llvm-6502/lib/ExecutionEngine/JIT/JIT.cpp
Dale Johannesen dd947ea3c5 Rewrite JIT handling of GlobalVariables so they
are allocated in the same buffer as the code,
jump tables, etc.

The default JIT memory manager does not handle buffer
overflow well.  I didn't introduce this and I'm not
attempting to fix it here, but it is more likely to
be hit now since we're putting more stuff in the
buffer.  This affects one test that I know of so far,
MultiSource/Benchmarks/NPB-serial/is.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54442 91177308-0d34-0410-b5e6-96231b3b80d8
2008-08-07 01:30:15 +00:00

459 lines
15 KiB
C++

//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bitcode in an efficient manner.
//
//===----------------------------------------------------------------------===//
#include "JIT.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/ModuleProvider.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Config/config.h"
using namespace llvm;
#ifdef __APPLE__
// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
// of atexit). It passes the address of linker generated symbol __dso_handle
// to the function.
// This configuration change happened at version 5330.
# include <AvailabilityMacros.h>
# if defined(MAC_OS_X_VERSION_10_4) && \
((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
(MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
__APPLE_CC__ >= 5330))
# ifndef HAVE___DSO_HANDLE
# define HAVE___DSO_HANDLE 1
# endif
# endif
#endif
#if HAVE___DSO_HANDLE
extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
#endif
namespace {
static struct RegisterJIT {
RegisterJIT() { JIT::Register(); }
} JITRegistrator;
}
namespace llvm {
void LinkInJIT() {
}
}
#if defined (__GNUC__)
extern "C" void __register_frame(void*);
#endif
/// createJIT - This is the factory method for creating a JIT for the current
/// machine, it does not fall back to the interpreter. This takes ownership
/// of the module provider.
ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP,
std::string *ErrorStr,
JITMemoryManager *JMM) {
ExecutionEngine *EE = JIT::createJIT(MP, ErrorStr, JMM);
if (!EE) return 0;
// Register routine for informing unwinding runtime about new EH frames
#if defined(__GNUC__)
EE->InstallExceptionTableRegister(__register_frame);
#endif
// Make sure we can resolve symbols in the program as well. The zero arg
// to the function tells DynamicLibrary to load the program, not a library.
sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr);
return EE;
}
JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
JITMemoryManager *JMM)
: ExecutionEngine(MP), TM(tm), TJI(tji) {
setTargetData(TM.getTargetData());
jitstate = new JITState(MP);
// Initialize MCE
MCE = createEmitter(*this, JMM);
// Add target data
MutexGuard locked(lock);
FunctionPassManager &PM = jitstate->getPM(locked);
PM.add(new TargetData(*TM.getTargetData()));
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) {
cerr << "Target does not support machine code emission!\n";
abort();
}
// Initialize passes.
PM.doInitialization();
}
JIT::~JIT() {
delete jitstate;
delete MCE;
delete &TM;
}
/// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously
/// removed the last ModuleProvider, we need re-initialize jitstate with a valid
/// ModuleProvider.
void JIT::addModuleProvider(ModuleProvider *MP) {
MutexGuard locked(lock);
if (Modules.empty()) {
assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
jitstate = new JITState(MP);
FunctionPassManager &PM = jitstate->getPM(locked);
PM.add(new TargetData(*TM.getTargetData()));
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) {
cerr << "Target does not support machine code emission!\n";
abort();
}
// Initialize passes.
PM.doInitialization();
}
ExecutionEngine::addModuleProvider(MP);
}
/// removeModuleProvider - If we are removing the last ModuleProvider,
/// invalidate the jitstate since the PassManager it contains references a
/// released ModuleProvider.
Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) {
Module *result = ExecutionEngine::removeModuleProvider(MP, E);
MutexGuard locked(lock);
if (Modules.empty()) {
delete jitstate;
jitstate = 0;
}
return result;
}
/// run - Start execution with the specified function and arguments.
///
GenericValue JIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
const FunctionType *FTy = F->getFunctionType();
const Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
"Too many arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0) == Type::Int32Ty &&
isa<PointerType>(FTy->getParamType(1)) &&
isa<PointerType>(FTy->getParamType(2))) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0) == Type::Int32Ty &&
isa<PointerType>(FTy->getParamType(1))) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0) == Type::Int32Ty) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: assert(0 && "Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
assert(0 && "Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
assert(0 && "long double not supported yet");
return rv;
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
// Okay, this is not one of our quick and easy cases. Because we don't have a
// full FFI, we have to codegen a nullary stub function that just calls the
// function we are interested in, passing in constants for all of the
// arguments. Make this function and return.
// First, create the function.
FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
F->getParent());
// Insert a basic block.
BasicBlock *StubBB = BasicBlock::Create("", Stub);
// Convert all of the GenericValue arguments over to constants. Note that we
// currently don't support varargs.
SmallVector<Value*, 8> Args;
for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
Constant *C = 0;
const Type *ArgTy = FTy->getParamType(i);
const GenericValue &AV = ArgValues[i];
switch (ArgTy->getTypeID()) {
default: assert(0 && "Unknown argument type for function call!");
case Type::IntegerTyID:
C = ConstantInt::get(AV.IntVal);
break;
case Type::FloatTyID:
C = ConstantFP::get(APFloat(AV.FloatVal));
break;
case Type::DoubleTyID:
C = ConstantFP::get(APFloat(AV.DoubleVal));
break;
case Type::PPC_FP128TyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
C = ConstantFP::get(APFloat(AV.IntVal));
break;
case Type::PointerTyID:
void *ArgPtr = GVTOP(AV);
if (sizeof(void*) == 4)
C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
else
C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer
break;
}
Args.push_back(C);
}
CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
"", StubBB);
TheCall->setTailCall();
if (TheCall->getType() != Type::VoidTy)
ReturnInst::Create(TheCall, StubBB); // Return result of the call.
else
ReturnInst::Create(StubBB); // Just return void.
// Finally, return the value returned by our nullary stub function.
return runFunction(Stub, std::vector<GenericValue>());
}
/// runJITOnFunction - Run the FunctionPassManager full of
/// just-in-time compilation passes on F, hopefully filling in
/// GlobalAddress[F] with the address of F's machine code.
///
void JIT::runJITOnFunction(Function *F) {
static bool isAlreadyCodeGenerating = false;
MutexGuard locked(lock);
assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
// JIT the function
isAlreadyCodeGenerating = true;
jitstate->getPM(locked).run(*F);
isAlreadyCodeGenerating = false;
// If the function referred to a global variable that had not yet been
// emitted, it allocates memory for the global, but doesn't emit it yet. Emit
// all of these globals now.
while (!jitstate->getPendingGlobals(locked).empty()) {
const GlobalVariable *GV = jitstate->getPendingGlobals(locked).back();
jitstate->getPendingGlobals(locked).pop_back();
EmitGlobalVariable(GV);
}
}
/// getPointerToFunction - This method is used to get the address of the
/// specified function, compiling it if neccesary.
///
void *JIT::getPointerToFunction(Function *F) {
if (void *Addr = getPointerToGlobalIfAvailable(F))
return Addr; // Check if function already code gen'd
// Make sure we read in the function if it exists in this Module.
if (F->hasNotBeenReadFromBitcode()) {
// Determine the module provider this function is provided by.
Module *M = F->getParent();
ModuleProvider *MP = 0;
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
if (Modules[i]->getModule() == M) {
MP = Modules[i];
break;
}
}
assert(MP && "Function isn't in a module we know about!");
std::string ErrorMsg;
if (MP->materializeFunction(F, &ErrorMsg)) {
cerr << "Error reading function '" << F->getName()
<< "' from bitcode file: " << ErrorMsg << "\n";
abort();
}
}
if (void *Addr = getPointerToGlobalIfAvailable(F)) {
return Addr;
}
MutexGuard locked(lock);
if (F->isDeclaration()) {
void *Addr = getPointerToNamedFunction(F->getName());
addGlobalMapping(F, Addr);
return Addr;
}
runJITOnFunction(F);
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
return Addr;
}
/// getOrEmitGlobalVariable - Return the address of the specified global
/// variable, possibly emitting it to memory if needed. This is used by the
/// Emitter.
void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
MutexGuard locked(lock);
void *Ptr = getPointerToGlobalIfAvailable(GV);
if (Ptr) return Ptr;
// If the global is external, just remember the address.
if (GV->isDeclaration()) {
#if HAVE___DSO_HANDLE
if (GV->getName() == "__dso_handle")
return (void*)&__dso_handle;
#endif
Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
if (Ptr == 0) {
cerr << "Could not resolve external global address: "
<< GV->getName() << "\n";
abort();
addGlobalMapping(GV, Ptr);
}
} else {
// If the global hasn't been emitted to memory yet, allocate space and
// emit it into memory. It goes in the same array as the generated
// code, jump tables, etc.
const Type *GlobalType = GV->getType()->getElementType();
size_t S = getTargetData()->getABITypeSize(GlobalType);
size_t A = getTargetData()->getPreferredAlignment(GV);
Ptr = MCE->allocateSpace(S, A);
addGlobalMapping(GV, Ptr);
EmitGlobalVariable(GV);
}
return Ptr;
}
/// recompileAndRelinkFunction - This method is used to force a function
/// which has already been compiled, to be compiled again, possibly
/// after it has been modified. Then the entry to the old copy is overwritten
/// with a branch to the new copy. If there was no old copy, this acts
/// just like JIT::getPointerToFunction().
///
void *JIT::recompileAndRelinkFunction(Function *F) {
void *OldAddr = getPointerToGlobalIfAvailable(F);
// If it's not already compiled there is no reason to patch it up.
if (OldAddr == 0) { return getPointerToFunction(F); }
// Delete the old function mapping.
addGlobalMapping(F, 0);
// Recodegen the function
runJITOnFunction(F);
// Update state, forward the old function to the new function.
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
TJI.replaceMachineCodeForFunction(OldAddr, Addr);
return Addr;
}