llvm-6502/lib/Target/Mips/Mips64InstrInfo.td
Akira Hatanaka deab22a556 64-bit arbitrary immediate pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144448 91177308-0d34-0410-b5e6-96231b3b80d8
2011-11-12 02:25:00 +00:00

248 lines
10 KiB
TableGen

//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips64 instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def shamt_64 : Operand<i64>;
// Unsigned Operand
def uimm16_64 : Operand<i64> {
let PrintMethod = "printUnsignedImm";
}
// Transformation Function - get Imm - 32.
def Subtract32 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() - 32);
}]>;
// shamt field must fit in 5 bits.
def immZExt5_64 : ImmLeaf<i64, [{return Imm == (Imm & 0x1f);}]>;
// imm32_63 predicate - True if imm is in range [32, 63].
def imm32_63 : ImmLeaf<i32,
[{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
Subtract32>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Shifts
// 64-bit shift instructions.
class shift_rotate_imm64<bits<6> func, bits<5> isRotate, string instr_asm,
SDNode OpNode>:
shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt,
CPU64Regs>;
class shift_rotate_imm64_32<bits<6> func, bits<5> isRotate, string instr_asm,
SDNode OpNode>:
shift_rotate_imm<func, isRotate, instr_asm, OpNode, imm32_63, shamt,
CPU64Regs>;
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1,
// All calls clobber the non-callee saved registers...
Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
class JumpLink64<bits<6> op, string instr_asm>:
FJ<op, (outs), (ins calltarget64:$target, variable_ops),
!strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
IIBranch>;
class JumpLinkReg64<bits<6> op, bits<6> func, string instr_asm>:
FR<op, func, (outs), (ins CPU64Regs:$rs, variable_ops),
!strconcat(instr_asm, "\t$rs"),
[(MipsJmpLink CPU64Regs:$rs)], IIBranch> {
let rt = 0;
let rd = 31;
let shamt = 0;
}
class BranchLink64<string instr_asm>:
FI<0x1, (outs), (ins CPU64Regs:$rs, brtarget:$imm16, variable_ops),
!strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>;
}
// Mul, Div
class Mult64<bits<6> func, string instr_asm, InstrItinClass itin>:
Mult<func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
Div<op, func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
multiclass Atomic2Ops64<PatFrag Op, string Opstr> {
def #NAME# : Atomic2Ops<Op, Opstr, CPU64Regs, CPURegs>, Requires<[NotN64]>;
def _P8 : Atomic2Ops<Op, Opstr, CPU64Regs, CPU64Regs>, Requires<[IsN64]>;
}
multiclass AtomicCmpSwap64<PatFrag Op, string Width> {
def #NAME# : AtomicCmpSwap<Op, Width, CPU64Regs, CPURegs>, Requires<[NotN64]>;
def _P8 : AtomicCmpSwap<Op, Width, CPU64Regs, CPU64Regs>,
Requires<[IsN64]>;
}
let usesCustomInserter = 1, Predicates = [HasMips64] in {
defm ATOMIC_LOAD_ADD_I64 : Atomic2Ops64<atomic_load_add_64, "load_add_64">;
defm ATOMIC_LOAD_SUB_I64 : Atomic2Ops64<atomic_load_sub_64, "load_sub_64">;
defm ATOMIC_LOAD_AND_I64 : Atomic2Ops64<atomic_load_and_64, "load_and_64">;
defm ATOMIC_LOAD_OR_I64 : Atomic2Ops64<atomic_load_or_64, "load_or_64">;
defm ATOMIC_LOAD_XOR_I64 : Atomic2Ops64<atomic_load_xor_64, "load_xor_64">;
defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64, "load_nand_64">;
defm ATOMIC_SWAP_I64 : Atomic2Ops64<atomic_swap_64, "swap_64">;
defm ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap64<atomic_cmp_swap_64, "64">;
}
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
def DADDiu : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
CPU64Regs>;
def DANDi : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
def SLTi64 : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
def SLTiu64 : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
def ORi64 : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
def XORi64 : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;
def LUi64 : LoadUpper<0x0f, "lui", CPU64Regs, uimm16_64>;
/// Arithmetic Instructions (3-Operand, R-Type)
def DADDu : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
def DSUBu : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
def SLT64 : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
def SLTu64 : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
def AND64 : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
def OR64 : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
def XOR64 : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
def NOR64 : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;
/// Shift Instructions
def DSLL : shift_rotate_imm64<0x38, 0x00, "dsll", shl>;
def DSRL : shift_rotate_imm64<0x3a, 0x00, "dsrl", srl>;
def DSRA : shift_rotate_imm64<0x3b, 0x00, "dsra", sra>;
def DSLL32 : shift_rotate_imm64_32<0x3c, 0x00, "dsll32", shl>;
def DSRL32 : shift_rotate_imm64_32<0x3e, 0x00, "dsrl32", srl>;
def DSRA32 : shift_rotate_imm64_32<0x3f, 0x00, "dsra32", sra>;
def DSLLV : shift_rotate_reg<0x24, 0x00, "dsllv", shl, CPU64Regs>;
def DSRLV : shift_rotate_reg<0x26, 0x00, "dsrlv", srl, CPU64Regs>;
def DSRAV : shift_rotate_reg<0x27, 0x00, "dsrav", sra, CPU64Regs>;
// Rotate Instructions
let Predicates = [HasMips64r2] in {
def DROTR : shift_rotate_imm64<0x3a, 0x01, "drotr", rotr>;
def DROTR32 : shift_rotate_imm64_32<0x3e, 0x01, "drotr32", rotr>;
def DROTRV : shift_rotate_reg<0x16, 0x01, "drotrv", rotr, CPU64Regs>;
}
/// Load and Store Instructions
/// aligned
defm LB64 : LoadM64<0x20, "lb", sextloadi8>;
defm LBu64 : LoadM64<0x24, "lbu", zextloadi8>;
defm LH64 : LoadM64<0x21, "lh", sextloadi16_a>;
defm LHu64 : LoadM64<0x25, "lhu", zextloadi16_a>;
defm LW64 : LoadM64<0x23, "lw", sextloadi32_a>;
defm LWu64 : LoadM64<0x27, "lwu", zextloadi32_a>;
defm SB64 : StoreM64<0x28, "sb", truncstorei8>;
defm SH64 : StoreM64<0x29, "sh", truncstorei16_a>;
defm SW64 : StoreM64<0x2b, "sw", truncstorei32_a>;
defm LD : LoadM64<0x37, "ld", load_a>;
defm SD : StoreM64<0x3f, "sd", store_a>;
/// unaligned
defm ULH64 : LoadM64<0x21, "ulh", sextloadi16_u, 1>;
defm ULHu64 : LoadM64<0x25, "ulhu", zextloadi16_u, 1>;
defm ULW64 : LoadM64<0x23, "ulw", sextloadi32_u, 1>;
defm USH64 : StoreM64<0x29, "ush", truncstorei16_u, 1>;
defm USW64 : StoreM64<0x2b, "usw", truncstorei32_u, 1>;
defm ULD : LoadM64<0x37, "uld", load_u, 1>;
defm USD : StoreM64<0x3f, "usd", store_u, 1>;
/// Load-linked, Store-conditional
def LLD : LLBase<0x34, "lld", CPU64Regs, mem>, Requires<[NotN64]>;
def LLD_P8 : LLBase<0x34, "lld", CPU64Regs, mem64>, Requires<[IsN64]>;
def SCD : SCBase<0x3c, "scd", CPU64Regs, mem>, Requires<[NotN64]>;
def SCD_P8 : SCBase<0x3c, "scd", CPU64Regs, mem64>, Requires<[IsN64]>;
/// Jump and Branch Instructions
def JAL64 : JumpLink64<0x03, "jal">;
def JALR64 : JumpLinkReg64<0x00, 0x09, "jalr">;
def BEQ64 : CBranch<0x04, "beq", seteq, CPU64Regs>;
def BNE64 : CBranch<0x05, "bne", setne, CPU64Regs>;
def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>;
def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;
/// Multiply and Divide Instructions.
def DMULT : Mult64<0x1c, "dmult", IIImul>;
def DMULTu : Mult64<0x1d, "dmultu", IIImul>;
def DSDIV : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
def DUDIV : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;
def MTHI64 : MoveToLOHI<0x11, "mthi", CPU64Regs, [HI64]>;
def MTLO64 : MoveToLOHI<0x13, "mtlo", CPU64Regs, [LO64]>;
def MFHI64 : MoveFromLOHI<0x10, "mfhi", CPU64Regs, [HI64]>;
def MFLO64 : MoveFromLOHI<0x12, "mflo", CPU64Regs, [LO64]>;
/// Count Leading
def DCLZ : CountLeading0<0x24, "dclz", CPU64Regs>;
def DCLO : CountLeading1<0x25, "dclo", CPU64Regs>;
def LEA_ADDiu64 : EffectiveAddress<"addiu\t$rt, $addr", CPU64Regs, mem_ea_64>;
let Uses = [SP_64] in
def DynAlloc64 : EffectiveAddress<"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>,
Requires<[IsN64]>;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i64 immSExt16:$in),
(DADDiu ZERO_64, imm:$in)>;
def : Pat<(i64 immZExt16:$in),
(ORi64 ZERO_64, imm:$in)>;
// Arbitrary immediates
def : Pat<(i64 imm:$imm),
(ORi64 (LUi64 (HI16 imm:$imm)), (LO16 imm:$imm))>;
// zextloadi32_u
def : Pat<(zextloadi32_u addr:$a), (DSRL32 (DSLL32 (ULW64_P8 addr:$a), 0), 0)>,
Requires<[IsN64]>;
def : Pat<(zextloadi32_u addr:$a), (DSRL32 (DSLL32 (ULW64 addr:$a), 0), 0)>,
Requires<[NotN64]>;
// hi/lo relocs
def : Pat<(i64 (MipsLo tglobaladdr:$in)), (DADDiu ZERO_64, tglobaladdr:$in)>;
defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
ZERO_64>;
// setcc patterns
defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;
// select MipsDynAlloc
def : Pat<(MipsDynAlloc addr:$f), (DynAlloc64 addr:$f)>, Requires<[IsN64]>;
// truncate
def : Pat<(i32 (trunc CPU64Regs:$src)),
(SLL (EXTRACT_SUBREG CPU64Regs:$src, sub_32), 0)>, Requires<[IsN64]>;