llvm-6502/tools/llvm-objdump/MachODump.cpp

2828 lines
100 KiB
C++

//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachO-specific dumper for llvm-objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>
using namespace llvm;
using namespace object;
static cl::opt<bool>
UseDbg("g", cl::desc("Print line information from debug info if available"));
static cl::opt<std::string>
DSYMFile("dsym", cl::desc("Use .dSYM file for debug info"));
static cl::opt<bool>
FullLeadingAddr("full-leading-addr",
cl::desc("Print full leading address"));
static cl::opt<bool>
PrintImmHex("print-imm-hex",
cl::desc("Use hex format for immediate values"));
static std::string ThumbTripleName;
static const Target *GetTarget(const MachOObjectFile *MachOObj,
const char **McpuDefault,
const Target **ThumbTarget) {
// Figure out the target triple.
if (TripleName.empty()) {
llvm::Triple TT("unknown-unknown-unknown");
llvm::Triple ThumbTriple = Triple();
TT = MachOObj->getArch(McpuDefault, &ThumbTriple);
TripleName = TT.str();
ThumbTripleName = ThumbTriple.str();
}
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
if (TheTarget && ThumbTripleName.empty())
return TheTarget;
*ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
if (*ThumbTarget)
return TheTarget;
errs() << "llvm-objdump: error: unable to get target for '";
if (!TheTarget)
errs() << TripleName;
else
errs() << ThumbTripleName;
errs() << "', see --version and --triple.\n";
return nullptr;
}
struct SymbolSorter {
bool operator()(const SymbolRef &A, const SymbolRef &B) {
SymbolRef::Type AType, BType;
A.getType(AType);
B.getType(BType);
uint64_t AAddr, BAddr;
if (AType != SymbolRef::ST_Function)
AAddr = 0;
else
A.getAddress(AAddr);
if (BType != SymbolRef::ST_Function)
BAddr = 0;
else
B.getAddress(BAddr);
return AAddr < BAddr;
}
};
// Types for the storted data in code table that is built before disassembly
// and the predicate function to sort them.
typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
typedef std::vector<DiceTableEntry> DiceTable;
typedef DiceTable::iterator dice_table_iterator;
static bool
compareDiceTableEntries(const DiceTableEntry i,
const DiceTableEntry j) {
return i.first == j.first;
}
static void DumpDataInCode(const char *bytes, uint64_t Size,
unsigned short Kind) {
uint64_t Value;
switch (Kind) {
case MachO::DICE_KIND_DATA:
switch (Size) {
case 4:
Value = bytes[3] << 24 |
bytes[2] << 16 |
bytes[1] << 8 |
bytes[0];
outs() << "\t.long " << Value;
break;
case 2:
Value = bytes[1] << 8 |
bytes[0];
outs() << "\t.short " << Value;
break;
case 1:
Value = bytes[0];
outs() << "\t.byte " << Value;
break;
}
outs() << "\t@ KIND_DATA\n";
break;
case MachO::DICE_KIND_JUMP_TABLE8:
Value = bytes[0];
outs() << "\t.byte " << Value << "\t@ KIND_JUMP_TABLE8";
break;
case MachO::DICE_KIND_JUMP_TABLE16:
Value = bytes[1] << 8 |
bytes[0];
outs() << "\t.short " << Value << "\t@ KIND_JUMP_TABLE16";
break;
case MachO::DICE_KIND_JUMP_TABLE32:
Value = bytes[3] << 24 |
bytes[2] << 16 |
bytes[1] << 8 |
bytes[0];
outs() << "\t.long " << Value << "\t@ KIND_JUMP_TABLE32";
break;
default:
outs() << "\t@ data in code kind = " << Kind << "\n";
break;
}
}
static void getSectionsAndSymbols(const MachO::mach_header Header,
MachOObjectFile *MachOObj,
std::vector<SectionRef> &Sections,
std::vector<SymbolRef> &Symbols,
SmallVectorImpl<uint64_t> &FoundFns,
uint64_t &BaseSegmentAddress) {
for (const SymbolRef &Symbol : MachOObj->symbols())
Symbols.push_back(Symbol);
for (const SectionRef &Section : MachOObj->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
MachOObjectFile::LoadCommandInfo Command =
MachOObj->getFirstLoadCommandInfo();
bool BaseSegmentAddressSet = false;
for (unsigned i = 0; ; ++i) {
if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
// We found a function starts segment, parse the addresses for later
// consumption.
MachO::linkedit_data_command LLC =
MachOObj->getLinkeditDataLoadCommand(Command);
MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
}
else if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC =
MachOObj->getSegmentLoadCommand(Command);
StringRef SegName = SLC.segname;
if(!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
BaseSegmentAddressSet = true;
BaseSegmentAddress = SLC.vmaddr;
}
}
if (i == Header.ncmds - 1)
break;
else
Command = MachOObj->getNextLoadCommandInfo(Command);
}
}
static void DisassembleInputMachO2(StringRef Filename,
MachOObjectFile *MachOOF);
void llvm::DisassembleInputMachO(StringRef Filename) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BuffOrErr =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = BuffOrErr.getError()) {
errs() << "llvm-objdump: " << Filename << ": " << EC.message() << "\n";
return;
}
std::unique_ptr<MemoryBuffer> Buff = std::move(BuffOrErr.get());
std::unique_ptr<MachOObjectFile> MachOOF = std::move(
ObjectFile::createMachOObjectFile(Buff.get()->getMemBufferRef()).get());
DisassembleInputMachO2(Filename, MachOOF.get());
}
typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
// The block of info used by the Symbolizer call backs.
struct DisassembleInfo {
bool verbose;
MachOObjectFile *O;
SectionRef S;
SymbolAddressMap *AddrMap;
};
// SymbolizerGetOpInfo() is the operand information call back function.
// This is called to get the symbolic information for operand(s) of an
// instruction when it is being done. This routine does this from
// the relocation information, symbol table, etc. That block of information
// is a pointer to the struct DisassembleInfo that was passed when the
// disassembler context was created and passed to back to here when
// called back by the disassembler for instruction operands that could have
// relocation information. The address of the instruction containing operand is
// at the Pc parameter. The immediate value the operand has is passed in
// op_info->Value and is at Offset past the start of the instruction and has a
// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
// names and addends of the symbolic expression to add for the operand. The
// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
// information is returned then this function returns 1 else it returns 0.
int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
uint64_t Size, int TagType, void *TagBuf) {
struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
unsigned int value = op_info->Value;
// Make sure all fields returned are zero if we don't set them.
memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
op_info->Value = value;
// If the TagType is not the value 1 which it code knows about or if no
// verbose symbolic information is wanted then just return 0, indicating no
// information is being returned.
if (TagType != 1 || info->verbose == false)
return 0;
unsigned int Arch = info->O->getArch();
if (Arch == Triple::x86) {
return 0;
} else if (Arch == Triple::x86_64) {
if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint64_t sect_addr;
info->S.getAddress(sect_addr);
uint64_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
// NOTE: Scattered relocations don't exist on x86_64.
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
// The Value passed in will be adjusted by the Pc if the instruction
// adds the Pc. But for x86_64 external relocation entries the Value
// is the offset from the external symbol.
if (info->O->getAnyRelocationPCRel(RE))
op_info->Value -= Pc + Offset + Size;
StringRef SymName;
Symbol.getName(SymName);
const char *name = SymName.data();
unsigned Type = info->O->getAnyRelocationType(RE);
if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
unsigned TypeNext = info->O->getAnyRelocationType(RENext);
bool isExternNext = info->O->getPlainRelocationExternal(RENext);
unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
op_info->SubtractSymbol.Present = 1;
op_info->SubtractSymbol.Name = name;
symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
Symbol = *RelocSymNext;
StringRef SymNameNext;
Symbol.getName(SymNameNext);
name = SymNameNext.data();
}
}
// TODO: add the VariantKinds to op_info->VariantKind for relocation types
// like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
return 1;
}
// TODO:
// Second search the external relocation entries of a fully linked image
// (if any) for an entry that matches this segment offset.
//uint64_t seg_offset = (Pc + Offset);
return 0;
} else if (Arch == Triple::arm) {
return 0;
} else if (Arch == Triple::aarch64) {
return 0;
} else {
return 0;
}
}
// GuessCstringPointer is passed the address of what might be a pointer to a
// literal string in a cstring section. If that address is in a cstring section
// it returns a pointer to that string. Else it returns nullptr.
const char *GuessCstringPointer(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
uint32_t LoadCommandCount = info->O->getHeader().ncmds;
MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo();
for (unsigned I = 0;; ++I) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_CSTRING_LITERALS &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
const char *name = object_addr + object_offset;
return name;
} else {
return nullptr;
}
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = info->O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_CSTRING_LITERALS &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
const char *name = object_addr + object_offset;
return name;
} else {
return nullptr;
}
}
}
}
if (I == LoadCommandCount - 1)
break;
else
Load = info->O->getNextLoadCommandInfo(Load);
}
return nullptr;
}
// GuessLiteralPointer returns a string which for the item in the Mach-O file
// for the address passed in as ReferenceValue for printing as a comment with
// the instruction and also returns the corresponding type of that item
// indirectly through ReferenceType.
//
// If ReferenceValue is an address of literal cstring then a pointer to the
// cstring is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
//
// TODO: other literals such as Objective-C CFStrings refs, Selector refs,
// Message refs, Class refs and a Symbol address in a literal pool are yet
// to be done here.
const char *GuessLiteralPointer(uint64_t ReferenceValue, uint64_t ReferencePC,
uint64_t *ReferenceType,
struct DisassembleInfo *info) {
// TODO: This rouine's code is only for an x86_64 Mach-O file for now.
unsigned int Arch = info->O->getArch();
if (Arch != Triple::x86_64)
return nullptr;
// First see if there is an external relocation entry at the ReferencePC.
uint64_t sect_addr;
info->S.getAddress(sect_addr);
uint64_t sect_offset = ReferencePC - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset;
Reloc.getOffset(RelocOffset);
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
if (info->O->isRelocationScattered(RE))
continue;
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
// If there is an external relocation entry for a symbol in a section
// then used that symbol's value for the value of the reference.
if (reloc_found && isExtern) {
if (info->O->getAnyRelocationPCRel(RE)) {
unsigned Type = info->O->getAnyRelocationType(RE);
if (Type == MachO::X86_64_RELOC_SIGNED) {
Symbol.getAddress(ReferenceValue);
}
}
}
// TODO: the code to look for other literals such as Objective-C CFStrings
// refs, Selector refs, Message refs, Class refs will be added here.
const char *name = GuessCstringPointer(ReferenceValue, info);
if (name) {
// TODO: note when the code is added above for Selector refs and Message
// refs we will need check for that here and set the ReferenceType
// accordingly.
*ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr;
return name;
}
// TODO: look for an indirect symbol with this ReferenceValue which is in
// a literal pool.
return nullptr;
}
// SymbolizerSymbolLookUp is the symbol lookup function passed when creating
// the Symbolizer. It looks up the ReferenceValue using the info passed via the
// pointer to the struct DisassembleInfo that was passed when MCSymbolizer
// is created and returns the symbol name that matches the ReferenceValue or
// nullptr if none. The ReferenceType is passed in for the IN type of
// reference the instruction is making from the values in defined in the header
// "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific
// Out type and the ReferenceName will also be set which is added as a comment
// to the disassembled instruction.
//
// If the symbol name is a C++ mangled name then the demangled name is
// returned through ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_DeMangled_Name .
//
// When this is called to get a symbol name for a branch target then the
// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
// SymbolValue will be looked for in the indirect symbol table to determine if
// it is an address for a symbol stub. If so then the symbol name for that
// stub is returned indirectly through ReferenceName and then ReferenceType is
// set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
//
// When this is called with an value loaded via a PC relative load then
// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
// SymbolValue is checked to be an address of literal pointer, symbol pointer,
// or an Objective-C meta data reference. If so the output ReferenceType is
// set to correspond to that as well as ReferenceName.
const char *SymbolizerSymbolLookUp(void *DisInfo, uint64_t ReferenceValue,
uint64_t *ReferenceType,
uint64_t ReferencePC,
const char **ReferenceName) {
struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
// If no verbose symbolic information is wanted then just return nullptr.
if (info->verbose == false) {
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
return nullptr;
}
const char *SymbolName = nullptr;
StringRef name = info->AddrMap->lookup(ReferenceValue);
if (!name.empty())
SymbolName = name.data();
if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) {
*ReferenceName = GuessLiteralPointer(ReferenceValue, ReferencePC,
ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// TODO: other types of references to be added.
} else {
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
return SymbolName;
}
//
// This is the memory object used by DisAsm->getInstruction() which has its
// BasePC. This then allows the 'address' parameter to getInstruction() to
// be the actual PC of the instruction. Then when a branch dispacement is
// added to the PC of an instruction, the 'ReferenceValue' passed to the
// SymbolizerSymbolLookUp() routine is the correct target addresses. As in
// the case of a fully linked Mach-O file where a section being disassembled
// generally not linked at address zero.
//
class DisasmMemoryObject : public MemoryObject {
const uint8_t *Bytes;
uint64_t Size;
uint64_t BasePC;
public:
DisasmMemoryObject(const uint8_t *bytes, uint64_t size, uint64_t basePC) :
Bytes(bytes), Size(size), BasePC(basePC) {}
uint64_t getBase() const override { return BasePC; }
uint64_t getExtent() const override { return Size; }
int readByte(uint64_t Addr, uint8_t *Byte) const override {
if (Addr - BasePC >= Size)
return -1;
*Byte = Bytes[Addr - BasePC];
return 0;
}
};
/// \brief Emits the comments that are stored in the CommentStream.
/// Each comment in the CommentStream must end with a newline.
static void emitComments(raw_svector_ostream &CommentStream,
SmallString<128> &CommentsToEmit,
formatted_raw_ostream &FormattedOS,
const MCAsmInfo &MAI) {
// Flush the stream before taking its content.
CommentStream.flush();
StringRef Comments = CommentsToEmit.str();
// Get the default information for printing a comment.
const char *CommentBegin = MAI.getCommentString();
unsigned CommentColumn = MAI.getCommentColumn();
bool IsFirst = true;
while (!Comments.empty()) {
if (!IsFirst)
FormattedOS << '\n';
// Emit a line of comments.
FormattedOS.PadToColumn(CommentColumn);
size_t Position = Comments.find('\n');
FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
// Move after the newline character.
Comments = Comments.substr(Position + 1);
IsFirst = false;
}
FormattedOS.flush();
// Tell the comment stream that the vector changed underneath it.
CommentsToEmit.clear();
CommentStream.resync();
}
static void DisassembleInputMachO2(StringRef Filename,
MachOObjectFile *MachOOF) {
const char *McpuDefault = nullptr;
const Target *ThumbTarget = nullptr;
const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
if (!TheTarget) {
// GetTarget prints out stuff.
return;
}
if (MCPU.empty() && McpuDefault)
MCPU = McpuDefault;
std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
std::unique_ptr<MCInstrAnalysis> InstrAnalysis(
TheTarget->createMCInstrAnalysis(InstrInfo.get()));
std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
std::unique_ptr<MCInstrAnalysis> ThumbInstrAnalysis;
if (ThumbTarget) {
ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
ThumbInstrAnalysis.reset(
ThumbTarget->createMCInstrAnalysis(ThumbInstrInfo.get()));
}
// Package up features to be passed to target/subtarget
std::string FeaturesStr;
if (MAttrs.size()) {
SubtargetFeatures Features;
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
// Set up disassembler.
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
std::unique_ptr<MCSymbolizer> Symbolizer;
struct DisassembleInfo SymbolizerInfo;
std::unique_ptr<MCRelocationInfo> RelInfo(
TheTarget->createMCRelocationInfo(TripleName, Ctx));
if (RelInfo) {
Symbolizer.reset(TheTarget->createMCSymbolizer(
TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
&SymbolizerInfo, &Ctx, RelInfo.release()));
DisAsm->setSymbolizer(std::move(Symbolizer));
}
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI, *STI));
// Set the display preference for hex vs. decimal immediates.
IP->setPrintImmHex(PrintImmHex);
// Comment stream and backing vector.
SmallString<128> CommentsToEmit;
raw_svector_ostream CommentStream(CommentsToEmit);
IP->setCommentStream(CommentStream);
if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) {
errs() << "error: couldn't initialize disassembler for target "
<< TripleName << '\n';
return;
}
// Set up thumb disassembler.
std::unique_ptr<const MCRegisterInfo> ThumbMRI;
std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
std::unique_ptr<const MCDisassembler> ThumbDisAsm;
std::unique_ptr<MCInstPrinter> ThumbIP;
std::unique_ptr<MCContext> ThumbCtx;
if (ThumbTarget) {
ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
ThumbAsmInfo.reset(
ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
ThumbSTI.reset(
ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
// TODO: add MCSymbolizer here for the ThumbTarget like above for TheTarget.
int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
ThumbIP.reset(ThumbTarget->createMCInstPrinter(
ThumbAsmPrinterVariant, *ThumbAsmInfo, *ThumbInstrInfo, *ThumbMRI,
*ThumbSTI));
// Set the display preference for hex vs. decimal immediates.
ThumbIP->setPrintImmHex(PrintImmHex);
}
if (ThumbTarget && (!ThumbInstrAnalysis || !ThumbAsmInfo || !ThumbSTI ||
!ThumbDisAsm || !ThumbIP)) {
errs() << "error: couldn't initialize disassembler for target "
<< ThumbTripleName << '\n';
return;
}
outs() << '\n' << Filename << ":\n\n";
MachO::mach_header Header = MachOOF->getHeader();
// FIXME: Using the -cfg command line option, this code used to be able to
// annotate relocations with the referenced symbol's name, and if this was
// inside a __[cf]string section, the data it points to. This is now replaced
// by the upcoming MCSymbolizer, which needs the appropriate setup done above.
std::vector<SectionRef> Sections;
std::vector<SymbolRef> Symbols;
SmallVector<uint64_t, 8> FoundFns;
uint64_t BaseSegmentAddress;
getSectionsAndSymbols(Header, MachOOF, Sections, Symbols, FoundFns,
BaseSegmentAddress);
// Sort the symbols by address, just in case they didn't come in that way.
std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
// Build a data in code table that is sorted on by the address of each entry.
uint64_t BaseAddress = 0;
if (Header.filetype == MachO::MH_OBJECT)
Sections[0].getAddress(BaseAddress);
else
BaseAddress = BaseSegmentAddress;
DiceTable Dices;
for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
DI != DE; ++DI) {
uint32_t Offset;
DI->getOffset(Offset);
Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
}
array_pod_sort(Dices.begin(), Dices.end());
#ifndef NDEBUG
raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
raw_ostream &DebugOut = nulls();
#endif
std::unique_ptr<DIContext> diContext;
ObjectFile *DbgObj = MachOOF;
// Try to find debug info and set up the DIContext for it.
if (UseDbg) {
// A separate DSym file path was specified, parse it as a macho file,
// get the sections and supply it to the section name parsing machinery.
if (!DSYMFile.empty()) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFileOrSTDIN(DSYMFile);
if (std::error_code EC = BufOrErr.getError()) {
errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
return;
}
DbgObj =
ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
.get()
.release();
}
// Setup the DIContext
diContext.reset(DIContext::getDWARFContext(*DbgObj));
}
for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
bool SectIsText = false;
Sections[SectIdx].isText(SectIsText);
if (SectIsText == false)
continue;
StringRef SectName;
if (Sections[SectIdx].getName(SectName) ||
SectName != "__text")
continue; // Skip non-text sections
DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
if (SegmentName != "__TEXT")
continue;
StringRef Bytes;
Sections[SectIdx].getContents(Bytes);
uint64_t SectAddress = 0;
Sections[SectIdx].getAddress(SectAddress);
DisasmMemoryObject MemoryObject((const uint8_t *)Bytes.data(), Bytes.size(),
SectAddress);
bool symbolTableWorked = false;
// Parse relocations.
std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) {
uint64_t RelocOffset, SectionAddress;
Reloc.getOffset(RelocOffset);
Sections[SectIdx].getAddress(SectionAddress);
RelocOffset -= SectionAddress;
symbol_iterator RelocSym = Reloc.getSymbol();
Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
}
array_pod_sort(Relocs.begin(), Relocs.end());
// Create a map of symbol addresses to symbol names for use by
// the SymbolizerSymbolLookUp() routine.
SymbolAddressMap AddrMap;
for (const SymbolRef &Symbol : MachOOF->symbols()) {
SymbolRef::Type ST;
Symbol.getType(ST);
if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
ST == SymbolRef::ST_Other) {
uint64_t Address;
Symbol.getAddress(Address);
StringRef SymName;
Symbol.getName(SymName);
AddrMap[Address] = SymName;
}
}
// Set up the block of info used by the Symbolizer call backs.
SymbolizerInfo.verbose = true;
SymbolizerInfo.O = MachOOF;
SymbolizerInfo.S = Sections[SectIdx];
SymbolizerInfo.AddrMap = &AddrMap;
// Disassemble symbol by symbol.
for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
StringRef SymName;
Symbols[SymIdx].getName(SymName);
SymbolRef::Type ST;
Symbols[SymIdx].getType(ST);
if (ST != SymbolRef::ST_Function)
continue;
// Make sure the symbol is defined in this section.
bool containsSym = false;
Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym);
if (!containsSym)
continue;
// Start at the address of the symbol relative to the section's address.
uint64_t SectionAddress = 0;
uint64_t Start = 0;
Sections[SectIdx].getAddress(SectionAddress);
Symbols[SymIdx].getAddress(Start);
Start -= SectionAddress;
// Stop disassembling either at the beginning of the next symbol or at
// the end of the section.
bool containsNextSym = false;
uint64_t NextSym = 0;
uint64_t NextSymIdx = SymIdx+1;
while (Symbols.size() > NextSymIdx) {
SymbolRef::Type NextSymType;
Symbols[NextSymIdx].getType(NextSymType);
if (NextSymType == SymbolRef::ST_Function) {
Sections[SectIdx].containsSymbol(Symbols[NextSymIdx],
containsNextSym);
Symbols[NextSymIdx].getAddress(NextSym);
NextSym -= SectionAddress;
break;
}
++NextSymIdx;
}
uint64_t SectSize;
Sections[SectIdx].getSize(SectSize);
uint64_t End = containsNextSym ? NextSym : SectSize;
uint64_t Size;
symbolTableWorked = true;
DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
bool isThumb =
(MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget;
outs() << SymName << ":\n";
DILineInfo lastLine;
for (uint64_t Index = Start; Index < End; Index += Size) {
MCInst Inst;
uint64_t PC = SectAddress + Index;
if (FullLeadingAddr) {
if (MachOOF->is64Bit())
outs() << format("%016" PRIx64, PC);
else
outs() << format("%08" PRIx64, PC);
} else {
outs() << format("%8" PRIx64 ":", PC);
}
if (!NoShowRawInsn)
outs() << "\t";
// Check the data in code table here to see if this is data not an
// instruction to be disassembled.
DiceTable Dice;
Dice.push_back(std::make_pair(PC, DiceRef()));
dice_table_iterator DTI = std::search(Dices.begin(), Dices.end(),
Dice.begin(), Dice.end(),
compareDiceTableEntries);
if (DTI != Dices.end()){
uint16_t Length;
DTI->second.getLength(Length);
DumpBytes(StringRef(Bytes.data() + Index, Length));
uint16_t Kind;
DTI->second.getKind(Kind);
DumpDataInCode(Bytes.data() + Index, Length, Kind);
continue;
}
SmallVector<char, 64> AnnotationsBytes;
raw_svector_ostream Annotations(AnnotationsBytes);
bool gotInst;
if (isThumb)
gotInst = ThumbDisAsm->getInstruction(Inst, Size, MemoryObject, PC,
DebugOut, Annotations);
else
gotInst = DisAsm->getInstruction(Inst, Size, MemoryObject, PC,
DebugOut, Annotations);
if (gotInst) {
if (!NoShowRawInsn) {
DumpBytes(StringRef(Bytes.data() + Index, Size));
}
formatted_raw_ostream FormattedOS(outs());
Annotations.flush();
StringRef AnnotationsStr = Annotations.str();
if (isThumb)
ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr);
else
IP->printInst(&Inst, FormattedOS, AnnotationsStr);
emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
// Print debug info.
if (diContext) {
DILineInfo dli =
diContext->getLineInfoForAddress(PC);
// Print valid line info if it changed.
if (dli != lastLine && dli.Line != 0)
outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
<< dli.Column;
lastLine = dli;
}
outs() << "\n";
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
}
if (!symbolTableWorked) {
// Reading the symbol table didn't work, disassemble the whole section.
uint64_t SectAddress;
Sections[SectIdx].getAddress(SectAddress);
uint64_t SectSize;
Sections[SectIdx].getSize(SectSize);
uint64_t InstSize;
for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
MCInst Inst;
uint64_t PC = SectAddress + Index;
if (DisAsm->getInstruction(Inst, InstSize, MemoryObject, PC,
DebugOut, nulls())) {
if (FullLeadingAddr) {
if (MachOOF->is64Bit())
outs() << format("%016" PRIx64, PC);
else
outs() << format("%08" PRIx64, PC);
} else {
outs() << format("%8" PRIx64 ":", PC);
}
if (!NoShowRawInsn) {
outs() << "\t";
DumpBytes(StringRef(Bytes.data() + Index, InstSize));
}
IP->printInst(&Inst, outs(), "");
outs() << "\n";
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (InstSize == 0)
InstSize = 1; // skip illegible bytes
}
}
}
}
}
//===----------------------------------------------------------------------===//
// __compact_unwind section dumping
//===----------------------------------------------------------------------===//
namespace {
template <typename T> static uint64_t readNext(const char *&Buf) {
using llvm::support::little;
using llvm::support::unaligned;
uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
Buf += sizeof(T);
return Val;
}
struct CompactUnwindEntry {
uint32_t OffsetInSection;
uint64_t FunctionAddr;
uint32_t Length;
uint32_t CompactEncoding;
uint64_t PersonalityAddr;
uint64_t LSDAAddr;
RelocationRef FunctionReloc;
RelocationRef PersonalityReloc;
RelocationRef LSDAReloc;
CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
: OffsetInSection(Offset) {
if (Is64)
read<uint64_t>(Contents.data() + Offset);
else
read<uint32_t>(Contents.data() + Offset);
}
private:
template<typename UIntPtr>
void read(const char *Buf) {
FunctionAddr = readNext<UIntPtr>(Buf);
Length = readNext<uint32_t>(Buf);
CompactEncoding = readNext<uint32_t>(Buf);
PersonalityAddr = readNext<UIntPtr>(Buf);
LSDAAddr = readNext<UIntPtr>(Buf);
}
};
}
/// Given a relocation from __compact_unwind, consisting of the RelocationRef
/// and data being relocated, determine the best base Name and Addend to use for
/// display purposes.
///
/// 1. An Extern relocation will directly reference a symbol (and the data is
/// then already an addend), so use that.
/// 2. Otherwise the data is an offset in the object file's layout; try to find
// a symbol before it in the same section, and use the offset from there.
/// 3. Finally, if all that fails, fall back to an offset from the start of the
/// referenced section.
static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const RelocationRef &Reloc,
uint64_t Addr,
StringRef &Name, uint64_t &Addend) {
if (Reloc.getSymbol() != Obj->symbol_end()) {
Reloc.getSymbol()->getName(Name);
Addend = Addr;
return;
}
auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
SectionRef RelocSection = Obj->getRelocationSection(RE);
uint64_t SectionAddr;
RelocSection.getAddress(SectionAddr);
auto Sym = Symbols.upper_bound(Addr);
if (Sym == Symbols.begin()) {
// The first symbol in the object is after this reference, the best we can
// do is section-relative notation.
RelocSection.getName(Name);
Addend = Addr - SectionAddr;
return;
}
// Go back one so that SymbolAddress <= Addr.
--Sym;
section_iterator SymSection = Obj->section_end();
Sym->second.getSection(SymSection);
if (RelocSection == *SymSection) {
// There's a valid symbol in the same section before this reference.
Sym->second.getName(Name);
Addend = Addr - Sym->first;
return;
}
// There is a symbol before this reference, but it's in a different
// section. Probably not helpful to mention it, so use the section name.
RelocSection.getName(Name);
Addend = Addr - SectionAddr;
}
static void printUnwindRelocDest(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const RelocationRef &Reloc,
uint64_t Addr) {
StringRef Name;
uint64_t Addend;
if (!Reloc.getObjectFile())
return;
findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
outs() << Name;
if (Addend)
outs() << " + " << format("0x%" PRIx64, Addend);
}
static void
printMachOCompactUnwindSection(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const SectionRef &CompactUnwind) {
assert(Obj->isLittleEndian() &&
"There should not be a big-endian .o with __compact_unwind");
bool Is64 = Obj->is64Bit();
uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
StringRef Contents;
CompactUnwind.getContents(Contents);
SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
// First populate the initial raw offsets, encodings and so on from the entry.
for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
CompactUnwinds.push_back(Entry);
}
// Next we need to look at the relocations to find out what objects are
// actually being referred to.
for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
uint64_t RelocAddress;
Reloc.getOffset(RelocAddress);
uint32_t EntryIdx = RelocAddress / EntrySize;
uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
if (OffsetInEntry == 0)
Entry.FunctionReloc = Reloc;
else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
Entry.PersonalityReloc = Reloc;
else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
Entry.LSDAReloc = Reloc;
else
llvm_unreachable("Unexpected relocation in __compact_unwind section");
}
// Finally, we're ready to print the data we've gathered.
outs() << "Contents of __compact_unwind section:\n";
for (auto &Entry : CompactUnwinds) {
outs() << " Entry at offset "
<< format("0x%" PRIx32, Entry.OffsetInSection) << ":\n";
// 1. Start of the region this entry applies to.
outs() << " start: "
<< format("0x%" PRIx64, Entry.FunctionAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc,
Entry.FunctionAddr);
outs() << '\n';
// 2. Length of the region this entry applies to.
outs() << " length: "
<< format("0x%" PRIx32, Entry.Length) << '\n';
// 3. The 32-bit compact encoding.
outs() << " compact encoding: "
<< format("0x%08" PRIx32, Entry.CompactEncoding) << '\n';
// 4. The personality function, if present.
if (Entry.PersonalityReloc.getObjectFile()) {
outs() << " personality function: "
<< format("0x%" PRIx64, Entry.PersonalityAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
Entry.PersonalityAddr);
outs() << '\n';
}
// 5. This entry's language-specific data area.
if (Entry.LSDAReloc.getObjectFile()) {
outs() << " LSDA: "
<< format("0x%" PRIx64, Entry.LSDAAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
outs() << '\n';
}
}
}
//===----------------------------------------------------------------------===//
// __unwind_info section dumping
//===----------------------------------------------------------------------===//
static void printRegularSecondLevelUnwindPage(const char *PageStart) {
const char *Pos = PageStart;
uint32_t Kind = readNext<uint32_t>(Pos);
(void)Kind;
assert(Kind == 2 && "kind for a regular 2nd level index should be 2");
uint16_t EntriesStart = readNext<uint16_t>(Pos);
uint16_t NumEntries = readNext<uint16_t>(Pos);
Pos = PageStart + EntriesStart;
for (unsigned i = 0; i < NumEntries; ++i) {
uint32_t FunctionOffset = readNext<uint32_t>(Pos);
uint32_t Encoding = readNext<uint32_t>(Pos);
outs() << " [" << i << "]: "
<< "function offset="
<< format("0x%08" PRIx32, FunctionOffset) << ", "
<< "encoding="
<< format("0x%08" PRIx32, Encoding)
<< '\n';
}
}
static void printCompressedSecondLevelUnwindPage(
const char *PageStart, uint32_t FunctionBase,
const SmallVectorImpl<uint32_t> &CommonEncodings) {
const char *Pos = PageStart;
uint32_t Kind = readNext<uint32_t>(Pos);
(void)Kind;
assert(Kind == 3 && "kind for a compressed 2nd level index should be 3");
uint16_t EntriesStart = readNext<uint16_t>(Pos);
uint16_t NumEntries = readNext<uint16_t>(Pos);
uint16_t EncodingsStart = readNext<uint16_t>(Pos);
readNext<uint16_t>(Pos);
const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
PageStart + EncodingsStart);
Pos = PageStart + EntriesStart;
for (unsigned i = 0; i < NumEntries; ++i) {
uint32_t Entry = readNext<uint32_t>(Pos);
uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
uint32_t EncodingIdx = Entry >> 24;
uint32_t Encoding;
if (EncodingIdx < CommonEncodings.size())
Encoding = CommonEncodings[EncodingIdx];
else
Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
outs() << " [" << i << "]: "
<< "function offset="
<< format("0x%08" PRIx32, FunctionOffset) << ", "
<< "encoding[" << EncodingIdx << "]="
<< format("0x%08" PRIx32, Encoding)
<< '\n';
}
}
static void
printMachOUnwindInfoSection(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const SectionRef &UnwindInfo) {
assert(Obj->isLittleEndian() &&
"There should not be a big-endian .o with __unwind_info");
outs() << "Contents of __unwind_info section:\n";
StringRef Contents;
UnwindInfo.getContents(Contents);
const char *Pos = Contents.data();
//===----------------------------------
// Section header
//===----------------------------------
uint32_t Version = readNext<uint32_t>(Pos);
outs() << " Version: "
<< format("0x%" PRIx32, Version) << '\n';
assert(Version == 1 && "only understand version 1");
uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
outs() << " Common encodings array section offset: "
<< format("0x%" PRIx32, CommonEncodingsStart) << '\n';
uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
outs() << " Number of common encodings in array: "
<< format("0x%" PRIx32, NumCommonEncodings) << '\n';
uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
outs() << " Personality function array section offset: "
<< format("0x%" PRIx32, PersonalitiesStart) << '\n';
uint32_t NumPersonalities = readNext<uint32_t>(Pos);
outs() << " Number of personality functions in array: "
<< format("0x%" PRIx32, NumPersonalities) << '\n';
uint32_t IndicesStart = readNext<uint32_t>(Pos);
outs() << " Index array section offset: "
<< format("0x%" PRIx32, IndicesStart) << '\n';
uint32_t NumIndices = readNext<uint32_t>(Pos);
outs() << " Number of indices in array: "
<< format("0x%" PRIx32, NumIndices) << '\n';
//===----------------------------------
// A shared list of common encodings
//===----------------------------------
// These occupy indices in the range [0, N] whenever an encoding is referenced
// from a compressed 2nd level index table. In practice the linker only
// creates ~128 of these, so that indices are available to embed encodings in
// the 2nd level index.
SmallVector<uint32_t, 64> CommonEncodings;
outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n";
Pos = Contents.data() + CommonEncodingsStart;
for (unsigned i = 0; i < NumCommonEncodings; ++i) {
uint32_t Encoding = readNext<uint32_t>(Pos);
CommonEncodings.push_back(Encoding);
outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding)
<< '\n';
}
//===----------------------------------
// Personality functions used in this executable
//===----------------------------------
// There should be only a handful of these (one per source language,
// roughly). Particularly since they only get 2 bits in the compact encoding.
outs() << " Personality functions: (count = " << NumPersonalities << ")\n";
Pos = Contents.data() + PersonalitiesStart;
for (unsigned i = 0; i < NumPersonalities; ++i) {
uint32_t PersonalityFn = readNext<uint32_t>(Pos);
outs() << " personality[" << i + 1
<< "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n';
}
//===----------------------------------
// The level 1 index entries
//===----------------------------------
// These specify an approximate place to start searching for the more detailed
// information, sorted by PC.
struct IndexEntry {
uint32_t FunctionOffset;
uint32_t SecondLevelPageStart;
uint32_t LSDAStart;
};
SmallVector<IndexEntry, 4> IndexEntries;
outs() << " Top level indices: (count = " << NumIndices << ")\n";
Pos = Contents.data() + IndicesStart;
for (unsigned i = 0; i < NumIndices; ++i) {
IndexEntry Entry;
Entry.FunctionOffset = readNext<uint32_t>(Pos);
Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
Entry.LSDAStart = readNext<uint32_t>(Pos);
IndexEntries.push_back(Entry);
outs() << " [" << i << "]: "
<< "function offset="
<< format("0x%08" PRIx32, Entry.FunctionOffset) << ", "
<< "2nd level page offset="
<< format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", "
<< "LSDA offset="
<< format("0x%08" PRIx32, Entry.LSDAStart) << '\n';
}
//===----------------------------------
// Next come the LSDA tables
//===----------------------------------
// The LSDA layout is rather implicit: it's a contiguous array of entries from
// the first top-level index's LSDAOffset to the last (sentinel).
outs() << " LSDA descriptors:\n";
Pos = Contents.data() + IndexEntries[0].LSDAStart;
int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
(2 * sizeof(uint32_t));
for (int i = 0; i < NumLSDAs; ++i) {
uint32_t FunctionOffset = readNext<uint32_t>(Pos);
uint32_t LSDAOffset = readNext<uint32_t>(Pos);
outs() << " [" << i << "]: "
<< "function offset="
<< format("0x%08" PRIx32, FunctionOffset) << ", "
<< "LSDA offset="
<< format("0x%08" PRIx32, LSDAOffset) << '\n';
}
//===----------------------------------
// Finally, the 2nd level indices
//===----------------------------------
// Generally these are 4K in size, and have 2 possible forms:
// + Regular stores up to 511 entries with disparate encodings
// + Compressed stores up to 1021 entries if few enough compact encoding
// values are used.
outs() << " Second level indices:\n";
for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
// The final sentinel top-level index has no associated 2nd level page
if (IndexEntries[i].SecondLevelPageStart == 0)
break;
outs() << " Second level index[" << i << "]: "
<< "offset in section="
<< format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart)
<< ", "
<< "base function offset="
<< format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n';
Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
if (Kind == 2)
printRegularSecondLevelUnwindPage(Pos);
else if (Kind == 3)
printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
CommonEncodings);
else
llvm_unreachable("Do not know how to print this kind of 2nd level page");
}
}
void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
std::map<uint64_t, SymbolRef> Symbols;
for (const SymbolRef &SymRef : Obj->symbols()) {
// Discard any undefined or absolute symbols. They're not going to take part
// in the convenience lookup for unwind info and just take up resources.
section_iterator Section = Obj->section_end();
SymRef.getSection(Section);
if (Section == Obj->section_end())
continue;
uint64_t Addr;
SymRef.getAddress(Addr);
Symbols.insert(std::make_pair(Addr, SymRef));
}
for (const SectionRef &Section : Obj->sections()) {
StringRef SectName;
Section.getName(SectName);
if (SectName == "__compact_unwind")
printMachOCompactUnwindSection(Obj, Symbols, Section);
else if (SectName == "__unwind_info")
printMachOUnwindInfoSection(Obj, Symbols, Section);
else if (SectName == "__eh_frame")
outs() << "llvm-objdump: warning: unhandled __eh_frame section\n";
}
}
static void PrintMachHeader(uint32_t magic, uint32_t cputype,
uint32_t cpusubtype, uint32_t filetype,
uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
bool verbose) {
outs() << "Mach header\n";
outs() << " magic cputype cpusubtype caps filetype ncmds "
"sizeofcmds flags\n";
if (verbose) {
if (magic == MachO::MH_MAGIC)
outs() << " MH_MAGIC";
else if (magic == MachO::MH_MAGIC_64)
outs() << "MH_MAGIC_64";
else
outs() << format(" 0x%08" PRIx32, magic);
switch (cputype) {
case MachO::CPU_TYPE_I386:
outs() << " I386";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_I386_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_X86_64:
outs() << " X86_64";
case MachO::CPU_SUBTYPE_X86_64_ALL:
outs() << " ALL";
break;
case MachO::CPU_SUBTYPE_X86_64_H:
outs() << " Haswell";
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
case MachO::CPU_TYPE_ARM:
outs() << " ARM";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM_ALL:
outs() << " ALL";
break;
case MachO::CPU_SUBTYPE_ARM_V4T:
outs() << " V4T";
break;
case MachO::CPU_SUBTYPE_ARM_V5TEJ:
outs() << " V5TEJ";
break;
case MachO::CPU_SUBTYPE_ARM_XSCALE:
outs() << " XSCALE";
break;
case MachO::CPU_SUBTYPE_ARM_V6:
outs() << " V6";
break;
case MachO::CPU_SUBTYPE_ARM_V6M:
outs() << " V6M";
break;
case MachO::CPU_SUBTYPE_ARM_V7:
outs() << " V7";
break;
case MachO::CPU_SUBTYPE_ARM_V7EM:
outs() << " V7EM";
break;
case MachO::CPU_SUBTYPE_ARM_V7K:
outs() << " V7K";
break;
case MachO::CPU_SUBTYPE_ARM_V7M:
outs() << " V7M";
break;
case MachO::CPU_SUBTYPE_ARM_V7S:
outs() << " V7S";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_ARM64:
outs() << " ARM64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM64_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_POWERPC:
outs() << " PPC";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_POWERPC_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_POWERPC64:
outs() << " PPC64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_POWERPC_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
}
if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
outs() << " LIB64";
} else {
outs() << format(" 0x%02" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
}
switch (filetype) {
case MachO::MH_OBJECT:
outs() << " OBJECT";
break;
case MachO::MH_EXECUTE:
outs() << " EXECUTE";
break;
case MachO::MH_FVMLIB:
outs() << " FVMLIB";
break;
case MachO::MH_CORE:
outs() << " CORE";
break;
case MachO::MH_PRELOAD:
outs() << " PRELOAD";
break;
case MachO::MH_DYLIB:
outs() << " DYLIB";
break;
case MachO::MH_DYLIB_STUB:
outs() << " DYLIB_STUB";
break;
case MachO::MH_DYLINKER:
outs() << " DYLINKER";
break;
case MachO::MH_BUNDLE:
outs() << " BUNDLE";
break;
case MachO::MH_DSYM:
outs() << " DSYM";
break;
case MachO::MH_KEXT_BUNDLE:
outs() << " KEXTBUNDLE";
break;
default:
outs() << format(" %10u", filetype);
break;
}
outs() << format(" %5u", ncmds);
outs() << format(" %10u", sizeofcmds);
uint32_t f = flags;
if (f & MachO::MH_NOUNDEFS) {
outs() << " NOUNDEFS";
f &= ~MachO::MH_NOUNDEFS;
}
if (f & MachO::MH_INCRLINK) {
outs() << " INCRLINK";
f &= ~MachO::MH_INCRLINK;
}
if (f & MachO::MH_DYLDLINK) {
outs() << " DYLDLINK";
f &= ~MachO::MH_DYLDLINK;
}
if (f & MachO::MH_BINDATLOAD) {
outs() << " BINDATLOAD";
f &= ~MachO::MH_BINDATLOAD;
}
if (f & MachO::MH_PREBOUND) {
outs() << " PREBOUND";
f &= ~MachO::MH_PREBOUND;
}
if (f & MachO::MH_SPLIT_SEGS) {
outs() << " SPLIT_SEGS";
f &= ~MachO::MH_SPLIT_SEGS;
}
if (f & MachO::MH_LAZY_INIT) {
outs() << " LAZY_INIT";
f &= ~MachO::MH_LAZY_INIT;
}
if (f & MachO::MH_TWOLEVEL) {
outs() << " TWOLEVEL";
f &= ~MachO::MH_TWOLEVEL;
}
if (f & MachO::MH_FORCE_FLAT) {
outs() << " FORCE_FLAT";
f &= ~MachO::MH_FORCE_FLAT;
}
if (f & MachO::MH_NOMULTIDEFS) {
outs() << " NOMULTIDEFS";
f &= ~MachO::MH_NOMULTIDEFS;
}
if (f & MachO::MH_NOFIXPREBINDING) {
outs() << " NOFIXPREBINDING";
f &= ~MachO::MH_NOFIXPREBINDING;
}
if (f & MachO::MH_PREBINDABLE) {
outs() << " PREBINDABLE";
f &= ~MachO::MH_PREBINDABLE;
}
if (f & MachO::MH_ALLMODSBOUND) {
outs() << " ALLMODSBOUND";
f &= ~MachO::MH_ALLMODSBOUND;
}
if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
outs() << " SUBSECTIONS_VIA_SYMBOLS";
f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
}
if (f & MachO::MH_CANONICAL) {
outs() << " CANONICAL";
f &= ~MachO::MH_CANONICAL;
}
if (f & MachO::MH_WEAK_DEFINES) {
outs() << " WEAK_DEFINES";
f &= ~MachO::MH_WEAK_DEFINES;
}
if (f & MachO::MH_BINDS_TO_WEAK) {
outs() << " BINDS_TO_WEAK";
f &= ~MachO::MH_BINDS_TO_WEAK;
}
if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
outs() << " ALLOW_STACK_EXECUTION";
f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
}
if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
outs() << " DEAD_STRIPPABLE_DYLIB";
f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
}
if (f & MachO::MH_PIE) {
outs() << " PIE";
f &= ~MachO::MH_PIE;
}
if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
outs() << " NO_REEXPORTED_DYLIBS";
f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
}
if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
outs() << " MH_HAS_TLV_DESCRIPTORS";
f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
}
if (f & MachO::MH_NO_HEAP_EXECUTION) {
outs() << " MH_NO_HEAP_EXECUTION";
f &= ~MachO::MH_NO_HEAP_EXECUTION;
}
if (f & MachO::MH_APP_EXTENSION_SAFE) {
outs() << " APP_EXTENSION_SAFE";
f &= ~MachO::MH_APP_EXTENSION_SAFE;
}
if (f != 0 || flags == 0)
outs() << format(" 0x%08" PRIx32, f);
} else {
outs() << format(" 0x%08" PRIx32, magic);
outs() << format(" %7d", cputype);
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
outs() << format(" 0x%02" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
outs() << format(" %10u", filetype);
outs() << format(" %5u", ncmds);
outs() << format(" %10u", sizeofcmds);
outs() << format(" 0x%08" PRIx32, flags);
}
outs() << "\n";
}
static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
StringRef SegName, uint64_t vmaddr,
uint64_t vmsize, uint64_t fileoff,
uint64_t filesize, uint32_t maxprot,
uint32_t initprot, uint32_t nsects,
uint32_t flags, uint32_t object_size,
bool verbose) {
uint64_t expected_cmdsize;
if (cmd == MachO::LC_SEGMENT) {
outs() << " cmd LC_SEGMENT\n";
expected_cmdsize = nsects;
expected_cmdsize *= sizeof(struct MachO::section);
expected_cmdsize += sizeof(struct MachO::segment_command);
} else {
outs() << " cmd LC_SEGMENT_64\n";
expected_cmdsize = nsects;
expected_cmdsize *= sizeof(struct MachO::section_64);
expected_cmdsize += sizeof(struct MachO::segment_command_64);
}
outs() << " cmdsize " << cmdsize;
if (cmdsize != expected_cmdsize)
outs() << " Inconsistent size\n";
else
outs() << "\n";
outs() << " segname " << SegName << "\n";
if (cmd == MachO::LC_SEGMENT_64) {
outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n";
outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n";
} else {
outs() << " vmaddr " << format("0x%08" PRIx32, vmaddr) << "\n";
outs() << " vmsize " << format("0x%08" PRIx32, vmsize) << "\n";
}
outs() << " fileoff " << fileoff;
if (fileoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " filesize " << filesize;
if (fileoff + filesize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
if (verbose) {
if ((maxprot &
~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
MachO::VM_PROT_EXECUTE)) != 0)
outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n";
else {
if (maxprot & MachO::VM_PROT_READ)
outs() << " maxprot r";
else
outs() << " maxprot -";
if (maxprot & MachO::VM_PROT_WRITE)
outs() << "w";
else
outs() << "-";
if (maxprot & MachO::VM_PROT_EXECUTE)
outs() << "x\n";
else
outs() << "-\n";
}
if ((initprot &
~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
MachO::VM_PROT_EXECUTE)) != 0)
outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n";
else {
if (initprot & MachO::VM_PROT_READ)
outs() << " initprot r";
else
outs() << " initprot -";
if (initprot & MachO::VM_PROT_WRITE)
outs() << "w";
else
outs() << "-";
if (initprot & MachO::VM_PROT_EXECUTE)
outs() << "x\n";
else
outs() << "-\n";
}
} else {
outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n";
outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n";
}
outs() << " nsects " << nsects << "\n";
if (verbose) {
outs() << " flags";
if (flags == 0)
outs() << " (none)\n";
else {
if (flags & MachO::SG_HIGHVM) {
outs() << " HIGHVM";
flags &= ~MachO::SG_HIGHVM;
}
if (flags & MachO::SG_FVMLIB) {
outs() << " FVMLIB";
flags &= ~MachO::SG_FVMLIB;
}
if (flags & MachO::SG_NORELOC) {
outs() << " NORELOC";
flags &= ~MachO::SG_NORELOC;
}
if (flags & MachO::SG_PROTECTED_VERSION_1) {
outs() << " PROTECTED_VERSION_1";
flags &= ~MachO::SG_PROTECTED_VERSION_1;
}
if (flags)
outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n";
else
outs() << "\n";
}
} else {
outs() << " flags " << format("0x%" PRIx32, flags) << "\n";
}
}
static void PrintSection(const char *sectname, const char *segname,
uint64_t addr, uint64_t size, uint32_t offset,
uint32_t align, uint32_t reloff, uint32_t nreloc,
uint32_t flags, uint32_t reserved1, uint32_t reserved2,
uint32_t cmd, const char *sg_segname,
uint32_t filetype, uint32_t object_size,
bool verbose) {
outs() << "Section\n";
outs() << " sectname " << format("%.16s\n", sectname);
outs() << " segname " << format("%.16s", segname);
if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
outs() << " (does not match segment)\n";
else
outs() << "\n";
if (cmd == MachO::LC_SEGMENT_64) {
outs() << " addr " << format("0x%016" PRIx64, addr) << "\n";
outs() << " size " << format("0x%016" PRIx64, size);
} else {
outs() << " addr " << format("0x%08" PRIx32, addr) << "\n";
outs() << " size " << format("0x%08" PRIx32, size);
}
if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " offset " << offset;
if (offset > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
uint32_t align_shifted = 1 << align;
outs() << " align 2^" << align << " (" << align_shifted << ")\n";
outs() << " reloff " << reloff;
if (reloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nreloc " << nreloc;
if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
uint32_t section_type = flags & MachO::SECTION_TYPE;
if (verbose) {
outs() << " type";
if (section_type == MachO::S_REGULAR)
outs() << " S_REGULAR\n";
else if (section_type == MachO::S_ZEROFILL)
outs() << " S_ZEROFILL\n";
else if (section_type == MachO::S_CSTRING_LITERALS)
outs() << " S_CSTRING_LITERALS\n";
else if (section_type == MachO::S_4BYTE_LITERALS)
outs() << " S_4BYTE_LITERALS\n";
else if (section_type == MachO::S_8BYTE_LITERALS)
outs() << " S_8BYTE_LITERALS\n";
else if (section_type == MachO::S_16BYTE_LITERALS)
outs() << " S_16BYTE_LITERALS\n";
else if (section_type == MachO::S_LITERAL_POINTERS)
outs() << " S_LITERAL_POINTERS\n";
else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS)
outs() << " S_NON_LAZY_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS)
outs() << " S_LAZY_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_SYMBOL_STUBS)
outs() << " S_SYMBOL_STUBS\n";
else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS)
outs() << " S_MOD_INIT_FUNC_POINTERS\n";
else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS)
outs() << " S_MOD_TERM_FUNC_POINTERS\n";
else if (section_type == MachO::S_COALESCED)
outs() << " S_COALESCED\n";
else if (section_type == MachO::S_INTERPOSING)
outs() << " S_INTERPOSING\n";
else if (section_type == MachO::S_DTRACE_DOF)
outs() << " S_DTRACE_DOF\n";
else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS)
outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_THREAD_LOCAL_REGULAR)
outs() << " S_THREAD_LOCAL_REGULAR\n";
else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL)
outs() << " S_THREAD_LOCAL_ZEROFILL\n";
else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES)
outs() << " S_THREAD_LOCAL_VARIABLES\n";
else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n";
else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS)
outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n";
else
outs() << format("0x%08" PRIx32, section_type) << "\n";
outs() << "attributes";
uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES;
if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS)
outs() << " PURE_INSTRUCTIONS";
if (section_attributes & MachO::S_ATTR_NO_TOC)
outs() << " NO_TOC";
if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS)
outs() << " STRIP_STATIC_SYMS";
if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP)
outs() << " NO_DEAD_STRIP";
if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT)
outs() << " LIVE_SUPPORT";
if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE)
outs() << " SELF_MODIFYING_CODE";
if (section_attributes & MachO::S_ATTR_DEBUG)
outs() << " DEBUG";
if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS)
outs() << " SOME_INSTRUCTIONS";
if (section_attributes & MachO::S_ATTR_EXT_RELOC)
outs() << " EXT_RELOC";
if (section_attributes & MachO::S_ATTR_LOC_RELOC)
outs() << " LOC_RELOC";
if (section_attributes == 0)
outs() << " (none)";
outs() << "\n";
} else
outs() << " flags " << format("0x%08" PRIx32, flags) << "\n";
outs() << " reserved1 " << reserved1;
if (section_type == MachO::S_SYMBOL_STUBS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
outs() << " (index into indirect symbol table)\n";
else
outs() << "\n";
outs() << " reserved2 " << reserved2;
if (section_type == MachO::S_SYMBOL_STUBS)
outs() << " (size of stubs)\n";
else
outs() << "\n";
}
static void PrintSymtabLoadCommand(MachO::symtab_command st, uint32_t cputype,
uint32_t object_size) {
outs() << " cmd LC_SYMTAB\n";
outs() << " cmdsize " << st.cmdsize;
if (st.cmdsize != sizeof(struct MachO::symtab_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " symoff " << st.symoff;
if (st.symoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nsyms " << st.nsyms;
uint64_t big_size;
if (cputype & MachO::CPU_ARCH_ABI64) {
big_size = st.nsyms;
big_size *= sizeof(struct MachO::nlist_64);
big_size += st.symoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
} else {
big_size = st.nsyms;
big_size *= sizeof(struct MachO::nlist);
big_size += st.symoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
outs() << " stroff " << st.stroff;
if (st.stroff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " strsize " << st.strsize;
big_size = st.stroff;
big_size += st.strsize;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,
uint32_t nsyms, uint32_t object_size,
uint32_t cputype) {
outs() << " cmd LC_DYSYMTAB\n";
outs() << " cmdsize " << dyst.cmdsize;
if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " ilocalsym " << dyst.ilocalsym;
if (dyst.ilocalsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nlocalsym " << dyst.nlocalsym;
uint64_t big_size;
big_size = dyst.ilocalsym;
big_size += dyst.nlocalsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " iextdefsym " << dyst.iextdefsym;
if (dyst.iextdefsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nextdefsym " << dyst.nextdefsym;
big_size = dyst.iextdefsym;
big_size += dyst.nextdefsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " iundefsym " << dyst.iundefsym;
if (dyst.iundefsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nundefsym " << dyst.nundefsym;
big_size = dyst.iundefsym;
big_size += dyst.nundefsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " tocoff " << dyst.tocoff;
if (dyst.tocoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " ntoc " << dyst.ntoc;
big_size = dyst.ntoc;
big_size *= sizeof(struct MachO::dylib_table_of_contents);
big_size += dyst.tocoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " modtaboff " << dyst.modtaboff;
if (dyst.modtaboff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nmodtab " << dyst.nmodtab;
uint64_t modtabend;
if (cputype & MachO::CPU_ARCH_ABI64) {
modtabend = dyst.nmodtab;
modtabend *= sizeof(struct MachO::dylib_module_64);
modtabend += dyst.modtaboff;
} else {
modtabend = dyst.nmodtab;
modtabend *= sizeof(struct MachO::dylib_module);
modtabend += dyst.modtaboff;
}
if (modtabend > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " extrefsymoff " << dyst.extrefsymoff;
if (dyst.extrefsymoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nextrefsyms " << dyst.nextrefsyms;
big_size = dyst.nextrefsyms;
big_size *= sizeof(struct MachO::dylib_reference);
big_size += dyst.extrefsymoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " indirectsymoff " << dyst.indirectsymoff;
if (dyst.indirectsymoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nindirectsyms " << dyst.nindirectsyms;
big_size = dyst.nindirectsyms;
big_size *= sizeof(uint32_t);
big_size += dyst.indirectsymoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " extreloff " << dyst.extreloff;
if (dyst.extreloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nextrel " << dyst.nextrel;
big_size = dyst.nextrel;
big_size *= sizeof(struct MachO::relocation_info);
big_size += dyst.extreloff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " locreloff " << dyst.locreloff;
if (dyst.locreloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nlocrel " << dyst.nlocrel;
big_size = dyst.nlocrel;
big_size *= sizeof(struct MachO::relocation_info);
big_size += dyst.locreloff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,
uint32_t object_size) {
if (dc.cmd == MachO::LC_DYLD_INFO)
outs() << " cmd LC_DYLD_INFO\n";
else
outs() << " cmd LC_DYLD_INFO_ONLY\n";
outs() << " cmdsize " << dc.cmdsize;
if (dc.cmdsize != sizeof(struct MachO::dyld_info_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " rebase_off " << dc.rebase_off;
if (dc.rebase_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " rebase_size " << dc.rebase_size;
uint64_t big_size;
big_size = dc.rebase_off;
big_size += dc.rebase_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " bind_off " << dc.bind_off;
if (dc.bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " bind_size " << dc.bind_size;
big_size = dc.bind_off;
big_size += dc.bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " weak_bind_off " << dc.weak_bind_off;
if (dc.weak_bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " weak_bind_size " << dc.weak_bind_size;
big_size = dc.weak_bind_off;
big_size += dc.weak_bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " lazy_bind_off " << dc.lazy_bind_off;
if (dc.lazy_bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " lazy_bind_size " << dc.lazy_bind_size;
big_size = dc.lazy_bind_off;
big_size += dc.lazy_bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " export_off " << dc.export_off;
if (dc.export_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " export_size " << dc.export_size;
big_size = dc.export_off;
big_size += dc.export_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDyldLoadCommand(MachO::dylinker_command dyld,
const char *Ptr) {
if (dyld.cmd == MachO::LC_ID_DYLINKER)
outs() << " cmd LC_ID_DYLINKER\n";
else if (dyld.cmd == MachO::LC_LOAD_DYLINKER)
outs() << " cmd LC_LOAD_DYLINKER\n";
else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT)
outs() << " cmd LC_DYLD_ENVIRONMENT\n";
else
outs() << " cmd ?(" << dyld.cmd << ")\n";
outs() << " cmdsize " << dyld.cmdsize;
if (dyld.cmdsize < sizeof(struct MachO::dylinker_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (dyld.name >= dyld.cmdsize)
outs() << " name ?(bad offset " << dyld.name << ")\n";
else {
const char *P = (const char *)(Ptr)+dyld.name;
outs() << " name " << P << " (offset " << dyld.name << ")\n";
}
}
static void PrintUuidLoadCommand(MachO::uuid_command uuid) {
outs() << " cmd LC_UUID\n";
outs() << " cmdsize " << uuid.cmdsize;
if (uuid.cmdsize != sizeof(struct MachO::uuid_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " uuid ";
outs() << format("%02" PRIX32, uuid.uuid[0]);
outs() << format("%02" PRIX32, uuid.uuid[1]);
outs() << format("%02" PRIX32, uuid.uuid[2]);
outs() << format("%02" PRIX32, uuid.uuid[3]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[4]);
outs() << format("%02" PRIX32, uuid.uuid[5]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[6]);
outs() << format("%02" PRIX32, uuid.uuid[7]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[8]);
outs() << format("%02" PRIX32, uuid.uuid[9]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[10]);
outs() << format("%02" PRIX32, uuid.uuid[11]);
outs() << format("%02" PRIX32, uuid.uuid[12]);
outs() << format("%02" PRIX32, uuid.uuid[13]);
outs() << format("%02" PRIX32, uuid.uuid[14]);
outs() << format("%02" PRIX32, uuid.uuid[15]);
outs() << "\n";
}
static void PrintVersionMinLoadCommand(MachO::version_min_command vd) {
if (vd.cmd == MachO::LC_VERSION_MIN_MACOSX)
outs() << " cmd LC_VERSION_MIN_MACOSX\n";
else if (vd.cmd == MachO::LC_VERSION_MIN_IPHONEOS)
outs() << " cmd LC_VERSION_MIN_IPHONEOS\n";
else
outs() << " cmd " << vd.cmd << " (?)\n";
outs() << " cmdsize " << vd.cmdsize;
if (vd.cmdsize != sizeof(struct MachO::version_min_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " version " << ((vd.version >> 16) & 0xffff) << "."
<< ((vd.version >> 8) & 0xff);
if ((vd.version & 0xff) != 0)
outs() << "." << (vd.version & 0xff);
outs() << "\n";
if (vd.sdk == 0)
outs() << " sdk n/a\n";
else {
outs() << " sdk " << ((vd.sdk >> 16) & 0xffff) << "."
<< ((vd.sdk >> 8) & 0xff);
}
if ((vd.sdk & 0xff) != 0)
outs() << "." << (vd.sdk & 0xff);
outs() << "\n";
}
static void PrintSourceVersionCommand(MachO::source_version_command sd) {
outs() << " cmd LC_SOURCE_VERSION\n";
outs() << " cmdsize " << sd.cmdsize;
if (sd.cmdsize != sizeof(struct MachO::source_version_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
uint64_t a = (sd.version >> 40) & 0xffffff;
uint64_t b = (sd.version >> 30) & 0x3ff;
uint64_t c = (sd.version >> 20) & 0x3ff;
uint64_t d = (sd.version >> 10) & 0x3ff;
uint64_t e = sd.version & 0x3ff;
outs() << " version " << a << "." << b;
if (e != 0)
outs() << "." << c << "." << d << "." << e;
else if (d != 0)
outs() << "." << c << "." << d;
else if (c != 0)
outs() << "." << c;
outs() << "\n";
}
static void PrintEntryPointCommand(MachO::entry_point_command ep) {
outs() << " cmd LC_MAIN\n";
outs() << " cmdsize " << ep.cmdsize;
if (ep.cmdsize != sizeof(struct MachO::entry_point_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " entryoff " << ep.entryoff << "\n";
outs() << " stacksize " << ep.stacksize << "\n";
}
static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) {
if (dl.cmd == MachO::LC_ID_DYLIB)
outs() << " cmd LC_ID_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_DYLIB)
outs() << " cmd LC_LOAD_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB)
outs() << " cmd LC_LOAD_WEAK_DYLIB\n";
else if (dl.cmd == MachO::LC_REEXPORT_DYLIB)
outs() << " cmd LC_REEXPORT_DYLIB\n";
else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB)
outs() << " cmd LC_LAZY_LOAD_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
outs() << " cmd LC_LOAD_UPWARD_DYLIB\n";
else
outs() << " cmd " << dl.cmd << " (unknown)\n";
outs() << " cmdsize " << dl.cmdsize;
if (dl.cmdsize < sizeof(struct MachO::dylib_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (dl.dylib.name < dl.cmdsize) {
const char *P = (const char *)(Ptr)+dl.dylib.name;
outs() << " name " << P << " (offset " << dl.dylib.name << ")\n";
} else {
outs() << " name ?(bad offset " << dl.dylib.name << ")\n";
}
outs() << " time stamp " << dl.dylib.timestamp << " ";
time_t t = dl.dylib.timestamp;
outs() << ctime(&t);
outs() << " current version ";
if (dl.dylib.current_version == 0xffffffff)
outs() << "n/a\n";
else
outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "."
<< ((dl.dylib.current_version >> 8) & 0xff) << "."
<< (dl.dylib.current_version & 0xff) << "\n";
outs() << "compatibility version ";
if (dl.dylib.compatibility_version == 0xffffffff)
outs() << "n/a\n";
else
outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
<< ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
<< (dl.dylib.compatibility_version & 0xff) << "\n";
}
static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld,
uint32_t object_size) {
if (ld.cmd == MachO::LC_CODE_SIGNATURE)
outs() << " cmd LC_FUNCTION_STARTS\n";
else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO)
outs() << " cmd LC_SEGMENT_SPLIT_INFO\n";
else if (ld.cmd == MachO::LC_FUNCTION_STARTS)
outs() << " cmd LC_FUNCTION_STARTS\n";
else if (ld.cmd == MachO::LC_DATA_IN_CODE)
outs() << " cmd LC_DATA_IN_CODE\n";
else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS)
outs() << " cmd LC_DYLIB_CODE_SIGN_DRS\n";
else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT)
outs() << " cmd LC_LINKER_OPTIMIZATION_HINT\n";
else
outs() << " cmd " << ld.cmd << " (?)\n";
outs() << " cmdsize " << ld.cmdsize;
if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " dataoff " << ld.dataoff;
if (ld.dataoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " datasize " << ld.datasize;
uint64_t big_size = ld.dataoff;
big_size += ld.datasize;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t ncmds,
uint32_t filetype, uint32_t cputype,
bool verbose) {
StringRef Buf = Obj->getData();
MachOObjectFile::LoadCommandInfo Command = Obj->getFirstLoadCommandInfo();
for (unsigned i = 0;; ++i) {
outs() << "Load command " << i << "\n";
if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command);
const char *sg_segname = SLC.segname;
PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr,
SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot,
SLC.initprot, SLC.nsects, SLC.flags, Buf.size(),
verbose);
for (unsigned j = 0; j < SLC.nsects; j++) {
MachO::section_64 S = Obj->getSection64(Command, j);
PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align,
S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2,
SLC.cmd, sg_segname, filetype, Buf.size(), verbose);
}
} else if (Command.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command);
const char *sg_segname = SLC_64.segname;
PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname,
SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff,
SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot,
SLC_64.nsects, SLC_64.flags, Buf.size(), verbose);
for (unsigned j = 0; j < SLC_64.nsects; j++) {
MachO::section_64 S_64 = Obj->getSection64(Command, j);
PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size,
S_64.offset, S_64.align, S_64.reloff, S_64.nreloc,
S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd,
sg_segname, filetype, Buf.size(), verbose);
}
} else if (Command.C.cmd == MachO::LC_SYMTAB) {
MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
PrintSymtabLoadCommand(Symtab, cputype, Buf.size());
} else if (Command.C.cmd == MachO::LC_DYSYMTAB) {
MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand();
MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(), cputype);
} else if (Command.C.cmd == MachO::LC_DYLD_INFO ||
Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command);
PrintDyldInfoLoadCommand(DyldInfo, Buf.size());
} else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER ||
Command.C.cmd == MachO::LC_ID_DYLINKER ||
Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) {
MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command);
PrintDyldLoadCommand(Dyld, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_UUID) {
MachO::uuid_command Uuid = Obj->getUuidCommand(Command);
PrintUuidLoadCommand(Uuid);
} else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX) {
MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command);
PrintVersionMinLoadCommand(Vd);
} else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) {
MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command);
PrintSourceVersionCommand(Sd);
} else if (Command.C.cmd == MachO::LC_MAIN) {
MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command);
PrintEntryPointCommand(Ep);
} else if (Command.C.cmd == MachO::LC_LOAD_DYLIB) {
MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command);
PrintDylibCommand(Dl, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE ||
Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO ||
Command.C.cmd == MachO::LC_FUNCTION_STARTS ||
Command.C.cmd == MachO::LC_DATA_IN_CODE ||
Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS ||
Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) {
MachO::linkedit_data_command Ld =
Obj->getLinkeditDataLoadCommand(Command);
PrintLinkEditDataCommand(Ld, Buf.size());
} else {
outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd)
<< ")\n";
outs() << " cmdsize " << Command.C.cmdsize << "\n";
// TODO: get and print the raw bytes of the load command.
}
// TODO: print all the other kinds of load commands.
if (i == ncmds - 1)
break;
else
Command = Obj->getNextLoadCommandInfo(Command);
}
}
static void getAndPrintMachHeader(const MachOObjectFile *Obj, uint32_t &ncmds,
uint32_t &filetype, uint32_t &cputype,
bool verbose) {
if (Obj->is64Bit()) {
MachO::mach_header_64 H_64;
H_64 = Obj->getHeader64();
PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype,
H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose);
ncmds = H_64.ncmds;
filetype = H_64.filetype;
cputype = H_64.cputype;
} else {
MachO::mach_header H;
H = Obj->getHeader();
PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds,
H.sizeofcmds, H.flags, verbose);
ncmds = H.ncmds;
filetype = H.filetype;
cputype = H.cputype;
}
}
void llvm::printMachOFileHeader(const object::ObjectFile *Obj) {
const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
uint32_t ncmds = 0;
uint32_t filetype = 0;
uint32_t cputype = 0;
getAndPrintMachHeader(file, ncmds, filetype, cputype, true);
PrintLoadCommands(file, ncmds, filetype, cputype, true);
}
//===----------------------------------------------------------------------===//
// export trie dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) {
for (const llvm::object::ExportEntry &Entry : Obj->exports()) {
uint64_t Flags = Entry.flags();
bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT);
bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION);
bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL);
bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE);
bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER);
if (ReExport)
outs() << "[re-export] ";
else
outs()
<< format("0x%08llX ", Entry.address()); // FIXME:add in base address
outs() << Entry.name();
if (WeakDef || ThreadLocal || Resolver || Abs) {
bool NeedsComma = false;
outs() << " [";
if (WeakDef) {
outs() << "weak_def";
NeedsComma = true;
}
if (ThreadLocal) {
if (NeedsComma)
outs() << ", ";
outs() << "per-thread";
NeedsComma = true;
}
if (Abs) {
if (NeedsComma)
outs() << ", ";
outs() << "absolute";
NeedsComma = true;
}
if (Resolver) {
if (NeedsComma)
outs() << ", ";
outs() << format("resolver=0x%08llX", Entry.other());
NeedsComma = true;
}
outs() << "]";
}
if (ReExport) {
StringRef DylibName = "unknown";
int Ordinal = Entry.other() - 1;
Obj->getLibraryShortNameByIndex(Ordinal, DylibName);
if (Entry.otherName().empty())
outs() << " (from " << DylibName << ")";
else
outs() << " (" << Entry.otherName() << " from " << DylibName << ")";
}
outs() << "\n";
}
}
//===----------------------------------------------------------------------===//
// rebase table dumping
//===----------------------------------------------------------------------===//
namespace {
class SegInfo {
public:
SegInfo(const object::MachOObjectFile *Obj);
StringRef segmentName(uint32_t SegIndex);
StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset);
uint64_t address(uint32_t SegIndex, uint64_t SegOffset);
private:
struct SectionInfo {
uint64_t Address;
uint64_t Size;
StringRef SectionName;
StringRef SegmentName;
uint64_t OffsetInSegment;
uint64_t SegmentStartAddress;
uint32_t SegmentIndex;
};
const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset);
SmallVector<SectionInfo, 32> Sections;
};
}
SegInfo::SegInfo(const object::MachOObjectFile *Obj) {
// Build table of sections so segIndex/offset pairs can be translated.
uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0;
StringRef CurSegName;
uint64_t CurSegAddress;
for (const SectionRef &Section : Obj->sections()) {
SectionInfo Info;
if (error(Section.getName(Info.SectionName)))
return;
if (error(Section.getAddress(Info.Address)))
return;
if (error(Section.getSize(Info.Size)))
return;
Info.SegmentName =
Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl());
if (!Info.SegmentName.equals(CurSegName)) {
++CurSegIndex;
CurSegName = Info.SegmentName;
CurSegAddress = Info.Address;
}
Info.SegmentIndex = CurSegIndex - 1;
Info.OffsetInSegment = Info.Address - CurSegAddress;
Info.SegmentStartAddress = CurSegAddress;
Sections.push_back(Info);
}
}
StringRef SegInfo::segmentName(uint32_t SegIndex) {
for (const SectionInfo &SI : Sections) {
if (SI.SegmentIndex == SegIndex)
return SI.SegmentName;
}
llvm_unreachable("invalid segIndex");
}
const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex,
uint64_t OffsetInSeg) {
for (const SectionInfo &SI : Sections) {
if (SI.SegmentIndex != SegIndex)
continue;
if (SI.OffsetInSegment > OffsetInSeg)
continue;
if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
continue;
return SI;
}
llvm_unreachable("segIndex and offset not in any section");
}
StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) {
return findSection(SegIndex, OffsetInSeg).SectionName;
}
uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) {
const SectionInfo &SI = findSection(SegIndex, OffsetInSeg);
return SI.SegmentStartAddress + OffsetInSeg;
}
void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address type\n";
for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like: __DATA __nl_symbol_ptr 0x0000F00C pointer
outs() << format("%-8s %-18s 0x%08" PRIX64 " %s\n",
SegmentName.str().c_str(),
SectionName.str().c_str(), Address,
Entry.typeName().str().c_str());
}
}
static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) {
StringRef DylibName;
switch (Ordinal) {
case MachO::BIND_SPECIAL_DYLIB_SELF:
return "this-image";
case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE:
return "main-executable";
case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP:
return "flat-namespace";
default:
if (Ordinal > 0) {
std::error_code EC = Obj->getLibraryShortNameByIndex(Ordinal-1,
DylibName);
if (EC)
return "<<ordinal too big>>";
return DylibName;
}
}
return "<<unknown special ordinal>>";
}
//===----------------------------------------------------------------------===//
// bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address type "
"addend dylib symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __got 0x00012010 pointer 0 libSystem ___stack_chk_guard
outs() << format("%-8s %-18s 0x%08" PRIX64 " %-8s %-8" PRId64 " %-20s",
SegmentName.str().c_str(),
SectionName.str().c_str(),
Address,
Entry.typeName().str().c_str(),
Entry.addend(),
ordinalName(Obj, Entry.ordinal()).str().c_str())
<< Entry.symbolName();
if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT)
outs() << " (weak_import)\n";
else
outs() << "\n";
}
}
//===----------------------------------------------------------------------===//
// lazy bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address "
"dylib symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __got 0x00012010 libSystem ___stack_chk_guard
outs() << format("%-8s %-18s 0x%08" PRIX64 " %-20s",
SegmentName.str().c_str(),
SectionName.str().c_str(),
Address,
ordinalName(Obj, Entry.ordinal()).str().c_str())
<< Entry.symbolName() << "\n";
}
}
//===----------------------------------------------------------------------===//
// weak bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address "
"type addend symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) {
// Strong symbols don't have a location to update.
if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) {
outs() << " strong "
<< Entry.symbolName() << "\n";
continue;
}
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __data 0x00001000 pointer 0 _foo
outs() << format("%-8s %-18s 0x%08" PRIX64 " %-8s %-8" PRId64 " ",
SegmentName.str().c_str(),
SectionName.str().c_str(),
Address,
Entry.typeName().str().c_str(),
Entry.addend())
<< Entry.symbolName() << "\n";
}
}