generic printout when TRI is missing.
if (!TRI) {
OS << "Unit~" << Unit;
return;
}
// Check for invalid register units.
if (Unit >= TRI->getNumRegUnits()) {
OS << "BadUnit~" << Unit;
return;
}
// Normal units have at least one root.
MCRegUnitRootIterator Roots(Unit, TRI);
assert(Roots.isValid() && "Unit has no roots.");
OS << TRI->getName(*Roots);
for (++Roots; Roots.isValid(); ++Roots)
OS << '~' << TRI->getName(*Roots);
}
/// getAllocatableClass - Return the maximal subclass of the given register
/// class that is alloctable, or NULL.
const TargetRegisterClass *
TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
if (!RC || RC->isAllocatable())
return RC;
const unsigned *SubClass = RC->getSubClassMask();
for (unsigned Base = 0, BaseE = getNumRegClasses();
Base < BaseE; Base += 32) {
unsigned Idx = Base;
for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
unsigned Offset = CountTrailingZeros_32(Mask);
const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
if (SubRC->isAllocatable())
return SubRC;
Mask >>= Offset;
Idx += Offset + 1;
}
}
return NULL;
}
/// getMinimalPhysRegClass - Returns the Register Class of a physical
/// register of the given type, picking the most sub register class of
/// the right type that contains this physreg.
const TargetRegisterClass *
TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
assert(isPhysicalRegister(reg) && "reg must be a physical register");
// Pick the most sub register class of the right type that contains
// this physreg.
const TargetRegisterClass* BestRC = 0;
for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
const TargetRegisterClass* RC = *I;
if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
(!BestRC || BestRC->hasSubClass(RC)))
BestRC = RC;
}
assert(BestRC && "Couldn't find the register class");
return BestRC;
}
/// getAllocatableSetForRC - Toggle the bits that represent allocatable
/// registers for the specific register class.
static void getAllocatableSetForRC(const MachineFunction &MF,
const TargetRegisterClass *RC, BitVector &R){
assert(RC->isAllocatable() && "invalid for nonallocatable sets");
ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF);
for (unsigned i = 0; i != Order.size(); ++i)
R.set(Order[i]);
}
BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
const TargetRegisterClass *RC) const {
BitVector Allocatable(getNumRegs());
if (RC) {
// A register class with no allocatable subclass returns an empty set.
const TargetRegisterClass *SubClass = getAllocatableClass(RC);
if (SubClass)
getAllocatableSetForRC(MF, SubClass, Allocatable);
} else {
for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
E = regclass_end(); I != E; ++I)
if ((*I)->isAllocatable())
getAllocatableSetForRC(MF, *I, Allocatable);
}
// Mask out the reserved registers
BitVector Reserved = getReservedRegs(MF);
Allocatable &= Reserved.flip();
return Allocatable;
}
static inline
const TargetRegisterClass *firstCommonClass(const uint32_t *A,
const uint32_t *B,
const TargetRegisterInfo *TRI) {
for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
if (unsigned Common = *A++ & *B++)
return TRI->getRegClass(I + CountTrailingZeros_32(Common));
return 0;
}
const TargetRegisterClass *
TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
const TargetRegisterClass *B) const {
// First take care of the trivial cases.
if (A == B)
return A;
if (!A || !B)
return 0;
// Register classes are ordered topologically, so the largest common
// sub-class it the common sub-class with the smallest ID.
return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
}
const TargetRegisterClass *
TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B,
unsigned Idx) const {
assert(A && B && "Missing register class");
assert(Idx && "Bad sub-register index");
// Find Idx in the list of super-register indices.
for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
if (RCI.getSubReg() == Idx)
// The bit mask contains all register classes that are projected into B
// by Idx. Find a class that is also a sub-class of A.
return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
return 0;
}
const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
const TargetRegisterClass *RCB, unsigned SubB,
unsigned &PreA, unsigned &PreB) const {
assert(RCA && SubA && RCB && SubB && "Invalid arguments");
// Search all pairs of sub-register indices that project into RCA and RCB
// respectively. This is quadratic, but usually the sets are very small. On
// most targets like X86, there will only be a single sub-register index
// (e.g., sub_16bit projecting into GR16).
//
// The worst case is a register class like DPR on ARM.
// We have indices dsub_0..dsub_7 projecting into that class.
//
// It is very common that one register class is a sub-register of the other.
// Arrange for RCA to be the larger register so the answer will be found in
// the first iteration. This makes the search linear for the most common
// case.
const TargetRegisterClass *BestRC = 0;
unsigned *BestPreA = &PreA;
unsigned *BestPreB = &PreB;
if (RCA->getSize() < RCB->getSize()) {
std::swap(RCA, RCB);
std::swap(SubA, SubB);
std::swap(BestPreA, BestPreB);
}
// Also terminate the search one we have found a register class as small as
// RCA.
unsigned MinSize = RCA->getSize();
for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
// Check if a common super-register class exists for this index pair.
const TargetRegisterClass *RC =
firstCommonClass(IA.getMask(), IB.getMask(), this);
if (!RC || RC->getSize() < MinSize)
continue;
// The indexes must compose identically: PreA+SubA == PreB+SubB.
unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
if (FinalA != FinalB)
continue;
// Is RC a better candidate than BestRC?
if (BestRC && RC->getSize() >= BestRC->getSize())
continue;
// Yes, RC is the smallest super-register seen so far.
BestRC = RC;
*BestPreA = IA.getSubReg();
*BestPreB = IB.getSubReg();
// Bail early if we reached MinSize. We won't find a better candidate.
if (BestRC->getSize() == MinSize)
return BestRC;
}
}
return BestRC;
}
// Compute target-independent register allocator hints to help eliminate copies.
void
TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints,
const MachineFunction &MF,
const VirtRegMap *VRM) const {
const MachineRegisterInfo &MRI = MF.getRegInfo();
std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
// Hints with HintType != 0 were set by target-dependent code.
// Such targets must provide their own implementation of
// TRI::getRegAllocationHints to interpret those hint types.
assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
// Target-independent hints are either a physical or a virtual register.
unsigned Phys = Hint.second;
if (VRM && isVirtualRegister(Phys))
Phys = VRM->getPhys(Phys);
// Check that Phys is a valid hint in VirtReg's register class.
if (!isPhysicalRegister(Phys))
return;
if (MRI.isReserved(Phys))
return;
// Check that Phys is in the allocation order. We shouldn't heed hints
// from VirtReg's register class if they aren't in the allocation order. The
// target probably has a reason for removing the register.
if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
return;
// All clear, tell the register allocator to prefer this register.
Hints.push_back(Phys);
}