llvm-6502/unittests/Analysis/CFGTest.cpp
Chandler Carruth de5df29556 [PM] Split the LoopInfo object apart from the legacy pass, creating
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.

This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226373 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-17 14:16:18 +00:00

388 lines
10 KiB
C++

//===- CFGTest.cpp - CFG tests --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
// This fixture assists in running the isPotentiallyReachable utility four ways
// and ensuring it produces the correct answer each time.
class IsPotentiallyReachableTest : public testing::Test {
protected:
void ParseAssembly(const char *Assembly) {
SMDiagnostic Error;
M = parseAssemblyString(Assembly, Error, getGlobalContext());
std::string errMsg;
raw_string_ostream os(errMsg);
Error.print("", os);
// A failure here means that the test itself is buggy.
if (!M)
report_fatal_error(os.str().c_str());
Function *F = M->getFunction("test");
if (F == nullptr)
report_fatal_error("Test must have a function named @test");
A = B = nullptr;
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
if (I->hasName()) {
if (I->getName() == "A")
A = &*I;
else if (I->getName() == "B")
B = &*I;
}
}
if (A == nullptr)
report_fatal_error("@test must have an instruction %A");
if (B == nullptr)
report_fatal_error("@test must have an instruction %B");
}
void ExpectPath(bool ExpectedResult) {
static char ID;
class IsPotentiallyReachableTestPass : public FunctionPass {
public:
IsPotentiallyReachableTestPass(bool ExpectedResult,
Instruction *A, Instruction *B)
: FunctionPass(ID), ExpectedResult(ExpectedResult), A(A), B(B) {}
static int initialize() {
PassInfo *PI = new PassInfo("isPotentiallyReachable testing pass",
"", &ID, nullptr, true, true);
PassRegistry::getPassRegistry()->registerPass(*PI, false);
initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
initializeDominatorTreeWrapperPassPass(
*PassRegistry::getPassRegistry());
return 0;
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
}
bool runOnFunction(Function &F) {
if (!F.hasName() || F.getName() != "test")
return false;
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DominatorTree *DT =
&getAnalysis<DominatorTreeWrapperPass>().getDomTree();
EXPECT_EQ(isPotentiallyReachable(A, B, nullptr, nullptr),
ExpectedResult);
EXPECT_EQ(isPotentiallyReachable(A, B, DT, nullptr), ExpectedResult);
EXPECT_EQ(isPotentiallyReachable(A, B, nullptr, LI), ExpectedResult);
EXPECT_EQ(isPotentiallyReachable(A, B, DT, LI), ExpectedResult);
return false;
}
bool ExpectedResult;
Instruction *A, *B;
};
static int initialize = IsPotentiallyReachableTestPass::initialize();
(void)initialize;
IsPotentiallyReachableTestPass *P =
new IsPotentiallyReachableTestPass(ExpectedResult, A, B);
PassManager PM;
PM.add(P);
PM.run(*M);
}
std::unique_ptr<Module> M;
Instruction *A, *B;
};
}
TEST_F(IsPotentiallyReachableTest, SameBlockNoPath) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" bitcast i8 undef to i8\n"
" %B = bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" %A = bitcast i8 undef to i8\n"
" ret void\n"
"}\n");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, SameBlockPath) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" %A = bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" %B = bitcast i8 undef to i8\n"
" ret void\n"
"}\n");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, SameBlockNoLoop) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" br label %middle\n"
"middle:\n"
" %B = bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" %A = bitcast i8 undef to i8\n"
" br label %nextblock\n"
"nextblock:\n"
" ret void\n"
"}\n");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, StraightNoPath) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" %B = bitcast i8 undef to i8\n"
" br label %exit\n"
"exit:\n"
" %A = bitcast i8 undef to i8\n"
" ret void\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, StraightPath) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" %A = bitcast i8 undef to i8\n"
" br label %exit\n"
"exit:\n"
" %B = bitcast i8 undef to i8\n"
" ret void\n"
"}");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, DestUnreachable) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" br label %midblock\n"
"midblock:\n"
" %A = bitcast i8 undef to i8\n"
" ret void\n"
"unreachable:\n"
" %B = bitcast i8 undef to i8\n"
" br label %midblock\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, BranchToReturn) {
ParseAssembly(
"define void @test(i1 %x) {\n"
"entry:\n"
" %A = bitcast i8 undef to i8\n"
" br i1 %x, label %block1, label %block2\n"
"block1:\n"
" ret void\n"
"block2:\n"
" %B = bitcast i8 undef to i8\n"
" ret void\n"
"}");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, SimpleLoop1) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop\n"
"loop:\n"
" %B = bitcast i8 undef to i8\n"
" %A = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop, label %exit\n"
"exit:\n"
" ret void\n"
"}");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, SimpleLoop2) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" %B = bitcast i8 undef to i8\n"
" br label %loop\n"
"loop:\n"
" %A = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop, label %exit\n"
"exit:\n"
" ret void\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, SimpleLoop3) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop\n"
"loop:\n"
" %B = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop, label %exit\n"
"exit:\n"
" %A = bitcast i8 undef to i8\n"
" ret void\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOther1) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop1\n"
"loop1:\n"
" %A = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop1, label %loop1exit\n"
"loop1exit:\n"
" br label %loop2\n"
"loop2:\n"
" %B = bitcast i8 undef to i8\n"
" %y = call i1 @switch()\n"
" br i1 %x, label %loop2, label %loop2exit\n"
"loop2exit:"
" ret void\n"
"}");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOther2) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop1\n"
"loop1:\n"
" %B = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop1, label %loop1exit\n"
"loop1exit:\n"
" br label %loop2\n"
"loop2:\n"
" %A = bitcast i8 undef to i8\n"
" %y = call i1 @switch()\n"
" br i1 %x, label %loop2, label %loop2exit\n"
"loop2exit:"
" ret void\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOtherInsideAThirdLoop) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %outerloop3\n"
"outerloop3:\n"
" br label %innerloop1\n"
"innerloop1:\n"
" %B = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %innerloop1, label %innerloop1exit\n"
"innerloop1exit:\n"
" br label %innerloop2\n"
"innerloop2:\n"
" %A = bitcast i8 undef to i8\n"
" %y = call i1 @switch()\n"
" br i1 %x, label %innerloop2, label %innerloop2exit\n"
"innerloop2exit:"
" ;; In outer loop3 now.\n"
" %z = call i1 @switch()\n"
" br i1 %z, label %outerloop3, label %exit\n"
"exit:\n"
" ret void\n"
"}");
ExpectPath(true);
}
static const char *BranchInsideLoopIR =
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop\n"
"loop:\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %nextloopblock, label %exit\n"
"nextloopblock:\n"
" %y = call i1 @switch()\n"
" br i1 %y, label %left, label %right\n"
"left:\n"
" %A = bitcast i8 undef to i8\n"
" br label %loop\n"
"right:\n"
" %B = bitcast i8 undef to i8\n"
" br label %loop\n"
"exit:\n"
" ret void\n"
"}";
TEST_F(IsPotentiallyReachableTest, BranchInsideLoop) {
ParseAssembly(BranchInsideLoopIR);
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, ModifyTest) {
ParseAssembly(BranchInsideLoopIR);
succ_iterator S = succ_begin(++M->getFunction("test")->begin());
BasicBlock *OldBB = S[0];
S[0] = S[1];
ExpectPath(false);
S[0] = OldBB;
ExpectPath(true);
}