mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
4674804d29
be 'Argument' instead of FunctionArgument. Rename some yacc type names to be more concise. Change jump table to use a vector instead of a list. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2214 91177308-0d34-0410-b5e6-96231b3b80d8
1616 lines
55 KiB
Plaintext
1616 lines
55 KiB
Plaintext
//===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=//
|
|
//
|
|
// This file implements the bison parser for LLVM assembly languages files.
|
|
//
|
|
//===------------------------------------------------------------------------=//
|
|
|
|
%{
|
|
#include "ParserInternals.h"
|
|
#include "llvm/Assembly/Parser.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/Argument.h"
|
|
#include "Support/STLExtras.h"
|
|
#include "Support/DepthFirstIterator.h"
|
|
#include <list>
|
|
#include <utility> // Get definition of pair class
|
|
#include <algorithm>
|
|
#include <stdio.h> // This embarasment is due to our flex lexer...
|
|
#include <iostream>
|
|
using std::list;
|
|
using std::vector;
|
|
using std::pair;
|
|
using std::map;
|
|
using std::pair;
|
|
using std::make_pair;
|
|
using std::cerr;
|
|
using std::string;
|
|
|
|
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
|
|
int yylex(); // declaration" of xxx warnings.
|
|
int yyparse();
|
|
|
|
static Module *ParserResult;
|
|
string CurFilename;
|
|
|
|
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
|
|
// relating to upreferences in the input stream.
|
|
//
|
|
//#define DEBUG_UPREFS 1
|
|
#ifdef DEBUG_UPREFS
|
|
#define UR_OUT(X) cerr << X
|
|
#else
|
|
#define UR_OUT(X)
|
|
#endif
|
|
|
|
// This contains info used when building the body of a method. It is destroyed
|
|
// when the method is completed.
|
|
//
|
|
typedef vector<Value *> ValueList; // Numbered defs
|
|
static void ResolveDefinitions(vector<ValueList> &LateResolvers,
|
|
vector<ValueList> *FutureLateResolvers = 0);
|
|
|
|
static struct PerModuleInfo {
|
|
Module *CurrentModule;
|
|
vector<ValueList> Values; // Module level numbered definitions
|
|
vector<ValueList> LateResolveValues;
|
|
vector<PATypeHolder> Types;
|
|
map<ValID, PATypeHolder> LateResolveTypes;
|
|
|
|
// GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
|
|
// references to global values. Global values may be referenced before they
|
|
// are defined, and if so, the temporary object that they represent is held
|
|
// here. This is used for forward references of ConstantPointerRefs.
|
|
//
|
|
typedef map<pair<const PointerType *, ValID>, GlobalVariable*> GlobalRefsType;
|
|
GlobalRefsType GlobalRefs;
|
|
|
|
void ModuleDone() {
|
|
// If we could not resolve some methods at method compilation time (calls to
|
|
// methods before they are defined), resolve them now... Types are resolved
|
|
// when the constant pool has been completely parsed.
|
|
//
|
|
ResolveDefinitions(LateResolveValues);
|
|
|
|
// Check to make sure that all global value forward references have been
|
|
// resolved!
|
|
//
|
|
if (!GlobalRefs.empty()) {
|
|
string UndefinedReferences = "Unresolved global references exist:\n";
|
|
|
|
for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
|
|
I != E; ++I) {
|
|
UndefinedReferences += " " + I->first.first->getDescription() + " " +
|
|
I->first.second.getName() + "\n";
|
|
}
|
|
ThrowException(UndefinedReferences);
|
|
}
|
|
|
|
Values.clear(); // Clear out method local definitions
|
|
Types.clear();
|
|
CurrentModule = 0;
|
|
}
|
|
|
|
|
|
// DeclareNewGlobalValue - Called every type a new GV has been defined. This
|
|
// is used to remove things from the forward declaration map, resolving them
|
|
// to the correct thing as needed.
|
|
//
|
|
void DeclareNewGlobalValue(GlobalValue *GV, ValID D) {
|
|
// Check to see if there is a forward reference to this global variable...
|
|
// if there is, eliminate it and patch the reference to use the new def'n.
|
|
GlobalRefsType::iterator I = GlobalRefs.find(make_pair(GV->getType(), D));
|
|
|
|
if (I != GlobalRefs.end()) {
|
|
GlobalVariable *OldGV = I->second; // Get the placeholder...
|
|
I->first.second.destroy(); // Free string memory if neccesary
|
|
|
|
// Loop over all of the uses of the GlobalValue. The only thing they are
|
|
// allowed to be at this point is ConstantPointerRef's.
|
|
assert(OldGV->use_size() == 1 && "Only one reference should exist!");
|
|
while (!OldGV->use_empty()) {
|
|
User *U = OldGV->use_back(); // Must be a ConstantPointerRef...
|
|
ConstantPointerRef *CPPR = cast<ConstantPointerRef>(U);
|
|
assert(CPPR->getValue() == OldGV && "Something isn't happy");
|
|
|
|
// Change the const pool reference to point to the real global variable
|
|
// now. This should drop a use from the OldGV.
|
|
CPPR->mutateReference(GV);
|
|
}
|
|
|
|
// Remove GV from the module...
|
|
CurrentModule->getGlobalList().remove(OldGV);
|
|
delete OldGV; // Delete the old placeholder
|
|
|
|
// Remove the map entry for the global now that it has been created...
|
|
GlobalRefs.erase(I);
|
|
}
|
|
}
|
|
|
|
} CurModule;
|
|
|
|
static struct PerFunctionInfo {
|
|
Function *CurrentFunction; // Pointer to current method being created
|
|
|
|
vector<ValueList> Values; // Keep track of numbered definitions
|
|
vector<ValueList> LateResolveValues;
|
|
vector<PATypeHolder> Types;
|
|
map<ValID, PATypeHolder> LateResolveTypes;
|
|
bool isDeclare; // Is this method a forward declararation?
|
|
|
|
inline PerFunctionInfo() {
|
|
CurrentFunction = 0;
|
|
isDeclare = false;
|
|
}
|
|
|
|
inline ~PerFunctionInfo() {}
|
|
|
|
inline void FunctionStart(Function *M) {
|
|
CurrentFunction = M;
|
|
}
|
|
|
|
void FunctionDone() {
|
|
// If we could not resolve some blocks at parsing time (forward branches)
|
|
// resolve the branches now...
|
|
ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
|
|
|
|
Values.clear(); // Clear out method local definitions
|
|
Types.clear();
|
|
CurrentFunction = 0;
|
|
isDeclare = false;
|
|
}
|
|
} CurMeth; // Info for the current method...
|
|
|
|
static bool inFunctionScope() { return CurMeth.CurrentFunction != 0; }
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code to handle definitions of all the types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static int InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values) {
|
|
if (D->hasName()) return -1; // Is this a numbered definition?
|
|
|
|
// Yes, insert the value into the value table...
|
|
unsigned type = D->getType()->getUniqueID();
|
|
if (ValueTab.size() <= type)
|
|
ValueTab.resize(type+1, ValueList());
|
|
//printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
|
|
ValueTab[type].push_back(D);
|
|
return ValueTab[type].size()-1;
|
|
}
|
|
|
|
// TODO: FIXME when Type are not const
|
|
static void InsertType(const Type *Ty, vector<PATypeHolder> &Types) {
|
|
Types.push_back(Ty);
|
|
}
|
|
|
|
static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
|
|
switch (D.Type) {
|
|
case 0: { // Is it a numbered definition?
|
|
unsigned Num = (unsigned)D.Num;
|
|
|
|
// Module constants occupy the lowest numbered slots...
|
|
if (Num < CurModule.Types.size())
|
|
return CurModule.Types[Num];
|
|
|
|
Num -= CurModule.Types.size();
|
|
|
|
// Check that the number is within bounds...
|
|
if (Num <= CurMeth.Types.size())
|
|
return CurMeth.Types[Num];
|
|
break;
|
|
}
|
|
case 1: { // Is it a named definition?
|
|
string Name(D.Name);
|
|
SymbolTable *SymTab = 0;
|
|
if (inFunctionScope()) SymTab = CurMeth.CurrentFunction->getSymbolTable();
|
|
Value *N = SymTab ? SymTab->lookup(Type::TypeTy, Name) : 0;
|
|
|
|
if (N == 0) {
|
|
// Symbol table doesn't automatically chain yet... because the method
|
|
// hasn't been added to the module...
|
|
//
|
|
SymTab = CurModule.CurrentModule->getSymbolTable();
|
|
if (SymTab)
|
|
N = SymTab->lookup(Type::TypeTy, Name);
|
|
if (N == 0) break;
|
|
}
|
|
|
|
D.destroy(); // Free old strdup'd memory...
|
|
return cast<const Type>(N);
|
|
}
|
|
default:
|
|
ThrowException("Invalid symbol type reference!");
|
|
}
|
|
|
|
// If we reached here, we referenced either a symbol that we don't know about
|
|
// or an id number that hasn't been read yet. We may be referencing something
|
|
// forward, so just create an entry to be resolved later and get to it...
|
|
//
|
|
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
|
|
|
|
map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ?
|
|
CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
|
|
|
|
map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
|
|
if (I != LateResolver.end()) {
|
|
return I->second;
|
|
}
|
|
|
|
Type *Typ = OpaqueType::get();
|
|
LateResolver.insert(make_pair(D, Typ));
|
|
return Typ;
|
|
}
|
|
|
|
static Value *lookupInSymbolTable(const Type *Ty, const string &Name) {
|
|
SymbolTable *SymTab =
|
|
inFunctionScope() ? CurMeth.CurrentFunction->getSymbolTable() : 0;
|
|
Value *N = SymTab ? SymTab->lookup(Ty, Name) : 0;
|
|
|
|
if (N == 0) {
|
|
// Symbol table doesn't automatically chain yet... because the method
|
|
// hasn't been added to the module...
|
|
//
|
|
SymTab = CurModule.CurrentModule->getSymbolTable();
|
|
if (SymTab)
|
|
N = SymTab->lookup(Ty, Name);
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
// getValNonImprovising - Look up the value specified by the provided type and
|
|
// the provided ValID. If the value exists and has already been defined, return
|
|
// it. Otherwise return null.
|
|
//
|
|
static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
|
|
if (isa<FunctionType>(Ty))
|
|
ThrowException("Functions are not values and "
|
|
"must be referenced as pointers");
|
|
|
|
switch (D.Type) {
|
|
case ValID::NumberVal: { // Is it a numbered definition?
|
|
unsigned type = Ty->getUniqueID();
|
|
unsigned Num = (unsigned)D.Num;
|
|
|
|
// Module constants occupy the lowest numbered slots...
|
|
if (type < CurModule.Values.size()) {
|
|
if (Num < CurModule.Values[type].size())
|
|
return CurModule.Values[type][Num];
|
|
|
|
Num -= CurModule.Values[type].size();
|
|
}
|
|
|
|
// Make sure that our type is within bounds
|
|
if (CurMeth.Values.size() <= type) return 0;
|
|
|
|
// Check that the number is within bounds...
|
|
if (CurMeth.Values[type].size() <= Num) return 0;
|
|
|
|
return CurMeth.Values[type][Num];
|
|
}
|
|
|
|
case ValID::NameVal: { // Is it a named definition?
|
|
Value *N = lookupInSymbolTable(Ty, string(D.Name));
|
|
if (N == 0) return 0;
|
|
|
|
D.destroy(); // Free old strdup'd memory...
|
|
return N;
|
|
}
|
|
|
|
// Check to make sure that "Ty" is an integral type, and that our
|
|
// value will fit into the specified type...
|
|
case ValID::ConstSIntVal: // Is it a constant pool reference??
|
|
if (Ty == Type::BoolTy) { // Special handling for boolean data
|
|
return ConstantBool::get(D.ConstPool64 != 0);
|
|
} else {
|
|
if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
|
|
ThrowException("Symbolic constant pool value '" +
|
|
itostr(D.ConstPool64) + "' is invalid for type '" +
|
|
Ty->getDescription() + "'!");
|
|
return ConstantSInt::get(Ty, D.ConstPool64);
|
|
}
|
|
|
|
case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
|
|
if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
|
|
if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
|
|
ThrowException("Integral constant pool reference is invalid!");
|
|
} else { // This is really a signed reference. Transmogrify.
|
|
return ConstantSInt::get(Ty, D.ConstPool64);
|
|
}
|
|
} else {
|
|
return ConstantUInt::get(Ty, D.UConstPool64);
|
|
}
|
|
|
|
case ValID::ConstStringVal: // Is it a string const pool reference?
|
|
cerr << "FIXME: TODO: String constants [sbyte] not implemented yet!\n";
|
|
abort();
|
|
return 0;
|
|
|
|
case ValID::ConstFPVal: // Is it a floating point const pool reference?
|
|
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
|
|
ThrowException("FP constant invalid for type!!");
|
|
return ConstantFP::get(Ty, D.ConstPoolFP);
|
|
|
|
case ValID::ConstNullVal: // Is it a null value?
|
|
if (!Ty->isPointerType())
|
|
ThrowException("Cannot create a a non pointer null!");
|
|
return ConstantPointerNull::get(cast<PointerType>(Ty));
|
|
|
|
default:
|
|
assert(0 && "Unhandled case!");
|
|
return 0;
|
|
} // End of switch
|
|
|
|
assert(0 && "Unhandled case!");
|
|
return 0;
|
|
}
|
|
|
|
|
|
// getVal - This function is identical to getValNonImprovising, except that if a
|
|
// value is not already defined, it "improvises" by creating a placeholder var
|
|
// that looks and acts just like the requested variable. When the value is
|
|
// defined later, all uses of the placeholder variable are replaced with the
|
|
// real thing.
|
|
//
|
|
static Value *getVal(const Type *Ty, const ValID &D) {
|
|
assert(Ty != Type::TypeTy && "Should use getTypeVal for types!");
|
|
|
|
// See if the value has already been defined...
|
|
Value *V = getValNonImprovising(Ty, D);
|
|
if (V) return V;
|
|
|
|
// If we reached here, we referenced either a symbol that we don't know about
|
|
// or an id number that hasn't been read yet. We may be referencing something
|
|
// forward, so just create an entry to be resolved later and get to it...
|
|
//
|
|
Value *d = 0;
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::LabelTyID: d = new BBPlaceHolder(Ty, D); break;
|
|
default: d = new ValuePlaceHolder(Ty, D); break;
|
|
}
|
|
|
|
assert(d != 0 && "How did we not make something?");
|
|
if (inFunctionScope())
|
|
InsertValue(d, CurMeth.LateResolveValues);
|
|
else
|
|
InsertValue(d, CurModule.LateResolveValues);
|
|
return d;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code to handle forward references in instructions
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This code handles the late binding needed with statements that reference
|
|
// values not defined yet... for example, a forward branch, or the PHI node for
|
|
// a loop body.
|
|
//
|
|
// This keeps a table (CurMeth.LateResolveValues) of all such forward references
|
|
// and back patchs after we are done.
|
|
//
|
|
|
|
// ResolveDefinitions - If we could not resolve some defs at parsing
|
|
// time (forward branches, phi functions for loops, etc...) resolve the
|
|
// defs now...
|
|
//
|
|
static void ResolveDefinitions(vector<ValueList> &LateResolvers,
|
|
vector<ValueList> *FutureLateResolvers = 0) {
|
|
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
|
|
for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
|
|
while (!LateResolvers[ty].empty()) {
|
|
Value *V = LateResolvers[ty].back();
|
|
assert(!isa<Type>(V) && "Types should be in LateResolveTypes!");
|
|
|
|
LateResolvers[ty].pop_back();
|
|
ValID &DID = getValIDFromPlaceHolder(V);
|
|
|
|
Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID);
|
|
if (TheRealValue) {
|
|
V->replaceAllUsesWith(TheRealValue);
|
|
delete V;
|
|
} else if (FutureLateResolvers) {
|
|
// Functions have their unresolved items forwarded to the module late
|
|
// resolver table
|
|
InsertValue(V, *FutureLateResolvers);
|
|
} else {
|
|
if (DID.Type == 1)
|
|
ThrowException("Reference to an invalid definition: '" +DID.getName()+
|
|
"' of type '" + V->getType()->getDescription() + "'",
|
|
getLineNumFromPlaceHolder(V));
|
|
else
|
|
ThrowException("Reference to an invalid definition: #" +
|
|
itostr(DID.Num) + " of type '" +
|
|
V->getType()->getDescription() + "'",
|
|
getLineNumFromPlaceHolder(V));
|
|
}
|
|
}
|
|
}
|
|
|
|
LateResolvers.clear();
|
|
}
|
|
|
|
// ResolveTypeTo - A brand new type was just declared. This means that (if
|
|
// name is not null) things referencing Name can be resolved. Otherwise, things
|
|
// refering to the number can be resolved. Do this now.
|
|
//
|
|
static void ResolveTypeTo(char *Name, const Type *ToTy) {
|
|
vector<PATypeHolder> &Types = inFunctionScope() ?
|
|
CurMeth.Types : CurModule.Types;
|
|
|
|
ValID D;
|
|
if (Name) D = ValID::create(Name);
|
|
else D = ValID::create((int)Types.size());
|
|
|
|
map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ?
|
|
CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
|
|
|
|
map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
|
|
if (I != LateResolver.end()) {
|
|
cast<DerivedType>(I->second.get())->refineAbstractTypeTo(ToTy);
|
|
LateResolver.erase(I);
|
|
}
|
|
}
|
|
|
|
// ResolveTypes - At this point, all types should be resolved. Any that aren't
|
|
// are errors.
|
|
//
|
|
static void ResolveTypes(map<ValID, PATypeHolder> &LateResolveTypes) {
|
|
if (!LateResolveTypes.empty()) {
|
|
const ValID &DID = LateResolveTypes.begin()->first;
|
|
|
|
if (DID.Type == ValID::NameVal)
|
|
ThrowException("Reference to an invalid type: '" +DID.getName() + "'");
|
|
else
|
|
ThrowException("Reference to an invalid type: #" + itostr(DID.Num));
|
|
}
|
|
}
|
|
|
|
|
|
// setValueName - Set the specified value to the name given. The name may be
|
|
// null potentially, in which case this is a noop. The string passed in is
|
|
// assumed to be a malloc'd string buffer, and is freed by this function.
|
|
//
|
|
// This function returns true if the value has already been defined, but is
|
|
// allowed to be redefined in the specified context. If the name is a new name
|
|
// for the typeplane, false is returned.
|
|
//
|
|
static bool setValueName(Value *V, char *NameStr) {
|
|
if (NameStr == 0) return false;
|
|
|
|
string Name(NameStr); // Copy string
|
|
free(NameStr); // Free old string
|
|
|
|
if (V->getType() == Type::VoidTy)
|
|
ThrowException("Can't assign name '" + Name +
|
|
"' to a null valued instruction!");
|
|
|
|
SymbolTable *ST = inFunctionScope() ?
|
|
CurMeth.CurrentFunction->getSymbolTableSure() :
|
|
CurModule.CurrentModule->getSymbolTableSure();
|
|
|
|
Value *Existing = ST->lookup(V->getType(), Name);
|
|
if (Existing) { // Inserting a name that is already defined???
|
|
// There is only one case where this is allowed: when we are refining an
|
|
// opaque type. In this case, Existing will be an opaque type.
|
|
if (const Type *Ty = dyn_cast<const Type>(Existing)) {
|
|
if (OpaqueType *OpTy = dyn_cast<OpaqueType>(Ty)) {
|
|
// We ARE replacing an opaque type!
|
|
OpTy->refineAbstractTypeTo(cast<Type>(V));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we are a simple redefinition of a value, check to see if it
|
|
// is defined the same as the old one...
|
|
if (const Type *Ty = dyn_cast<const Type>(Existing)) {
|
|
if (Ty == cast<const Type>(V)) return true; // Yes, it's equal.
|
|
// cerr << "Type: " << Ty->getDescription() << " != "
|
|
// << cast<const Type>(V)->getDescription() << "!\n";
|
|
} else if (GlobalVariable *EGV = dyn_cast<GlobalVariable>(Existing)) {
|
|
// We are allowed to redefine a global variable in two circumstances:
|
|
// 1. If at least one of the globals is uninitialized or
|
|
// 2. If both initializers have the same value.
|
|
//
|
|
// This can only be done if the const'ness of the vars is the same.
|
|
//
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
|
|
if (EGV->isConstant() == GV->isConstant() &&
|
|
(!EGV->hasInitializer() || !GV->hasInitializer() ||
|
|
EGV->getInitializer() == GV->getInitializer())) {
|
|
|
|
// Make sure the existing global version gets the initializer!
|
|
if (GV->hasInitializer() && !EGV->hasInitializer())
|
|
EGV->setInitializer(GV->getInitializer());
|
|
|
|
delete GV; // Destroy the duplicate!
|
|
return true; // They are equivalent!
|
|
}
|
|
}
|
|
}
|
|
ThrowException("Redefinition of value named '" + Name + "' in the '" +
|
|
V->getType()->getDescription() + "' type plane!");
|
|
}
|
|
|
|
V->setName(Name, ST);
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code for handling upreferences in type names...
|
|
//
|
|
|
|
// TypeContains - Returns true if Ty contains E in it.
|
|
//
|
|
static bool TypeContains(const Type *Ty, const Type *E) {
|
|
return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty);
|
|
}
|
|
|
|
|
|
static vector<pair<unsigned, OpaqueType *> > UpRefs;
|
|
|
|
static PATypeHolder HandleUpRefs(const Type *ty) {
|
|
PATypeHolder Ty(ty);
|
|
UR_OUT("Type '" << ty->getDescription() <<
|
|
"' newly formed. Resolving upreferences.\n" <<
|
|
UpRefs.size() << " upreferences active!\n");
|
|
for (unsigned i = 0; i < UpRefs.size(); ) {
|
|
UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
|
|
<< UpRefs[i].second->getDescription() << ") = "
|
|
<< (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << endl);
|
|
if (TypeContains(Ty, UpRefs[i].second)) {
|
|
unsigned Level = --UpRefs[i].first; // Decrement level of upreference
|
|
UR_OUT(" Uplevel Ref Level = " << Level << endl);
|
|
if (Level == 0) { // Upreference should be resolved!
|
|
UR_OUT(" * Resolving upreference for "
|
|
<< UpRefs[i].second->getDescription() << endl;
|
|
string OldName = UpRefs[i].second->getDescription());
|
|
UpRefs[i].second->refineAbstractTypeTo(Ty);
|
|
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
|
|
UR_OUT(" * Type '" << OldName << "' refined upreference to: "
|
|
<< (const void*)Ty << ", " << Ty->getDescription() << endl);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
++i; // Otherwise, no resolve, move on...
|
|
}
|
|
// FIXME: TODO: this should return the updated type
|
|
return Ty;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RunVMAsmParser - Define an interface to this parser
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
Module *RunVMAsmParser(const string &Filename, FILE *F) {
|
|
llvmAsmin = F;
|
|
CurFilename = Filename;
|
|
llvmAsmlineno = 1; // Reset the current line number...
|
|
|
|
CurModule.CurrentModule = new Module(); // Allocate a new module to read
|
|
yyparse(); // Parse the file.
|
|
Module *Result = ParserResult;
|
|
llvmAsmin = stdin; // F is about to go away, don't use it anymore...
|
|
ParserResult = 0;
|
|
|
|
return Result;
|
|
}
|
|
|
|
%}
|
|
|
|
%union {
|
|
Module *ModuleVal;
|
|
Function *FunctionVal;
|
|
std::pair<Argument*, char*> *ArgVal;
|
|
BasicBlock *BasicBlockVal;
|
|
TerminatorInst *TermInstVal;
|
|
Instruction *InstVal;
|
|
Constant *ConstVal;
|
|
|
|
const Type *PrimType;
|
|
PATypeHolder *TypeVal;
|
|
Value *ValueVal;
|
|
|
|
std::list<std::pair<Argument*,char*> > *ArgList;
|
|
std::vector<Value*> *ValueList;
|
|
std::list<PATypeHolder> *TypeList;
|
|
std::list<std::pair<Value*,
|
|
BasicBlock*> > *PHIList; // Represent the RHS of PHI node
|
|
std::vector<std::pair<Constant*, BasicBlock*> > *JumpTable;
|
|
std::vector<Constant*> *ConstVector;
|
|
|
|
int64_t SInt64Val;
|
|
uint64_t UInt64Val;
|
|
int SIntVal;
|
|
unsigned UIntVal;
|
|
double FPVal;
|
|
bool BoolVal;
|
|
|
|
char *StrVal; // This memory is strdup'd!
|
|
ValID ValIDVal; // strdup'd memory maybe!
|
|
|
|
Instruction::UnaryOps UnaryOpVal;
|
|
Instruction::BinaryOps BinaryOpVal;
|
|
Instruction::TermOps TermOpVal;
|
|
Instruction::MemoryOps MemOpVal;
|
|
Instruction::OtherOps OtherOpVal;
|
|
}
|
|
|
|
%type <ModuleVal> Module FunctionList
|
|
%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
|
|
%type <BasicBlockVal> BasicBlock InstructionList
|
|
%type <TermInstVal> BBTerminatorInst
|
|
%type <InstVal> Inst InstVal MemoryInst
|
|
%type <ConstVal> ConstVal
|
|
%type <ConstVector> ConstVector
|
|
%type <ArgList> ArgList ArgListH
|
|
%type <ArgVal> ArgVal
|
|
%type <PHIList> PHIList
|
|
%type <ValueList> ValueRefList ValueRefListE // For call param lists
|
|
%type <ValueList> IndexList // For GEP derived indices
|
|
%type <TypeList> TypeListI ArgTypeListI
|
|
%type <JumpTable> JumpTable
|
|
%type <BoolVal> GlobalType OptInternal // GLOBAL or CONSTANT? Intern?
|
|
|
|
// ValueRef - Unresolved reference to a definition or BB
|
|
%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
|
|
%type <ValueVal> ResolvedVal // <type> <valref> pair
|
|
// Tokens and types for handling constant integer values
|
|
//
|
|
// ESINT64VAL - A negative number within long long range
|
|
%token <SInt64Val> ESINT64VAL
|
|
|
|
// EUINT64VAL - A positive number within uns. long long range
|
|
%token <UInt64Val> EUINT64VAL
|
|
%type <SInt64Val> EINT64VAL
|
|
|
|
%token <SIntVal> SINTVAL // Signed 32 bit ints...
|
|
%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
|
|
%type <SIntVal> INTVAL
|
|
%token <FPVal> FPVAL // Float or Double constant
|
|
|
|
// Built in types...
|
|
%type <TypeVal> Types TypesV UpRTypes UpRTypesV
|
|
%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
|
|
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
|
|
%token <PrimType> FLOAT DOUBLE TYPE LABEL
|
|
|
|
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
|
|
%type <StrVal> OptVAR_ID OptAssign
|
|
|
|
|
|
%token IMPLEMENTATION TRUE FALSE BEGINTOK END DECLARE GLOBAL CONSTANT UNINIT
|
|
%token TO EXCEPT DOTDOTDOT STRING NULL_TOK CONST INTERNAL OPAQUE
|
|
|
|
// Basic Block Terminating Operators
|
|
%token <TermOpVal> RET BR SWITCH
|
|
|
|
// Unary Operators
|
|
%type <UnaryOpVal> UnaryOps // all the unary operators
|
|
%token <UnaryOpVal> NOT
|
|
|
|
// Binary Operators
|
|
%type <BinaryOpVal> BinaryOps // all the binary operators
|
|
%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
|
|
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators
|
|
|
|
// Memory Instructions
|
|
%token <MemoryOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
|
|
|
|
// Other Operators
|
|
%type <OtherOpVal> ShiftOps
|
|
%token <OtherOpVal> PHI CALL INVOKE CAST SHL SHR
|
|
|
|
%start Module
|
|
%%
|
|
|
|
// Handle constant integer size restriction and conversion...
|
|
//
|
|
|
|
INTVAL : SINTVAL
|
|
INTVAL : UINTVAL {
|
|
if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
|
|
ThrowException("Value too large for type!");
|
|
$$ = (int32_t)$1;
|
|
}
|
|
|
|
|
|
EINT64VAL : ESINT64VAL // These have same type and can't cause problems...
|
|
EINT64VAL : EUINT64VAL {
|
|
if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
|
|
ThrowException("Value too large for type!");
|
|
$$ = (int64_t)$1;
|
|
}
|
|
|
|
// Operations that are notably excluded from this list include:
|
|
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
|
|
//
|
|
UnaryOps : NOT
|
|
BinaryOps : ADD | SUB | MUL | DIV | REM | AND | OR | XOR
|
|
BinaryOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
|
|
ShiftOps : SHL | SHR
|
|
|
|
// These are some types that allow classification if we only want a particular
|
|
// thing... for example, only a signed, unsigned, or integral type.
|
|
SIntType : LONG | INT | SHORT | SBYTE
|
|
UIntType : ULONG | UINT | USHORT | UBYTE
|
|
IntType : SIntType | UIntType
|
|
FPType : FLOAT | DOUBLE
|
|
|
|
// OptAssign - Value producing statements have an optional assignment component
|
|
OptAssign : VAR_ID '=' {
|
|
$$ = $1;
|
|
}
|
|
| /*empty*/ {
|
|
$$ = 0;
|
|
}
|
|
|
|
OptInternal : INTERNAL { $$ = true; } | /*empty*/ { $$ = false; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Types includes all predefined types... except void, because it can only be
|
|
// used in specific contexts (method returning void for example). To have
|
|
// access to it, a user must explicitly use TypesV.
|
|
//
|
|
|
|
// TypesV includes all of 'Types', but it also includes the void type.
|
|
TypesV : Types | VOID { $$ = new PATypeHolder($1); }
|
|
UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); }
|
|
|
|
Types : UpRTypes {
|
|
if (UpRefs.size())
|
|
ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
|
|
$$ = $1;
|
|
}
|
|
|
|
|
|
// Derived types are added later...
|
|
//
|
|
PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT
|
|
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL
|
|
UpRTypes : OPAQUE {
|
|
$$ = new PATypeHolder(OpaqueType::get());
|
|
}
|
|
| PrimType {
|
|
$$ = new PATypeHolder($1);
|
|
}
|
|
UpRTypes : ValueRef { // Named types are also simple types...
|
|
$$ = new PATypeHolder(getTypeVal($1));
|
|
}
|
|
|
|
// Include derived types in the Types production.
|
|
//
|
|
UpRTypes : '\\' EUINT64VAL { // Type UpReference
|
|
if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!");
|
|
OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
|
|
UpRefs.push_back(make_pair((unsigned)$2, OT)); // Add to vector...
|
|
$$ = new PATypeHolder(OT);
|
|
UR_OUT("New Upreference!\n");
|
|
}
|
|
| UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
|
|
vector<const Type*> Params;
|
|
mapto($3->begin(), $3->end(), std::back_inserter(Params),
|
|
std::mem_fun_ref(&PATypeHandle<Type>::get));
|
|
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
|
|
if (isVarArg) Params.pop_back();
|
|
|
|
$$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
|
|
delete $3; // Delete the argument list
|
|
delete $1; // Delete the old type handle
|
|
}
|
|
| '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
|
|
$$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
|
|
delete $4;
|
|
}
|
|
| '{' TypeListI '}' { // Structure type?
|
|
vector<const Type*> Elements;
|
|
mapto($2->begin(), $2->end(), std::back_inserter(Elements),
|
|
std::mem_fun_ref(&PATypeHandle<Type>::get));
|
|
|
|
$$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
|
|
delete $2;
|
|
}
|
|
| '{' '}' { // Empty structure type?
|
|
$$ = new PATypeHolder(StructType::get(vector<const Type*>()));
|
|
}
|
|
| UpRTypes '*' { // Pointer type?
|
|
$$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
|
|
delete $1;
|
|
}
|
|
|
|
// TypeList - Used for struct declarations and as a basis for method type
|
|
// declaration type lists
|
|
//
|
|
TypeListI : UpRTypes {
|
|
$$ = new list<PATypeHolder>();
|
|
$$->push_back(*$1); delete $1;
|
|
}
|
|
| TypeListI ',' UpRTypes {
|
|
($$=$1)->push_back(*$3); delete $3;
|
|
}
|
|
|
|
// ArgTypeList - List of types for a method type declaration...
|
|
ArgTypeListI : TypeListI
|
|
| TypeListI ',' DOTDOTDOT {
|
|
($$=$1)->push_back(Type::VoidTy);
|
|
}
|
|
| DOTDOTDOT {
|
|
($$ = new list<PATypeHolder>())->push_back(Type::VoidTy);
|
|
}
|
|
| /*empty*/ {
|
|
$$ = new list<PATypeHolder>();
|
|
}
|
|
|
|
|
|
// ConstVal - The various declarations that go into the constant pool. This
|
|
// includes all forward declarations of types, constants, and functions.
|
|
//
|
|
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
|
|
const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
ThrowException("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
const Type *ETy = ATy->getElementType();
|
|
int NumElements = ATy->getNumElements();
|
|
|
|
// Verify that we have the correct size...
|
|
if (NumElements != -1 && NumElements != (int)$3->size())
|
|
ThrowException("Type mismatch: constant sized array initialized with " +
|
|
utostr($3->size()) + " arguments, but has size of " +
|
|
itostr(NumElements) + "!");
|
|
|
|
// Verify all elements are correct type!
|
|
for (unsigned i = 0; i < $3->size(); i++) {
|
|
if (ETy != (*$3)[i]->getType())
|
|
ThrowException("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '"+
|
|
(*$3)[i]->getType()->getDescription() + "'.");
|
|
}
|
|
|
|
$$ = ConstantArray::get(ATy, *$3);
|
|
delete $1; delete $3;
|
|
}
|
|
| Types '[' ']' {
|
|
const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
ThrowException("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
|
|
int NumElements = ATy->getNumElements();
|
|
if (NumElements != -1 && NumElements != 0)
|
|
ThrowException("Type mismatch: constant sized array initialized with 0"
|
|
" arguments, but has size of " + itostr(NumElements) +"!");
|
|
$$ = ConstantArray::get(ATy, vector<Constant*>());
|
|
delete $1;
|
|
}
|
|
| Types 'c' STRINGCONSTANT {
|
|
const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
ThrowException("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
|
|
int NumElements = ATy->getNumElements();
|
|
const Type *ETy = ATy->getElementType();
|
|
char *EndStr = UnEscapeLexed($3, true);
|
|
if (NumElements != -1 && NumElements != (EndStr-$3))
|
|
ThrowException("Can't build string constant of size " +
|
|
itostr((int)(EndStr-$3)) +
|
|
" when array has size " + itostr(NumElements) + "!");
|
|
vector<Constant*> Vals;
|
|
if (ETy == Type::SByteTy) {
|
|
for (char *C = $3; C != EndStr; ++C)
|
|
Vals.push_back(ConstantSInt::get(ETy, *C));
|
|
} else if (ETy == Type::UByteTy) {
|
|
for (char *C = $3; C != EndStr; ++C)
|
|
Vals.push_back(ConstantUInt::get(ETy, *C));
|
|
} else {
|
|
free($3);
|
|
ThrowException("Cannot build string arrays of non byte sized elements!");
|
|
}
|
|
free($3);
|
|
$$ = ConstantArray::get(ATy, Vals);
|
|
delete $1;
|
|
}
|
|
| Types '{' ConstVector '}' {
|
|
const StructType *STy = dyn_cast<const StructType>($1->get());
|
|
if (STy == 0)
|
|
ThrowException("Cannot make struct constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
// FIXME: TODO: Check to see that the constants are compatible with the type
|
|
// initializer!
|
|
$$ = ConstantStruct::get(STy, *$3);
|
|
delete $1; delete $3;
|
|
}
|
|
| Types NULL_TOK {
|
|
const PointerType *PTy = dyn_cast<const PointerType>($1->get());
|
|
if (PTy == 0)
|
|
ThrowException("Cannot make null pointer constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
|
|
$$ = ConstantPointerNull::get(PTy);
|
|
delete $1;
|
|
}
|
|
| Types SymbolicValueRef {
|
|
const PointerType *Ty = dyn_cast<const PointerType>($1->get());
|
|
if (Ty == 0)
|
|
ThrowException("Global const reference must be a pointer type!");
|
|
|
|
Value *V = getValNonImprovising(Ty, $2);
|
|
|
|
// If this is an initializer for a constant pointer, which is referencing a
|
|
// (currently) undefined variable, create a stub now that shall be replaced
|
|
// in the future with the right type of variable.
|
|
//
|
|
if (V == 0) {
|
|
assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
|
|
const PointerType *PT = cast<PointerType>(Ty);
|
|
|
|
// First check to see if the forward references value is already created!
|
|
PerModuleInfo::GlobalRefsType::iterator I =
|
|
CurModule.GlobalRefs.find(make_pair(PT, $2));
|
|
|
|
if (I != CurModule.GlobalRefs.end()) {
|
|
V = I->second; // Placeholder already exists, use it...
|
|
} else {
|
|
// TODO: Include line number info by creating a subclass of
|
|
// TODO: GlobalVariable here that includes the said information!
|
|
|
|
// Create a placeholder for the global variable reference...
|
|
GlobalVariable *GV = new GlobalVariable(PT->getElementType(),
|
|
false, true);
|
|
// Keep track of the fact that we have a forward ref to recycle it
|
|
CurModule.GlobalRefs.insert(make_pair(make_pair(PT, $2), GV));
|
|
|
|
// Must temporarily push this value into the module table...
|
|
CurModule.CurrentModule->getGlobalList().push_back(GV);
|
|
V = GV;
|
|
}
|
|
}
|
|
|
|
GlobalValue *GV = cast<GlobalValue>(V);
|
|
$$ = ConstantPointerRef::get(GV);
|
|
delete $1; // Free the type handle
|
|
}
|
|
|
|
|
|
ConstVal : SIntType EINT64VAL { // integral constants
|
|
if (!ConstantSInt::isValueValidForType($1, $2))
|
|
ThrowException("Constant value doesn't fit in type!");
|
|
$$ = ConstantSInt::get($1, $2);
|
|
}
|
|
| UIntType EUINT64VAL { // integral constants
|
|
if (!ConstantUInt::isValueValidForType($1, $2))
|
|
ThrowException("Constant value doesn't fit in type!");
|
|
$$ = ConstantUInt::get($1, $2);
|
|
}
|
|
| BOOL TRUE { // Boolean constants
|
|
$$ = ConstantBool::True;
|
|
}
|
|
| BOOL FALSE { // Boolean constants
|
|
$$ = ConstantBool::False;
|
|
}
|
|
| FPType FPVAL { // Float & Double constants
|
|
$$ = ConstantFP::get($1, $2);
|
|
}
|
|
|
|
// ConstVector - A list of comma seperated constants.
|
|
ConstVector : ConstVector ',' ConstVal {
|
|
($$ = $1)->push_back($3);
|
|
}
|
|
| ConstVal {
|
|
$$ = new vector<Constant*>();
|
|
$$->push_back($1);
|
|
}
|
|
|
|
|
|
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
|
|
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }
|
|
|
|
|
|
// ConstPool - Constants with optional names assigned to them.
|
|
ConstPool : ConstPool OptAssign CONST ConstVal {
|
|
if (setValueName($4, $2)) { assert(0 && "No redefinitions allowed!"); }
|
|
InsertValue($4);
|
|
}
|
|
| ConstPool OptAssign TYPE TypesV { // Types can be defined in the const pool
|
|
// Eagerly resolve types. This is not an optimization, this is a
|
|
// requirement that is due to the fact that we could have this:
|
|
//
|
|
// %list = type { %list * }
|
|
// %list = type { %list * } ; repeated type decl
|
|
//
|
|
// If types are not resolved eagerly, then the two types will not be
|
|
// determined to be the same type!
|
|
//
|
|
ResolveTypeTo($2, $4->get());
|
|
|
|
// TODO: FIXME when Type are not const
|
|
if (!setValueName(const_cast<Type*>($4->get()), $2)) {
|
|
// If this is not a redefinition of a type...
|
|
if (!$2) {
|
|
InsertType($4->get(),
|
|
inFunctionScope() ? CurMeth.Types : CurModule.Types);
|
|
}
|
|
}
|
|
|
|
delete $4;
|
|
}
|
|
| ConstPool FunctionProto { // Function prototypes can be in const pool
|
|
}
|
|
| ConstPool OptAssign OptInternal GlobalType ConstVal {
|
|
const Type *Ty = $5->getType();
|
|
// Global declarations appear in Constant Pool
|
|
Constant *Initializer = $5;
|
|
if (Initializer == 0)
|
|
ThrowException("Global value initializer is not a constant!");
|
|
|
|
GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer);
|
|
if (!setValueName(GV, $2)) { // If not redefining...
|
|
CurModule.CurrentModule->getGlobalList().push_back(GV);
|
|
int Slot = InsertValue(GV, CurModule.Values);
|
|
|
|
if (Slot != -1) {
|
|
CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
|
|
} else {
|
|
CurModule.DeclareNewGlobalValue(GV, ValID::create(
|
|
(char*)GV->getName().c_str()));
|
|
}
|
|
}
|
|
}
|
|
| ConstPool OptAssign OptInternal UNINIT GlobalType Types {
|
|
const Type *Ty = *$6;
|
|
// Global declarations appear in Constant Pool
|
|
GlobalVariable *GV = new GlobalVariable(Ty, $5, $3);
|
|
if (!setValueName(GV, $2)) { // If not redefining...
|
|
CurModule.CurrentModule->getGlobalList().push_back(GV);
|
|
int Slot = InsertValue(GV, CurModule.Values);
|
|
|
|
if (Slot != -1) {
|
|
CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
|
|
} else {
|
|
assert(GV->hasName() && "Not named and not numbered!?");
|
|
CurModule.DeclareNewGlobalValue(GV, ValID::create(
|
|
(char*)GV->getName().c_str()));
|
|
}
|
|
}
|
|
delete $6;
|
|
}
|
|
| /* empty: end of list */ {
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Modules
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Module rule: Capture the result of parsing the whole file into a result
|
|
// variable...
|
|
//
|
|
Module : FunctionList {
|
|
$$ = ParserResult = $1;
|
|
CurModule.ModuleDone();
|
|
}
|
|
|
|
// FunctionList - A list of methods, preceeded by a constant pool.
|
|
//
|
|
FunctionList : FunctionList Function {
|
|
$$ = $1;
|
|
assert($2->getParent() == 0 && "Function already in module!");
|
|
$1->getFunctionList().push_back($2);
|
|
CurMeth.FunctionDone();
|
|
}
|
|
| FunctionList FunctionProto {
|
|
$$ = $1;
|
|
}
|
|
| ConstPool IMPLEMENTATION {
|
|
$$ = CurModule.CurrentModule;
|
|
// Resolve circular types before we parse the body of the module
|
|
ResolveTypes(CurModule.LateResolveTypes);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Function Headers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; }
|
|
|
|
ArgVal : Types OptVAR_ID {
|
|
$$ = new pair<Argument*, char*>(new Argument(*$1), $2);
|
|
delete $1; // Delete the type handle..
|
|
}
|
|
|
|
ArgListH : ArgVal ',' ArgListH {
|
|
$$ = $3;
|
|
$3->push_front(*$1);
|
|
delete $1;
|
|
}
|
|
| ArgVal {
|
|
$$ = new list<pair<Argument*,char*> >();
|
|
$$->push_front(*$1);
|
|
delete $1;
|
|
}
|
|
| DOTDOTDOT {
|
|
$$ = new list<pair<Argument*, char*> >();
|
|
$$->push_front(pair<Argument*,char*>(new Argument(Type::VoidTy), 0));
|
|
}
|
|
|
|
ArgList : ArgListH {
|
|
$$ = $1;
|
|
}
|
|
| /* empty */ {
|
|
$$ = 0;
|
|
}
|
|
|
|
FunctionHeaderH : OptInternal TypesV STRINGCONSTANT '(' ArgList ')' {
|
|
UnEscapeLexed($3);
|
|
string FunctionName($3);
|
|
|
|
vector<const Type*> ParamTypeList;
|
|
if ($5)
|
|
for (list<pair<Argument*,char*> >::iterator I = $5->begin();
|
|
I != $5->end(); ++I)
|
|
ParamTypeList.push_back(I->first->getType());
|
|
|
|
bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypeList.pop_back();
|
|
|
|
const FunctionType *MT = FunctionType::get(*$2, ParamTypeList, isVarArg);
|
|
const PointerType *PMT = PointerType::get(MT);
|
|
delete $2;
|
|
|
|
Function *M = 0;
|
|
if (SymbolTable *ST = CurModule.CurrentModule->getSymbolTable()) {
|
|
// Is the function already in symtab?
|
|
if (Value *V = ST->lookup(PMT, FunctionName)) {
|
|
M = cast<Function>(V);
|
|
|
|
// Yes it is. If this is the case, either we need to be a forward decl,
|
|
// or it needs to be.
|
|
if (!CurMeth.isDeclare && !M->isExternal())
|
|
ThrowException("Redefinition of method '" + FunctionName + "'!");
|
|
|
|
// If we found a preexisting method prototype, remove it from the module,
|
|
// so that we don't get spurious conflicts with global & local variables.
|
|
//
|
|
CurModule.CurrentModule->getFunctionList().remove(M);
|
|
}
|
|
}
|
|
|
|
if (M == 0) { // Not already defined?
|
|
M = new Function(MT, $1, FunctionName);
|
|
InsertValue(M, CurModule.Values);
|
|
CurModule.DeclareNewGlobalValue(M, ValID::create($3));
|
|
}
|
|
free($3); // Free strdup'd memory!
|
|
|
|
CurMeth.FunctionStart(M);
|
|
|
|
// Add all of the arguments we parsed to the method...
|
|
if ($5 && !CurMeth.isDeclare) { // Is null if empty...
|
|
Function::ArgumentListType &ArgList = M->getArgumentList();
|
|
|
|
for (list<pair<Argument*, char*> >::iterator I = $5->begin();
|
|
I != $5->end(); ++I) {
|
|
if (setValueName(I->first, I->second)) { // Insert into symtab...
|
|
assert(0 && "No arg redef allowed!");
|
|
}
|
|
|
|
InsertValue(I->first);
|
|
ArgList.push_back(I->first);
|
|
}
|
|
delete $5; // We're now done with the argument list
|
|
} else if ($5) {
|
|
// If we are a declaration, we should free the memory for the argument list!
|
|
for (list<pair<Argument*, char*> >::iterator I = $5->begin(), E = $5->end();
|
|
I != E; ++I) {
|
|
if (I->second) free(I->second); // Free the memory for the name...
|
|
delete I->first; // Free the unused function argument
|
|
}
|
|
delete $5; // Free the memory for the list itself
|
|
}
|
|
}
|
|
|
|
FunctionHeader : FunctionHeaderH ConstPool BEGINTOK {
|
|
$$ = CurMeth.CurrentFunction;
|
|
|
|
// Resolve circular types before we parse the body of the method.
|
|
ResolveTypes(CurMeth.LateResolveTypes);
|
|
}
|
|
|
|
Function : BasicBlockList END {
|
|
$$ = $1;
|
|
}
|
|
|
|
FunctionProto : DECLARE { CurMeth.isDeclare = true; } FunctionHeaderH {
|
|
$$ = CurMeth.CurrentFunction;
|
|
assert($$->getParent() == 0 && "Function already in module!");
|
|
CurModule.CurrentModule->getFunctionList().push_back($$);
|
|
CurMeth.FunctionDone();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Basic Blocks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConstValueRef : ESINT64VAL { // A reference to a direct constant
|
|
$$ = ValID::create($1);
|
|
}
|
|
| EUINT64VAL {
|
|
$$ = ValID::create($1);
|
|
}
|
|
| FPVAL { // Perhaps it's an FP constant?
|
|
$$ = ValID::create($1);
|
|
}
|
|
| TRUE {
|
|
$$ = ValID::create((int64_t)1);
|
|
}
|
|
| FALSE {
|
|
$$ = ValID::create((int64_t)0);
|
|
}
|
|
| NULL_TOK {
|
|
$$ = ValID::createNull();
|
|
}
|
|
|
|
/*
|
|
| STRINGCONSTANT { // Quoted strings work too... especially for methods
|
|
$$ = ValID::create_conststr($1);
|
|
}
|
|
*/
|
|
|
|
// SymbolicValueRef - Reference to one of two ways of symbolically refering to
|
|
// another value.
|
|
//
|
|
SymbolicValueRef : INTVAL { // Is it an integer reference...?
|
|
$$ = ValID::create($1);
|
|
}
|
|
| VAR_ID { // Is it a named reference...?
|
|
$$ = ValID::create($1);
|
|
}
|
|
|
|
// ValueRef - A reference to a definition... either constant or symbolic
|
|
ValueRef : SymbolicValueRef | ConstValueRef
|
|
|
|
|
|
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
|
|
// type immediately preceeds the value reference, and allows complex constant
|
|
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
|
|
ResolvedVal : Types ValueRef {
|
|
$$ = getVal(*$1, $2); delete $1;
|
|
}
|
|
|
|
|
|
BasicBlockList : BasicBlockList BasicBlock {
|
|
($$ = $1)->getBasicBlocks().push_back($2);
|
|
}
|
|
| FunctionHeader BasicBlock { // Do not allow methods with 0 basic blocks
|
|
($$ = $1)->getBasicBlocks().push_back($2);
|
|
}
|
|
|
|
|
|
// Basic blocks are terminated by branching instructions:
|
|
// br, br/cc, switch, ret
|
|
//
|
|
BasicBlock : InstructionList OptAssign BBTerminatorInst {
|
|
if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); }
|
|
InsertValue($3);
|
|
|
|
$1->getInstList().push_back($3);
|
|
InsertValue($1);
|
|
$$ = $1;
|
|
}
|
|
| LABELSTR InstructionList OptAssign BBTerminatorInst {
|
|
if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); }
|
|
InsertValue($4);
|
|
|
|
$2->getInstList().push_back($4);
|
|
if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); }
|
|
|
|
InsertValue($2);
|
|
$$ = $2;
|
|
}
|
|
|
|
InstructionList : InstructionList Inst {
|
|
$1->getInstList().push_back($2);
|
|
$$ = $1;
|
|
}
|
|
| /* empty */ {
|
|
$$ = new BasicBlock();
|
|
}
|
|
|
|
BBTerminatorInst : RET ResolvedVal { // Return with a result...
|
|
$$ = new ReturnInst($2);
|
|
}
|
|
| RET VOID { // Return with no result...
|
|
$$ = new ReturnInst();
|
|
}
|
|
| BR LABEL ValueRef { // Unconditional Branch...
|
|
$$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $3)));
|
|
} // Conditional Branch...
|
|
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
|
|
$$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $6)),
|
|
cast<BasicBlock>(getVal(Type::LabelTy, $9)),
|
|
getVal(Type::BoolTy, $3));
|
|
}
|
|
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
|
|
SwitchInst *S = new SwitchInst(getVal($2, $3),
|
|
cast<BasicBlock>(getVal(Type::LabelTy, $6)));
|
|
$$ = S;
|
|
|
|
vector<pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
|
|
E = $8->end();
|
|
for (; I != E; ++I)
|
|
S->dest_push_back(I->first, I->second);
|
|
}
|
|
| INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal
|
|
EXCEPT ResolvedVal {
|
|
const PointerType *PMTy;
|
|
const FunctionType *Ty;
|
|
|
|
if (!(PMTy = dyn_cast<PointerType>($2->get())) ||
|
|
!(Ty = dyn_cast<FunctionType>(PMTy->getElementType()))) {
|
|
// Pull out the types of all of the arguments...
|
|
vector<const Type*> ParamTypes;
|
|
if ($5) {
|
|
for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
|
|
ParamTypes.push_back((*I)->getType());
|
|
}
|
|
|
|
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypes.pop_back();
|
|
|
|
Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
|
|
PMTy = PointerType::get(Ty);
|
|
}
|
|
delete $2;
|
|
|
|
Value *V = getVal(PMTy, $3); // Get the method we're calling...
|
|
|
|
BasicBlock *Normal = dyn_cast<BasicBlock>($8);
|
|
BasicBlock *Except = dyn_cast<BasicBlock>($10);
|
|
|
|
if (Normal == 0 || Except == 0)
|
|
ThrowException("Invoke instruction without label destinations!");
|
|
|
|
// Create the call node...
|
|
if (!$5) { // Has no arguments?
|
|
$$ = new InvokeInst(V, Normal, Except, vector<Value*>());
|
|
} else { // Has arguments?
|
|
// Loop through FunctionType's arguments and ensure they are specified
|
|
// correctly!
|
|
//
|
|
FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
|
|
FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
|
|
vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
|
|
|
|
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
|
|
if ((*ArgI)->getType() != *I)
|
|
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
|
|
(*I)->getDescription() + "'!");
|
|
|
|
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
|
|
ThrowException("Invalid number of parameters detected!");
|
|
|
|
$$ = new InvokeInst(V, Normal, Except, *$5);
|
|
}
|
|
delete $5;
|
|
}
|
|
|
|
|
|
|
|
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
|
|
$$ = $1;
|
|
Constant *V = cast<Constant>(getValNonImprovising($2, $3));
|
|
if (V == 0)
|
|
ThrowException("May only switch on a constant pool value!");
|
|
|
|
$$->push_back(make_pair(V, cast<BasicBlock>(getVal($5, $6))));
|
|
}
|
|
| IntType ConstValueRef ',' LABEL ValueRef {
|
|
$$ = new vector<pair<Constant*, BasicBlock*> >();
|
|
Constant *V = cast<Constant>(getValNonImprovising($1, $2));
|
|
|
|
if (V == 0)
|
|
ThrowException("May only switch on a constant pool value!");
|
|
|
|
$$->push_back(make_pair(V, cast<BasicBlock>(getVal($4, $5))));
|
|
}
|
|
|
|
Inst : OptAssign InstVal {
|
|
// Is this definition named?? if so, assign the name...
|
|
if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); }
|
|
InsertValue($2);
|
|
$$ = $2;
|
|
}
|
|
|
|
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
|
|
$$ = new list<pair<Value*, BasicBlock*> >();
|
|
$$->push_back(make_pair(getVal(*$1, $3),
|
|
cast<BasicBlock>(getVal(Type::LabelTy, $5))));
|
|
delete $1;
|
|
}
|
|
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
|
|
$$ = $1;
|
|
$1->push_back(make_pair(getVal($1->front().first->getType(), $4),
|
|
cast<BasicBlock>(getVal(Type::LabelTy, $6))));
|
|
}
|
|
|
|
|
|
ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
|
|
$$ = new vector<Value*>();
|
|
$$->push_back($1);
|
|
}
|
|
| ValueRefList ',' ResolvedVal {
|
|
$$ = $1;
|
|
$1->push_back($3);
|
|
}
|
|
|
|
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
|
|
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }
|
|
|
|
InstVal : BinaryOps Types ValueRef ',' ValueRef {
|
|
$$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
|
|
if ($$ == 0)
|
|
ThrowException("binary operator returned null!");
|
|
delete $2;
|
|
}
|
|
| UnaryOps ResolvedVal {
|
|
$$ = UnaryOperator::create($1, $2);
|
|
if ($$ == 0)
|
|
ThrowException("unary operator returned null!");
|
|
}
|
|
| ShiftOps ResolvedVal ',' ResolvedVal {
|
|
if ($4->getType() != Type::UByteTy)
|
|
ThrowException("Shift amount must be ubyte!");
|
|
$$ = new ShiftInst($1, $2, $4);
|
|
}
|
|
| CAST ResolvedVal TO Types {
|
|
$$ = new CastInst($2, *$4);
|
|
delete $4;
|
|
}
|
|
| PHI PHIList {
|
|
const Type *Ty = $2->front().first->getType();
|
|
$$ = new PHINode(Ty);
|
|
while ($2->begin() != $2->end()) {
|
|
if ($2->front().first->getType() != Ty)
|
|
ThrowException("All elements of a PHI node must be of the same type!");
|
|
cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
|
|
$2->pop_front();
|
|
}
|
|
delete $2; // Free the list...
|
|
}
|
|
| CALL TypesV ValueRef '(' ValueRefListE ')' {
|
|
const PointerType *PMTy;
|
|
const FunctionType *Ty;
|
|
|
|
if (!(PMTy = dyn_cast<PointerType>($2->get())) ||
|
|
!(Ty = dyn_cast<FunctionType>(PMTy->getElementType()))) {
|
|
// Pull out the types of all of the arguments...
|
|
vector<const Type*> ParamTypes;
|
|
if ($5) {
|
|
for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
|
|
ParamTypes.push_back((*I)->getType());
|
|
}
|
|
|
|
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypes.pop_back();
|
|
|
|
Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
|
|
PMTy = PointerType::get(Ty);
|
|
}
|
|
delete $2;
|
|
|
|
Value *V = getVal(PMTy, $3); // Get the method we're calling...
|
|
|
|
// Create the call node...
|
|
if (!$5) { // Has no arguments?
|
|
$$ = new CallInst(V, vector<Value*>());
|
|
} else { // Has arguments?
|
|
// Loop through FunctionType's arguments and ensure they are specified
|
|
// correctly!
|
|
//
|
|
FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
|
|
FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
|
|
vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
|
|
|
|
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
|
|
if ((*ArgI)->getType() != *I)
|
|
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
|
|
(*I)->getDescription() + "'!");
|
|
|
|
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
|
|
ThrowException("Invalid number of parameters detected!");
|
|
|
|
$$ = new CallInst(V, *$5);
|
|
}
|
|
delete $5;
|
|
}
|
|
| MemoryInst {
|
|
$$ = $1;
|
|
}
|
|
|
|
|
|
// IndexList - List of indices for GEP based instructions...
|
|
IndexList : ',' ValueRefList {
|
|
$$ = $2;
|
|
} | /* empty */ {
|
|
$$ = new vector<Value*>();
|
|
}
|
|
|
|
MemoryInst : MALLOC Types {
|
|
$$ = new MallocInst(PointerType::get(*$2));
|
|
delete $2;
|
|
}
|
|
| MALLOC Types ',' UINT ValueRef {
|
|
const Type *Ty = PointerType::get(*$2);
|
|
$$ = new MallocInst(Ty, getVal($4, $5));
|
|
delete $2;
|
|
}
|
|
| ALLOCA Types {
|
|
$$ = new AllocaInst(PointerType::get(*$2));
|
|
delete $2;
|
|
}
|
|
| ALLOCA Types ',' UINT ValueRef {
|
|
const Type *Ty = PointerType::get(*$2);
|
|
Value *ArrSize = getVal($4, $5);
|
|
$$ = new AllocaInst(Ty, ArrSize);
|
|
delete $2;
|
|
}
|
|
| FREE ResolvedVal {
|
|
if (!$2->getType()->isPointerType())
|
|
ThrowException("Trying to free nonpointer type " +
|
|
$2->getType()->getDescription() + "!");
|
|
$$ = new FreeInst($2);
|
|
}
|
|
|
|
| LOAD Types ValueRef IndexList {
|
|
if (!(*$2)->isPointerType())
|
|
ThrowException("Can't load from nonpointer type: " +
|
|
(*$2)->getDescription());
|
|
if (LoadInst::getIndexedType(*$2, *$4) == 0)
|
|
ThrowException("Invalid indices for load instruction!");
|
|
|
|
$$ = new LoadInst(getVal(*$2, $3), *$4);
|
|
delete $4; // Free the vector...
|
|
delete $2;
|
|
}
|
|
| STORE ResolvedVal ',' Types ValueRef IndexList {
|
|
if (!(*$4)->isPointerType())
|
|
ThrowException("Can't store to a nonpointer type: " +
|
|
(*$4)->getDescription());
|
|
const Type *ElTy = StoreInst::getIndexedType(*$4, *$6);
|
|
if (ElTy == 0)
|
|
ThrowException("Can't store into that field list!");
|
|
if (ElTy != $2->getType())
|
|
ThrowException("Can't store '" + $2->getType()->getDescription() +
|
|
"' into space of type '" + ElTy->getDescription() + "'!");
|
|
$$ = new StoreInst($2, getVal(*$4, $5), *$6);
|
|
delete $4; delete $6;
|
|
}
|
|
| GETELEMENTPTR Types ValueRef IndexList {
|
|
if (!(*$2)->isPointerType())
|
|
ThrowException("getelementptr insn requires pointer operand!");
|
|
if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
|
|
ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!");
|
|
$$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
|
|
delete $2; delete $4;
|
|
}
|
|
|
|
%%
|
|
int yyerror(const char *ErrorMsg) {
|
|
ThrowException(string("Parse error: ") + ErrorMsg);
|
|
return 0;
|
|
}
|