llvm-6502/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
Chris Lattner f26bc8ef48 Silence VS warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19384 91177308-0d34-0410-b5e6-96231b3b80d8
2005-01-08 19:52:31 +00:00

830 lines
30 KiB
C++

//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::Legalize method.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Constants.h"
#include <iostream>
using namespace llvm;
static const Type *getTypeFor(MVT::ValueType VT) {
switch (VT) {
default: assert(0 && "Unknown MVT!");
case MVT::i1: return Type::BoolTy;
case MVT::i8: return Type::UByteTy;
case MVT::i16: return Type::UShortTy;
case MVT::i32: return Type::UIntTy;
case MVT::i64: return Type::ULongTy;
case MVT::f32: return Type::FloatTy;
case MVT::f64: return Type::DoubleTy;
}
}
//===----------------------------------------------------------------------===//
/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it. This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing. For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
///
namespace {
class SelectionDAGLegalize {
TargetLowering &TLI;
SelectionDAG &DAG;
/// LegalizeAction - This enum indicates what action we should take for each
/// value type the can occur in the program.
enum LegalizeAction {
Legal, // The target natively supports this value type.
Promote, // This should be promoted to the next larger type.
Expand, // This integer type should be broken into smaller pieces.
};
/// TransformToType - For any value types we are promoting or expanding, this
/// contains the value type that we are changing to. For Expanded types, this
/// contains one step of the expand (e.g. i64 -> i32), even if there are
/// multiple steps required (e.g. i64 -> i16)
MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
/// ValueTypeActions - This is a bitvector that contains two bits for each
/// value type, where the two bits correspond to the LegalizeAction enum.
/// This can be queried with "getTypeAction(VT)".
unsigned ValueTypeActions;
/// NeedsAnotherIteration - This is set when we expand a large integer
/// operation into smaller integer operations, but the smaller operations are
/// not set. This occurs only rarely in practice, for targets that don't have
/// 32-bit or larger integer registers.
bool NeedsAnotherIteration;
/// LegalizedNodes - For nodes that are of legal width, and that have more
/// than one use, this map indicates what regularized operand to use. This
/// allows us to avoid legalizing the same thing more than once.
std::map<SDOperand, SDOperand> LegalizedNodes;
/// ExpandedNodes - For nodes that need to be expanded, and which have more
/// than one use, this map indicates which which operands are the expanded
/// version of the input. This allows us to avoid expanding the same node
/// more than once.
std::map<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes;
void AddLegalizedOperand(SDOperand From, SDOperand To) {
bool isNew = LegalizedNodes.insert(std::make_pair(From, To)).second;
assert(isNew && "Got into the map somehow?");
}
/// setValueTypeAction - Set the action for a particular value type. This
/// assumes an action has not already been set for this value type.
void setValueTypeAction(MVT::ValueType VT, LegalizeAction A) {
ValueTypeActions |= A << (VT*2);
if (A == Promote) {
MVT::ValueType PromoteTo;
if (VT == MVT::f32)
PromoteTo = MVT::f64;
else {
unsigned LargerReg = VT+1;
while (!TLI.hasNativeSupportFor((MVT::ValueType)LargerReg)) {
++LargerReg;
assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
"Nothing to promote to??");
}
PromoteTo = (MVT::ValueType)LargerReg;
}
assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
"Can only promote from int->int or fp->fp!");
assert(VT < PromoteTo && "Must promote to a larger type!");
TransformToType[VT] = PromoteTo;
} else if (A == Expand) {
assert(MVT::isInteger(VT) && VT > MVT::i8 &&
"Cannot expand this type: target must support SOME integer reg!");
// Expand to the next smaller integer type!
TransformToType[VT] = (MVT::ValueType)(VT-1);
}
}
public:
SelectionDAGLegalize(TargetLowering &TLI, SelectionDAG &DAG);
/// Run - While there is still lowering to do, perform a pass over the DAG.
/// Most regularization can be done in a single pass, but targets that require
/// large values to be split into registers multiple times (e.g. i64 -> 4x
/// i16) require iteration for these values (the first iteration will demote
/// to i32, the second will demote to i16).
void Run() {
do {
NeedsAnotherIteration = false;
LegalizeDAG();
} while (NeedsAnotherIteration);
}
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal or we need to expand it into multiple registers of
/// smaller integer type, or we need to promote it to a larger type.
LegalizeAction getTypeAction(MVT::ValueType VT) const {
return (LegalizeAction)((ValueTypeActions >> (2*VT)) & 3);
}
/// isTypeLegal - Return true if this type is legal on this target.
///
bool isTypeLegal(MVT::ValueType VT) const {
return getTypeAction(VT) == Legal;
}
private:
void LegalizeDAG();
SDOperand LegalizeOp(SDOperand O);
void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi);
SDOperand getIntPtrConstant(uint64_t Val) {
return DAG.getConstant(Val, TLI.getPointerTy());
}
};
}
SelectionDAGLegalize::SelectionDAGLegalize(TargetLowering &tli,
SelectionDAG &dag)
: TLI(tli), DAG(dag), ValueTypeActions(0) {
assert(MVT::LAST_VALUETYPE <= 16 &&
"Too many value types for ValueTypeActions to hold!");
// Inspect all of the ValueType's possible, deciding how to process them.
for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
// If TLI says we are expanding this type, expand it!
if (TLI.getNumElements((MVT::ValueType)IntReg) != 1)
setValueTypeAction((MVT::ValueType)IntReg, Expand);
else if (!TLI.hasNativeSupportFor((MVT::ValueType)IntReg))
// Otherwise, if we don't have native support, we must promote to a
// larger type.
setValueTypeAction((MVT::ValueType)IntReg, Promote);
// If the target does not have native support for F32, promote it to F64.
if (!TLI.hasNativeSupportFor(MVT::f32))
setValueTypeAction(MVT::f32, Promote);
}
void SelectionDAGLegalize::LegalizeDAG() {
SDOperand OldRoot = DAG.getRoot();
SDOperand NewRoot = LegalizeOp(OldRoot);
DAG.setRoot(NewRoot);
ExpandedNodes.clear();
LegalizedNodes.clear();
// Remove dead nodes now.
DAG.RemoveDeadNodes(OldRoot.Val);
}
SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) {
// If this operation defines any values that cannot be represented in a
// register on this target, make sure to expand it.
if (Op.Val->getNumValues() == 1) {// Fast path == assertion only
assert(getTypeAction(Op.Val->getValueType(0)) == Legal &&
"For a single use value, caller should check for legality!");
} else {
for (unsigned i = 0, e = Op.Val->getNumValues(); i != e; ++i)
switch (getTypeAction(Op.Val->getValueType(i))) {
case Legal: break; // Nothing to do.
case Expand: {
SDOperand T1, T2;
ExpandOp(Op.getValue(i), T1, T2);
assert(LegalizedNodes.count(Op) &&
"Expansion didn't add legal operands!");
return LegalizedNodes[Op];
}
case Promote:
// FIXME: Implement promotion!
assert(0 && "Promotion not implemented at all yet!");
}
}
// If there is more than one use of this, see if we already legalized it.
// There is no use remembering values that only have a single use, as the map
// entries will never be reused.
if (!Op.Val->hasOneUse()) {
std::map<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op);
if (I != LegalizedNodes.end()) return I->second;
}
SDOperand Tmp1, Tmp2;
SDOperand Result = Op;
SDNode *Node = Op.Val;
switch (Node->getOpcode()) {
default:
std::cerr << "NODE: "; Node->dump(); std::cerr << "\n";
assert(0 && "Do not know how to legalize this operator!");
abort();
case ISD::EntryToken:
case ISD::FrameIndex:
case ISD::GlobalAddress:
case ISD::ExternalSymbol:
case ISD::ConstantPool:
case ISD::CopyFromReg: // Nothing to do.
assert(getTypeAction(Node->getValueType(0)) == Legal &&
"This must be legal!");
break;
case ISD::Constant:
// We know we don't need to expand constants here, constants only have one
// value and we check that it is fine above.
// FIXME: Maybe we should handle things like targets that don't support full
// 32-bit immediates?
break;
case ISD::ConstantFP: {
// Spill FP immediates to the constant pool if the target cannot directly
// codegen them. Targets often have some immediate values that can be
// efficiently generated into an FP register without a load. We explicitly
// leave these constants as ConstantFP nodes for the target to deal with.
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
// Check to see if this FP immediate is already legal.
bool isLegal = false;
for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
E = TLI.legal_fpimm_end(); I != E; ++I)
if (CFP->isExactlyValue(*I)) {
isLegal = true;
break;
}
if (!isLegal) {
// Otherwise we need to spill the constant to memory.
MachineConstantPool *CP = DAG.getMachineFunction().getConstantPool();
bool Extend = false;
// If a FP immediate is precise when represented as a float, we put it
// into the constant pool as a float, even if it's is statically typed
// as a double.
MVT::ValueType VT = CFP->getValueType(0);
bool isDouble = VT == MVT::f64;
ConstantFP *LLVMC = ConstantFP::get(isDouble ? Type::DoubleTy :
Type::FloatTy, CFP->getValue());
if (isDouble && CFP->isExactlyValue((float)CFP->getValue())) {
LLVMC = cast<ConstantFP>(ConstantExpr::getCast(LLVMC, Type::FloatTy));
VT = MVT::f32;
Extend = true;
}
SDOperand CPIdx = DAG.getConstantPool(CP->getConstantPoolIndex(LLVMC),
TLI.getPointerTy());
Result = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx);
if (Extend) Result = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Result);
}
break;
}
case ISD::ADJCALLSTACKDOWN:
case ISD::ADJCALLSTACKUP:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// There is no need to legalize the size argument (Operand #1)
if (Tmp1 != Node->getOperand(0))
Result = DAG.getNode(Node->getOpcode(), MVT::Other, Tmp1,
Node->getOperand(1));
break;
case ISD::CALL:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the callee.
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) {
std::vector<MVT::ValueType> RetTyVTs;
RetTyVTs.reserve(Node->getNumValues());
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
RetTyVTs.push_back(Node->getValueType(i));
Result = SDOperand(DAG.getCall(RetTyVTs, Tmp1, Tmp2), Op.ResNo);
}
break;
case ISD::BR:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
if (Tmp1 != Node->getOperand(0))
Result = DAG.getNode(ISD::BR, MVT::Other, Tmp1, Node->getOperand(1));
break;
case ISD::BRCOND:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// FIXME: booleans might not be legal!
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
// Basic block destination (Op#2) is always legal.
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
Result = DAG.getNode(ISD::BRCOND, MVT::Other, Tmp1, Tmp2,
Node->getOperand(2));
break;
case ISD::LOAD:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
if (Tmp1 != Node->getOperand(0) ||
Tmp2 != Node->getOperand(1))
Result = DAG.getLoad(Node->getValueType(0), Tmp1, Tmp2);
else
Result = SDOperand(Node, 0);
// Since loads produce two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDOperand(Node, 0), Result);
AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
return Result.getValue(Op.ResNo);
case ISD::EXTRACT_ELEMENT:
// Get both the low and high parts.
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
if (cast<ConstantSDNode>(Node->getOperand(1))->getValue())
Result = Tmp2; // 1 -> Hi
else
Result = Tmp1; // 0 -> Lo
break;
case ISD::CopyToReg:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Legal:
// Legalize the incoming value (must be legal).
Tmp2 = LegalizeOp(Node->getOperand(1));
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
Result = DAG.getCopyToReg(Tmp1, Tmp2,
cast<CopyRegSDNode>(Node)->getReg());
break;
case Expand: {
SDOperand Lo, Hi;
ExpandOp(Node->getOperand(1), Lo, Hi);
unsigned Reg = cast<CopyRegSDNode>(Node)->getReg();
Result = DAG.getCopyToReg(Tmp1, Lo, Reg);
Result = DAG.getCopyToReg(Result, Hi, Reg+1);
assert(isTypeLegal(Result.getValueType()) &&
"Cannot expand multiple times yet (i64 -> i16)");
break;
}
case Promote:
assert(0 && "Don't know what it means to promote this!");
abort();
}
break;
case ISD::RET:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
switch (Node->getNumOperands()) {
case 2: // ret val
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1));
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Tmp2);
break;
case Expand: {
SDOperand Lo, Hi;
ExpandOp(Node->getOperand(1), Lo, Hi);
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Hi);
break;
}
case Promote:
assert(0 && "Can't promote return value!");
}
break;
case 1: // ret void
if (Tmp1 != Node->getOperand(0))
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1);
break;
default: { // ret <values>
std::vector<SDOperand> NewValues;
NewValues.push_back(Tmp1);
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
switch (getTypeAction(Node->getOperand(i).getValueType())) {
case Legal:
NewValues.push_back(LegalizeOp(Node->getOperand(i)));
break;
case Expand: {
SDOperand Lo, Hi;
ExpandOp(Node->getOperand(i), Lo, Hi);
NewValues.push_back(Lo);
NewValues.push_back(Hi);
break;
}
case Promote:
assert(0 && "Can't promote return value!");
}
Result = DAG.getNode(ISD::RET, MVT::Other, NewValues);
break;
}
}
break;
case ISD::STORE:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(2)); // Legalize the pointer.
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
if (ConstantFPSDNode *CFP =
dyn_cast<ConstantFPSDNode>(Node->getOperand(1))) {
if (CFP->getValueType(0) == MVT::f32) {
union {
unsigned I;
float F;
} V;
V.F = CFP->getValue();
Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1,
DAG.getConstant(V.I, MVT::i32), Tmp2);
} else {
assert(CFP->getValueType(0) == MVT::f64 && "Unknown FP type!");
union {
uint64_t I;
double F;
} V;
V.F = CFP->getValue();
Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1,
DAG.getConstant(V.I, MVT::i64), Tmp2);
}
Op = Result;
Node = Op.Val;
}
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Legal: {
SDOperand Val = LegalizeOp(Node->getOperand(1));
if (Val != Node->getOperand(1) || Tmp1 != Node->getOperand(0) ||
Tmp2 != Node->getOperand(2))
Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, Val, Tmp2);
break;
}
case Promote:
assert(0 && "FIXME: promote for stores not implemented!");
case Expand:
SDOperand Lo, Hi;
ExpandOp(Node->getOperand(1), Lo, Hi);
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
// FIXME: These two stores are independent of each other!
Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, Lo, Tmp2);
unsigned IncrementSize;
switch (Lo.getValueType()) {
default: assert(0 && "Unknown ValueType to expand to!");
case MVT::i32: IncrementSize = 4; break;
case MVT::i16: IncrementSize = 2; break;
case MVT::i8: IncrementSize = 1; break;
}
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
getIntPtrConstant(IncrementSize));
assert(isTypeLegal(Tmp2.getValueType()) &&
"Pointers must be legal!");
Result = DAG.getNode(ISD::STORE, MVT::Other, Result, Hi, Tmp2);
}
break;
case ISD::SELECT: {
// FIXME: BOOLS MAY REQUIRE PROMOTION!
Tmp1 = LegalizeOp(Node->getOperand(0)); // Cond
Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal
SDOperand Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal
if (Tmp1 != Node->getOperand(0) ||
Tmp2 != Node->getOperand(1) ||
Tmp3 != Node->getOperand(2))
Result = DAG.getNode(ISD::SELECT, Node->getValueType(0), Tmp1, Tmp2,Tmp3);
break;
}
case ISD::SETCC:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
Result = DAG.getSetCC(cast<SetCCSDNode>(Node)->getCondition(),
Tmp1, Tmp2);
break;
case Promote:
assert(0 && "Can't promote setcc operands yet!");
break;
case Expand:
SDOperand LHSLo, LHSHi, RHSLo, RHSHi;
ExpandOp(Node->getOperand(0), LHSLo, LHSHi);
ExpandOp(Node->getOperand(1), RHSLo, RHSHi);
switch (cast<SetCCSDNode>(Node)->getCondition()) {
case ISD::SETEQ:
case ISD::SETNE:
Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2);
Result = DAG.getSetCC(cast<SetCCSDNode>(Node)->getCondition(), Tmp1,
DAG.getConstant(0, Tmp1.getValueType()));
break;
default:
// FIXME: This generated code sucks.
ISD::CondCode LowCC;
switch (cast<SetCCSDNode>(Node)->getCondition()) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETLT:
case ISD::SETULT: LowCC = ISD::SETULT; break;
case ISD::SETGT:
case ISD::SETUGT: LowCC = ISD::SETUGT; break;
case ISD::SETLE:
case ISD::SETULE: LowCC = ISD::SETULE; break;
case ISD::SETGE:
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
}
// Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
// Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
// dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
Tmp1 = DAG.getSetCC(LowCC, LHSLo, RHSLo);
Tmp2 = DAG.getSetCC(cast<SetCCSDNode>(Node)->getCondition(),
LHSHi, RHSHi);
Result = DAG.getSetCC(ISD::SETEQ, LHSHi, RHSHi);
Result = DAG.getNode(ISD::SELECT, MVT::i1, Result, Tmp1, Tmp2);
break;
}
}
break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
if (Tmp1 != Node->getOperand(0) ||
Tmp2 != Node->getOperand(1))
Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1,Tmp2);
break;
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::TRUNCATE:
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
if (Tmp1 != Node->getOperand(0))
Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1);
break;
case Expand:
// In the expand case, we must be dealing with a truncate, because
// otherwise the result would be larger than the source.
assert(Node->getOpcode() == ISD::TRUNCATE &&
"Shouldn't need to expand other operators here!");
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
// Since the result is legal, we should just be able to truncate the low
// part of the source.
Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1);
break;
default:
assert(0 && "Do not know how to promote this yet!");
}
break;
}
if (!Op.Val->hasOneUse())
AddLegalizedOperand(Op, Result);
return Result;
}
/// ExpandOp - Expand the specified SDOperand into its two component pieces
/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the
/// LegalizeNodes map is filled in for any results that are not expanded, the
/// ExpandedNodes map is filled in for any results that are expanded, and the
/// Lo/Hi values are returned.
void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){
MVT::ValueType VT = Op.getValueType();
MVT::ValueType NVT = TransformToType[VT];
SDNode *Node = Op.Val;
assert(getTypeAction(VT) == Expand && "Not an expanded type!");
assert(MVT::isInteger(VT) && "Cannot expand FP values!");
assert(MVT::isInteger(NVT) && NVT < VT &&
"Cannot expand to FP value or to larger int value!");
// If there is more than one use of this, see if we already expanded it.
// There is no use remembering values that only have a single use, as the map
// entries will never be reused.
if (!Node->hasOneUse()) {
std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I
= ExpandedNodes.find(Op);
if (I != ExpandedNodes.end()) {
Lo = I->second.first;
Hi = I->second.second;
return;
}
}
// Expanding to multiple registers needs to perform an optimization step, and
// is not careful to avoid operations the target does not support. Make sure
// that all generated operations are legalized in the next iteration.
NeedsAnotherIteration = true;
const char *LibCallName = 0;
switch (Node->getOpcode()) {
default:
std::cerr << "NODE: "; Node->dump(); std::cerr << "\n";
assert(0 && "Do not know how to expand this operator!");
abort();
case ISD::Constant: {
uint64_t Cst = cast<ConstantSDNode>(Node)->getValue();
Lo = DAG.getConstant(Cst, NVT);
Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT);
break;
}
case ISD::CopyFromReg: {
unsigned Reg = cast<CopyRegSDNode>(Node)->getReg();
// Aggregate register values are always in consequtive pairs.
Lo = DAG.getCopyFromReg(Reg, NVT);
Hi = DAG.getCopyFromReg(Reg+1, NVT);
assert(isTypeLegal(NVT) && "Cannot expand this multiple times yet!");
break;
}
case ISD::LOAD: {
SDOperand Ch = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
SDOperand Ptr = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
Lo = DAG.getLoad(NVT, Ch, Ptr);
// Increment the pointer to the other half.
unsigned IncrementSize;
switch (Lo.getValueType()) {
default: assert(0 && "Unknown ValueType to expand to!");
case MVT::i32: IncrementSize = 4; break;
case MVT::i16: IncrementSize = 2; break;
case MVT::i8: IncrementSize = 1; break;
}
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
// FIXME: This load is independent of the first one.
Hi = DAG.getLoad(NVT, Lo.getValue(1), Ptr);
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), Hi.getValue(1));
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
break;
}
case ISD::CALL: {
SDOperand Chain = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
SDOperand Callee = LegalizeOp(Node->getOperand(1)); // Legalize the callee.
assert(Node->getNumValues() == 2 && Op.ResNo == 0 &&
"Can only expand a call once so far, not i64 -> i16!");
std::vector<MVT::ValueType> RetTyVTs;
RetTyVTs.reserve(3);
RetTyVTs.push_back(NVT);
RetTyVTs.push_back(NVT);
RetTyVTs.push_back(MVT::Other);
SDNode *NC = DAG.getCall(RetTyVTs, Chain, Callee);
Lo = SDOperand(NC, 0);
Hi = SDOperand(NC, 1);
// Insert the new chain mapping.
bool isNew = LegalizedNodes.insert(std::make_pair(Op.getValue(1),
Hi.getValue(2))).second;
assert(isNew && "This node was already legalized!");
break;
}
case ISD::AND:
case ISD::OR:
case ISD::XOR: { // Simple logical operators -> two trivial pieces.
SDOperand LL, LH, RL, RH;
ExpandOp(Node->getOperand(0), LL, LH);
ExpandOp(Node->getOperand(1), RL, RH);
Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL);
Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH);
break;
}
case ISD::SELECT: {
SDOperand C, LL, LH, RL, RH;
// FIXME: BOOLS MAY REQUIRE PROMOTION!
C = LegalizeOp(Node->getOperand(0));
ExpandOp(Node->getOperand(1), LL, LH);
ExpandOp(Node->getOperand(2), RL, RH);
Lo = DAG.getNode(ISD::SELECT, NVT, C, LL, RL);
Hi = DAG.getNode(ISD::SELECT, NVT, C, LH, RH);
break;
}
case ISD::SIGN_EXTEND: {
// The low part is just a sign extension of the input (which degenerates to
// a copy).
Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, LegalizeOp(Node->getOperand(0)));
// The high part is obtained by SRA'ing all but one of the bits of the lo
// part.
unsigned SrcSize = MVT::getSizeInBits(Node->getOperand(0).getValueType());
Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(SrcSize-1, MVT::i8));
break;
}
case ISD::ZERO_EXTEND:
// The low part is just a zero extension of the input (which degenerates to
// a copy).
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, LegalizeOp(Node->getOperand(0)));
// The high part is just a zero.
Hi = DAG.getConstant(0, NVT);
break;
// These operators cannot be expanded directly, emit them as calls to
// library functions.
case ISD::FP_TO_SINT:
if (Node->getOperand(0).getValueType() == MVT::f32)
LibCallName = "__fixsfdi";
else
LibCallName = "__fixdfdi";
break;
case ISD::FP_TO_UINT:
if (Node->getOperand(0).getValueType() == MVT::f32)
LibCallName = "__fixunssfdi";
else
LibCallName = "__fixunsdfdi";
break;
case ISD::ADD: LibCallName = "__adddi3"; break;
case ISD::SUB: LibCallName = "__subdi3"; break;
case ISD::MUL: LibCallName = "__muldi3"; break;
case ISD::SDIV: LibCallName = "__divdi3"; break;
case ISD::UDIV: LibCallName = "__udivdi3"; break;
case ISD::SREM: LibCallName = "__moddi3"; break;
case ISD::UREM: LibCallName = "__umoddi3"; break;
case ISD::SHL: LibCallName = "__lshrdi3"; break;
case ISD::SRA: LibCallName = "__ashrdi3"; break;
case ISD::SRL: LibCallName = "__ashldi3"; break;
}
// Int2FP -> __floatdisf/__floatdidf
// If this is to be expanded into a libcall... do so now.
if (LibCallName) {
TargetLowering::ArgListTy Args;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Args.push_back(std::make_pair(Node->getOperand(i),
getTypeFor(Node->getOperand(i).getValueType())));
SDOperand Callee = DAG.getExternalSymbol(LibCallName, TLI.getPointerTy());
// We don't care about token chains for libcalls. We just use the entry
// node as our input and ignore the output chain. This allows us to place
// calls wherever we need them to satisfy data dependences.
SDOperand Result = TLI.LowerCallTo(DAG.getEntryNode(),
getTypeFor(Op.getValueType()), Callee,
Args, DAG).first;
ExpandOp(Result, Lo, Hi);
}
// Remember in a map if the values will be reused later.
if (!Node->hasOneUse()) {
bool isNew = ExpandedNodes.insert(std::make_pair(Op,
std::make_pair(Lo, Hi))).second;
assert(isNew && "Value already expanded?!?");
}
}
// SelectionDAG::Legalize - This is the entry point for the file.
//
void SelectionDAG::Legalize(TargetLowering &TLI) {
/// run - This is the main entry point to this class.
///
SelectionDAGLegalize(TLI, *this).Run();
}