llvm-6502/lib/CodeGen/SelectionDAG/LegalizeTypes.h
Duncan Sands ddc016cc85 Initial libcall support for LegalizeTypes. This is
much simpler than in LegalizeDAG because calls are
not yet expanded into call sequences: that happens
after type legalization has finished.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49634 91177308-0d34-0410-b5e6-96231b3b80d8
2008-04-14 06:48:48 +00:00

397 lines
17 KiB
C++

//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DAGTypeLegalizer class. This is a private interface
// shared between the code that implements the SelectionDAG::LegalizeTypes
// method.
//
//===----------------------------------------------------------------------===//
#ifndef SELECTIONDAG_LEGALIZETYPES_H
#define SELECTIONDAG_LEGALIZETYPES_H
#define DEBUG_TYPE "legalize-types"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
namespace llvm {
//===----------------------------------------------------------------------===//
/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it. This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing. For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
///
class VISIBILITY_HIDDEN DAGTypeLegalizer {
TargetLowering &TLI;
SelectionDAG &DAG;
public:
// NodeIDFlags - This pass uses the NodeID on the SDNodes to hold information
// about the state of the node. The enum has all the values.
enum NodeIDFlags {
/// ReadyToProcess - All operands have been processed, so this node is ready
/// to be handled.
ReadyToProcess = 0,
/// NewNode - This is a new node that was created in the process of
/// legalizing some other node.
NewNode = -1,
/// Processed - This is a node that has already been processed.
Processed = -2
// 1+ - This is a node which has this many unlegalized operands.
};
private:
enum LegalizeAction {
Legal, // The target natively supports this type.
Promote, // This type should be executed in a larger type.
Expand, // This type should be split into two types of half the size.
FloatToInt, // Convert a floating point type to an integer of the same size.
Scalarize, // Replace this one-element vector type with its element type.
Split // This vector type should be split into smaller vectors.
};
/// ValueTypeActions - This is a bitvector that contains two bits for each
/// simple value type, where the two bits correspond to the LegalizeAction
/// enum from TargetLowering. This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal, or we need to promote it to a larger integer type, or
/// we need to expand it into multiple registers of a smaller integer type, or
/// we need to scalarize a one-element vector type into the element type, or
/// we need to split a vector type into smaller vector types.
LegalizeAction getTypeAction(MVT::ValueType VT) const {
switch (ValueTypeActions.getTypeAction(VT)) {
default:
assert(false && "Unknown legalize action!");
case TargetLowering::Legal:
return Legal;
case TargetLowering::Promote:
return Promote;
case TargetLowering::Expand:
// Expand can mean
// 1) split scalar in half, 2) convert a float to an integer,
// 3) scalarize a single-element vector, 4) split a vector in two.
if (!MVT::isVector(VT)) {
if (MVT::getSizeInBits(VT) ==
MVT::getSizeInBits(TLI.getTypeToTransformTo(VT)))
return FloatToInt;
else
return Expand;
} else if (MVT::getVectorNumElements(VT) == 1) {
return Scalarize;
} else {
return Split;
}
}
}
/// isTypeLegal - Return true if this type is legal on this target.
bool isTypeLegal(MVT::ValueType VT) const {
return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
}
/// PromotedNodes - For nodes that are below legal width, this map indicates
/// what promoted value to use.
DenseMap<SDOperandImpl, SDOperand> PromotedNodes;
/// ExpandedNodes - For nodes that need to be expanded this map indicates
/// which operands are the expanded version of the input.
DenseMap<SDOperandImpl, std::pair<SDOperand, SDOperand> > ExpandedNodes;
/// FloatToIntedNodes - For floating point nodes converted to integers of
/// the same size, this map indicates the converted value to use.
DenseMap<SDOperandImpl, SDOperand> FloatToIntedNodes;
/// ScalarizedNodes - For nodes that are <1 x ty>, this map indicates the
/// scalar value of type 'ty' to use.
DenseMap<SDOperandImpl, SDOperand> ScalarizedNodes;
/// SplitNodes - For nodes that need to be split this map indicates
/// which operands are the expanded version of the input.
DenseMap<SDOperandImpl, std::pair<SDOperand, SDOperand> > SplitNodes;
/// ReplacedNodes - For nodes that have been replaced with another,
/// indicates the replacement node to use.
DenseMap<SDOperandImpl, SDOperand> ReplacedNodes;
/// Worklist - This defines a worklist of nodes to process. In order to be
/// pushed onto this worklist, all operands of a node must have already been
/// processed.
SmallVector<SDNode*, 128> Worklist;
public:
explicit DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
assert(MVT::LAST_VALUETYPE <= 32 &&
"Too many value types for ValueTypeActions to hold!");
}
void run();
/// ReanalyzeNode - Recompute the NodeID and correct processed operands
/// for the specified node, adding it to the worklist if ready.
void ReanalyzeNode(SDNode *N) {
N->setNodeId(NewNode);
AnalyzeNewNode(N);
}
private:
void AnalyzeNewNode(SDNode *&N);
void ReplaceValueWith(SDOperand From, SDOperand To);
void ReplaceNodeWith(SDNode *From, SDNode *To);
void RemapNode(SDOperand &N);
// Common routines.
SDOperand BitConvertToInteger(SDOperand Op);
SDOperand CreateStackStoreLoad(SDOperand Op, MVT::ValueType DestVT);
SDOperand JoinIntegers(SDOperand Lo, SDOperand Hi);
void SplitInteger(SDOperand Op, SDOperand &Lo, SDOperand &Hi);
void SplitInteger(SDOperand Op, MVT::ValueType LoVT, MVT::ValueType HiVT,
SDOperand &Lo, SDOperand &Hi);
SDOperand MakeLibCall(RTLIB::Libcall LC, SDNode *N, bool isSigned);
//===--------------------------------------------------------------------===//
// Promotion Support: LegalizeTypesPromote.cpp
//===--------------------------------------------------------------------===//
SDOperand GetPromotedOp(SDOperand Op) {
SDOperand &PromotedOp = PromotedNodes[Op];
RemapNode(PromotedOp);
assert(PromotedOp.Val && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedOp(SDOperand Op, SDOperand Result);
/// GetPromotedZExtOp - Get a promoted operand and zero extend it to the final
/// size.
SDOperand GetPromotedZExtOp(SDOperand Op) {
MVT::ValueType OldVT = Op.getValueType();
Op = GetPromotedOp(Op);
return DAG.getZeroExtendInReg(Op, OldVT);
}
// Result Promotion.
void PromoteResult(SDNode *N, unsigned ResNo);
SDOperand PromoteResult_BIT_CONVERT(SDNode *N);
SDOperand PromoteResult_BUILD_PAIR(SDNode *N);
SDOperand PromoteResult_Constant(SDNode *N);
SDOperand PromoteResult_CTLZ(SDNode *N);
SDOperand PromoteResult_CTPOP(SDNode *N);
SDOperand PromoteResult_CTTZ(SDNode *N);
SDOperand PromoteResult_EXTRACT_VECTOR_ELT(SDNode *N);
SDOperand PromoteResult_FP_ROUND(SDNode *N);
SDOperand PromoteResult_FP_TO_XINT(SDNode *N);
SDOperand PromoteResult_INT_EXTEND(SDNode *N);
SDOperand PromoteResult_LOAD(LoadSDNode *N);
SDOperand PromoteResult_SDIV(SDNode *N);
SDOperand PromoteResult_SELECT (SDNode *N);
SDOperand PromoteResult_SELECT_CC(SDNode *N);
SDOperand PromoteResult_SETCC(SDNode *N);
SDOperand PromoteResult_SHL(SDNode *N);
SDOperand PromoteResult_SimpleIntBinOp(SDNode *N);
SDOperand PromoteResult_SRA(SDNode *N);
SDOperand PromoteResult_SRL(SDNode *N);
SDOperand PromoteResult_TRUNCATE(SDNode *N);
SDOperand PromoteResult_UDIV(SDNode *N);
SDOperand PromoteResult_UNDEF(SDNode *N);
// Operand Promotion.
bool PromoteOperand(SDNode *N, unsigned OperandNo);
SDOperand PromoteOperand_ANY_EXTEND(SDNode *N);
SDOperand PromoteOperand_BUILD_PAIR(SDNode *N);
SDOperand PromoteOperand_BR_CC(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_BRCOND(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_BUILD_VECTOR(SDNode *N);
SDOperand PromoteOperand_FP_EXTEND(SDNode *N);
SDOperand PromoteOperand_FP_ROUND(SDNode *N);
SDOperand PromoteOperand_INT_TO_FP(SDNode *N);
SDOperand PromoteOperand_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_MEMBARRIER(SDNode *N);
SDOperand PromoteOperand_RET(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_SELECT(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_SETCC(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_SIGN_EXTEND(SDNode *N);
SDOperand PromoteOperand_STORE(StoreSDNode *N, unsigned OpNo);
SDOperand PromoteOperand_TRUNCATE(SDNode *N);
SDOperand PromoteOperand_ZERO_EXTEND(SDNode *N);
void PromoteSetCCOperands(SDOperand &LHS,SDOperand &RHS, ISD::CondCode Code);
//===--------------------------------------------------------------------===//
// Expansion Support: LegalizeTypesExpand.cpp
//===--------------------------------------------------------------------===//
void GetExpandedOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi);
void SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi);
// Result Expansion.
void ExpandResult(SDNode *N, unsigned ResNo);
void ExpandResult_ANY_EXTEND (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_AssertZext (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_BIT_CONVERT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_BUILD_PAIR (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_Constant (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_CTLZ (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_CTPOP (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_CTTZ (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_EXTRACT_VECTOR_ELT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_LOAD (LoadSDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_MERGE_VALUES(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SIGN_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_TRUNCATE (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_UNDEF (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ZERO_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_FP_TO_SINT (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_FP_TO_UINT (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_Logical (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_BSWAP (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ADDSUB (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ADDSUBC (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ADDSUBE (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SELECT (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SELECT_CC (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_MUL (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SDIV (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SREM (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_UDIV (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_UREM (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_Shift (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandShiftByConstant(SDNode *N, unsigned Amt,
SDOperand &Lo, SDOperand &Hi);
bool ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi);
// Operand Expansion.
bool ExpandOperand(SDNode *N, unsigned OperandNo);
SDOperand ExpandOperand_BIT_CONVERT(SDNode *N);
SDOperand ExpandOperand_BR_CC(SDNode *N);
SDOperand ExpandOperand_BUILD_VECTOR(SDNode *N);
SDOperand ExpandOperand_EXTRACT_ELEMENT(SDNode *N);
SDOperand ExpandOperand_SETCC(SDNode *N);
SDOperand ExpandOperand_SINT_TO_FP(SDOperand Source, MVT::ValueType DestTy);
SDOperand ExpandOperand_STORE(StoreSDNode *N, unsigned OpNo);
SDOperand ExpandOperand_TRUNCATE(SDNode *N);
SDOperand ExpandOperand_UINT_TO_FP(SDOperand Source, MVT::ValueType DestTy);
void ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
ISD::CondCode &CCCode);
//===--------------------------------------------------------------------===//
// Float to Integer Conversion Support: LegalizeTypesFloatToInt.cpp
//===--------------------------------------------------------------------===//
SDOperand GetIntegerOp(SDOperand Op) {
SDOperand &IntegerOp = FloatToIntedNodes[Op];
RemapNode(IntegerOp);
assert(IntegerOp.Val && "Operand wasn't converted to integer?");
return IntegerOp;
}
void SetIntegerOp(SDOperand Op, SDOperand Result);
// Result Float to Integer Conversion.
void FloatToIntResult(SDNode *N, unsigned OpNo);
SDOperand FloatToIntRes_BIT_CONVERT(SDNode *N);
SDOperand FloatToIntRes_BUILD_PAIR(SDNode *N);
SDOperand FloatToIntRes_FCOPYSIGN(SDNode *N);
SDOperand FloatToIntRes_LOAD(SDNode *N);
// Operand Float to Integer Conversion.
bool FloatToIntOperand(SDNode *N, unsigned OpNo);
SDOperand FloatToIntOp_BIT_CONVERT(SDNode *N);
//===--------------------------------------------------------------------===//
// Scalarization Support: LegalizeTypesScalarize.cpp
//===--------------------------------------------------------------------===//
SDOperand GetScalarizedOp(SDOperand Op) {
SDOperand &ScalarOp = ScalarizedNodes[Op];
RemapNode(ScalarOp);
assert(ScalarOp.Val && "Operand wasn't scalarized?");
return ScalarOp;
}
void SetScalarizedOp(SDOperand Op, SDOperand Result);
// Result Vector Scalarization: <1 x ty> -> ty.
void ScalarizeResult(SDNode *N, unsigned OpNo);
SDOperand ScalarizeRes_BinOp(SDNode *N);
SDOperand ScalarizeRes_UnaryOp(SDNode *N);
SDOperand ScalarizeRes_BIT_CONVERT(SDNode *N);
SDOperand ScalarizeRes_FPOWI(SDNode *N);
SDOperand ScalarizeRes_INSERT_VECTOR_ELT(SDNode *N);
SDOperand ScalarizeRes_LOAD(LoadSDNode *N);
SDOperand ScalarizeRes_SELECT(SDNode *N);
SDOperand ScalarizeRes_UNDEF(SDNode *N);
SDOperand ScalarizeRes_VECTOR_SHUFFLE(SDNode *N);
// Operand Vector Scalarization: <1 x ty> -> ty.
bool ScalarizeOperand(SDNode *N, unsigned OpNo);
SDOperand ScalarizeOp_BIT_CONVERT(SDNode *N);
SDOperand ScalarizeOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDOperand ScalarizeOp_STORE(StoreSDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Vector Splitting Support: LegalizeTypesSplit.cpp
//===--------------------------------------------------------------------===//
void GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi);
void SetSplitOp(SDOperand Op, SDOperand Lo, SDOperand Hi);
// Result Vector Splitting: <128 x ty> -> 2 x <64 x ty>.
void SplitResult(SDNode *N, unsigned OpNo);
void SplitRes_UNDEF(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_LOAD(LoadSDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_BUILD_PAIR(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_INSERT_VECTOR_ELT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_VECTOR_SHUFFLE(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_BUILD_VECTOR(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_CONCAT_VECTORS(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_BIT_CONVERT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_UnOp(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_BinOp(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_FPOWI(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void SplitRes_SELECT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
// Operand Vector Splitting: <128 x ty> -> 2 x <64 x ty>.
bool SplitOperand(SDNode *N, unsigned OpNo);
SDOperand SplitOp_BIT_CONVERT(SDNode *N);
SDOperand SplitOp_EXTRACT_SUBVECTOR(SDNode *N);
SDOperand SplitOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDOperand SplitOp_RET(SDNode *N, unsigned OpNo);
SDOperand SplitOp_STORE(StoreSDNode *N, unsigned OpNo);
SDOperand SplitOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
public:
void SanityCheck(SDNode *N);
};
} // end namespace llvm.
#endif