mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 00:32:23 +00:00
9c22f87b13
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184191 91177308-0d34-0410-b5e6-96231b3b80d8
572 lines
20 KiB
C++
572 lines
20 KiB
C++
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the MC-JIT runtime dynamic linker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "dyld"
|
|
#include "llvm/ExecutionEngine/RuntimeDyld.h"
|
|
#include "ObjectImageCommon.h"
|
|
#include "RuntimeDyldELF.h"
|
|
#include "RuntimeDyldImpl.h"
|
|
#include "RuntimeDyldMachO.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Object/ELF.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
|
|
// Empty out-of-line virtual destructor as the key function.
|
|
RuntimeDyldImpl::~RuntimeDyldImpl() {}
|
|
|
|
namespace llvm {
|
|
|
|
StringRef RuntimeDyldImpl::getEHFrameSection() {
|
|
return StringRef();
|
|
}
|
|
|
|
// Resolve the relocations for all symbols we currently know about.
|
|
void RuntimeDyldImpl::resolveRelocations() {
|
|
// First, resolve relocations associated with external symbols.
|
|
resolveExternalSymbols();
|
|
|
|
// Just iterate over the sections we have and resolve all the relocations
|
|
// in them. Gross overkill, but it gets the job done.
|
|
for (int i = 0, e = Sections.size(); i != e; ++i) {
|
|
uint64_t Addr = Sections[i].LoadAddress;
|
|
DEBUG(dbgs() << "Resolving relocations Section #" << i
|
|
<< "\t" << format("%p", (uint8_t *)Addr)
|
|
<< "\n");
|
|
resolveRelocationList(Relocations[i], Addr);
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
|
|
uint64_t TargetAddress) {
|
|
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
|
|
if (Sections[i].Address == LocalAddress) {
|
|
reassignSectionAddress(i, TargetAddress);
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("Attempting to remap address of unknown section!");
|
|
}
|
|
|
|
// Subclasses can implement this method to create specialized image instances.
|
|
// The caller owns the pointer that is returned.
|
|
ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
|
|
return new ObjectImageCommon(InputBuffer);
|
|
}
|
|
|
|
ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
|
|
OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
|
|
if (!obj)
|
|
report_fatal_error("Unable to create object image from memory buffer!");
|
|
|
|
Arch = (Triple::ArchType)obj->getArch();
|
|
|
|
// Symbols found in this object
|
|
StringMap<SymbolLoc> LocalSymbols;
|
|
// Used sections from the object file
|
|
ObjSectionToIDMap LocalSections;
|
|
|
|
// Common symbols requiring allocation, with their sizes and alignments
|
|
CommonSymbolMap CommonSymbols;
|
|
// Maximum required total memory to allocate all common symbols
|
|
uint64_t CommonSize = 0;
|
|
|
|
error_code err;
|
|
// Parse symbols
|
|
DEBUG(dbgs() << "Parse symbols:\n");
|
|
for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
|
|
i != e; i.increment(err)) {
|
|
Check(err);
|
|
object::SymbolRef::Type SymType;
|
|
StringRef Name;
|
|
Check(i->getType(SymType));
|
|
Check(i->getName(Name));
|
|
|
|
uint32_t flags;
|
|
Check(i->getFlags(flags));
|
|
|
|
bool isCommon = flags & SymbolRef::SF_Common;
|
|
if (isCommon) {
|
|
// Add the common symbols to a list. We'll allocate them all below.
|
|
uint32_t Align;
|
|
Check(i->getAlignment(Align));
|
|
uint64_t Size = 0;
|
|
Check(i->getSize(Size));
|
|
CommonSize += Size + Align;
|
|
CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
|
|
} else {
|
|
if (SymType == object::SymbolRef::ST_Function ||
|
|
SymType == object::SymbolRef::ST_Data ||
|
|
SymType == object::SymbolRef::ST_Unknown) {
|
|
uint64_t FileOffset;
|
|
StringRef SectionData;
|
|
bool IsCode;
|
|
section_iterator si = obj->end_sections();
|
|
Check(i->getFileOffset(FileOffset));
|
|
Check(i->getSection(si));
|
|
if (si == obj->end_sections()) continue;
|
|
Check(si->getContents(SectionData));
|
|
Check(si->isText(IsCode));
|
|
const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
|
|
(uintptr_t)FileOffset;
|
|
uintptr_t SectOffset = (uintptr_t)(SymPtr -
|
|
(const uint8_t*)SectionData.begin());
|
|
unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
|
|
LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
|
|
DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
|
|
<< " flags: " << flags
|
|
<< " SID: " << SectionID
|
|
<< " Offset: " << format("%p", SectOffset));
|
|
GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
|
|
}
|
|
|
|
// Allocate common symbols
|
|
if (CommonSize != 0)
|
|
emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
|
|
|
|
// Parse and process relocations
|
|
DEBUG(dbgs() << "Parse relocations:\n");
|
|
for (section_iterator si = obj->begin_sections(),
|
|
se = obj->end_sections(); si != se; si.increment(err)) {
|
|
Check(err);
|
|
bool isFirstRelocation = true;
|
|
unsigned SectionID = 0;
|
|
StubMap Stubs;
|
|
section_iterator RelocatedSection = si->getRelocatedSection();
|
|
|
|
for (relocation_iterator i = si->begin_relocations(),
|
|
e = si->end_relocations(); i != e; i.increment(err)) {
|
|
Check(err);
|
|
|
|
// If it's the first relocation in this section, find its SectionID
|
|
if (isFirstRelocation) {
|
|
SectionID =
|
|
findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
|
|
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
|
|
isFirstRelocation = false;
|
|
}
|
|
|
|
processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
|
|
Stubs);
|
|
}
|
|
}
|
|
|
|
return obj.take();
|
|
}
|
|
|
|
void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
|
|
const CommonSymbolMap &CommonSymbols,
|
|
uint64_t TotalSize,
|
|
SymbolTableMap &SymbolTable) {
|
|
// Allocate memory for the section
|
|
unsigned SectionID = Sections.size();
|
|
uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
|
|
SectionID, false);
|
|
if (!Addr)
|
|
report_fatal_error("Unable to allocate memory for common symbols!");
|
|
uint64_t Offset = 0;
|
|
Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
|
|
memset(Addr, 0, TotalSize);
|
|
|
|
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
|
|
<< " new addr: " << format("%p", Addr)
|
|
<< " DataSize: " << TotalSize
|
|
<< "\n");
|
|
|
|
// Assign the address of each symbol
|
|
for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
|
|
itEnd = CommonSymbols.end(); it != itEnd; it++) {
|
|
uint64_t Size = it->second.first;
|
|
uint64_t Align = it->second.second;
|
|
StringRef Name;
|
|
it->first.getName(Name);
|
|
if (Align) {
|
|
// This symbol has an alignment requirement.
|
|
uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
|
|
Addr += AlignOffset;
|
|
Offset += AlignOffset;
|
|
DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
|
|
format("%p\n", Addr));
|
|
}
|
|
Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
|
|
SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
|
|
Offset += Size;
|
|
Addr += Size;
|
|
}
|
|
}
|
|
|
|
unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
|
|
const SectionRef &Section,
|
|
bool IsCode) {
|
|
|
|
unsigned StubBufSize = 0,
|
|
StubSize = getMaxStubSize();
|
|
error_code err;
|
|
const ObjectFile *ObjFile = Obj.getObjectFile();
|
|
// FIXME: this is an inefficient way to handle this. We should computed the
|
|
// necessary section allocation size in loadObject by walking all the sections
|
|
// once.
|
|
if (StubSize > 0) {
|
|
for (section_iterator SI = ObjFile->begin_sections(),
|
|
SE = ObjFile->end_sections();
|
|
SI != SE; SI.increment(err), Check(err)) {
|
|
section_iterator RelSecI = SI->getRelocatedSection();
|
|
if (!(RelSecI == Section))
|
|
continue;
|
|
|
|
for (relocation_iterator I = SI->begin_relocations(),
|
|
E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
|
|
StubBufSize += StubSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
StringRef data;
|
|
uint64_t Alignment64;
|
|
Check(Section.getContents(data));
|
|
Check(Section.getAlignment(Alignment64));
|
|
|
|
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
|
|
bool IsRequired;
|
|
bool IsVirtual;
|
|
bool IsZeroInit;
|
|
bool IsReadOnly;
|
|
uint64_t DataSize;
|
|
StringRef Name;
|
|
Check(Section.isRequiredForExecution(IsRequired));
|
|
Check(Section.isVirtual(IsVirtual));
|
|
Check(Section.isZeroInit(IsZeroInit));
|
|
Check(Section.isReadOnlyData(IsReadOnly));
|
|
Check(Section.getSize(DataSize));
|
|
Check(Section.getName(Name));
|
|
if (StubSize > 0) {
|
|
unsigned StubAlignment = getStubAlignment();
|
|
unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
|
|
if (StubAlignment > EndAlignment)
|
|
StubBufSize += StubAlignment - EndAlignment;
|
|
}
|
|
|
|
unsigned Allocate;
|
|
unsigned SectionID = Sections.size();
|
|
uint8_t *Addr;
|
|
const char *pData = 0;
|
|
|
|
// Some sections, such as debug info, don't need to be loaded for execution.
|
|
// Leave those where they are.
|
|
if (IsRequired) {
|
|
Allocate = DataSize + StubBufSize;
|
|
Addr = IsCode
|
|
? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
|
|
: MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
|
|
if (!Addr)
|
|
report_fatal_error("Unable to allocate section memory!");
|
|
|
|
// Virtual sections have no data in the object image, so leave pData = 0
|
|
if (!IsVirtual)
|
|
pData = data.data();
|
|
|
|
// Zero-initialize or copy the data from the image
|
|
if (IsZeroInit || IsVirtual)
|
|
memset(Addr, 0, DataSize);
|
|
else
|
|
memcpy(Addr, pData, DataSize);
|
|
|
|
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
|
|
<< " Name: " << Name
|
|
<< " obj addr: " << format("%p", pData)
|
|
<< " new addr: " << format("%p", Addr)
|
|
<< " DataSize: " << DataSize
|
|
<< " StubBufSize: " << StubBufSize
|
|
<< " Allocate: " << Allocate
|
|
<< "\n");
|
|
Obj.updateSectionAddress(Section, (uint64_t)Addr);
|
|
}
|
|
else {
|
|
// Even if we didn't load the section, we need to record an entry for it
|
|
// to handle later processing (and by 'handle' I mean don't do anything
|
|
// with these sections).
|
|
Allocate = 0;
|
|
Addr = 0;
|
|
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
|
|
<< " Name: " << Name
|
|
<< " obj addr: " << format("%p", data.data())
|
|
<< " new addr: 0"
|
|
<< " DataSize: " << DataSize
|
|
<< " StubBufSize: " << StubBufSize
|
|
<< " Allocate: " << Allocate
|
|
<< "\n");
|
|
}
|
|
|
|
Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
|
|
return SectionID;
|
|
}
|
|
|
|
unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
|
|
const SectionRef &Section,
|
|
bool IsCode,
|
|
ObjSectionToIDMap &LocalSections) {
|
|
|
|
unsigned SectionID = 0;
|
|
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
|
|
if (i != LocalSections.end())
|
|
SectionID = i->second;
|
|
else {
|
|
SectionID = emitSection(Obj, Section, IsCode);
|
|
LocalSections[Section] = SectionID;
|
|
}
|
|
return SectionID;
|
|
}
|
|
|
|
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
|
|
unsigned SectionID) {
|
|
Relocations[SectionID].push_back(RE);
|
|
}
|
|
|
|
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
|
|
StringRef SymbolName) {
|
|
// Relocation by symbol. If the symbol is found in the global symbol table,
|
|
// create an appropriate section relocation. Otherwise, add it to
|
|
// ExternalSymbolRelocations.
|
|
SymbolTableMap::const_iterator Loc =
|
|
GlobalSymbolTable.find(SymbolName);
|
|
if (Loc == GlobalSymbolTable.end()) {
|
|
ExternalSymbolRelocations[SymbolName].push_back(RE);
|
|
} else {
|
|
// Copy the RE since we want to modify its addend.
|
|
RelocationEntry RECopy = RE;
|
|
RECopy.Addend += Loc->second.second;
|
|
Relocations[Loc->second.first].push_back(RECopy);
|
|
}
|
|
}
|
|
|
|
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
|
|
if (Arch == Triple::aarch64) {
|
|
// This stub has to be able to access the full address space,
|
|
// since symbol lookup won't necessarily find a handy, in-range,
|
|
// PLT stub for functions which could be anywhere.
|
|
uint32_t *StubAddr = (uint32_t*)Addr;
|
|
|
|
// Stub can use ip0 (== x16) to calculate address
|
|
*StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
|
|
StubAddr++;
|
|
*StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
|
|
StubAddr++;
|
|
*StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
|
|
StubAddr++;
|
|
*StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
|
|
StubAddr++;
|
|
*StubAddr = 0xd61f0200; // br ip0
|
|
|
|
return Addr;
|
|
} else if (Arch == Triple::arm) {
|
|
// TODO: There is only ARM far stub now. We should add the Thumb stub,
|
|
// and stubs for branches Thumb - ARM and ARM - Thumb.
|
|
uint32_t *StubAddr = (uint32_t*)Addr;
|
|
*StubAddr = 0xe51ff004; // ldr pc,<label>
|
|
return (uint8_t*)++StubAddr;
|
|
} else if (Arch == Triple::mipsel || Arch == Triple::mips) {
|
|
uint32_t *StubAddr = (uint32_t*)Addr;
|
|
// 0: 3c190000 lui t9,%hi(addr).
|
|
// 4: 27390000 addiu t9,t9,%lo(addr).
|
|
// 8: 03200008 jr t9.
|
|
// c: 00000000 nop.
|
|
const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
|
|
const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
|
|
|
|
*StubAddr = LuiT9Instr;
|
|
StubAddr++;
|
|
*StubAddr = AdduiT9Instr;
|
|
StubAddr++;
|
|
*StubAddr = JrT9Instr;
|
|
StubAddr++;
|
|
*StubAddr = NopInstr;
|
|
return Addr;
|
|
} else if (Arch == Triple::ppc64) {
|
|
// PowerPC64 stub: the address points to a function descriptor
|
|
// instead of the function itself. Load the function address
|
|
// on r11 and sets it to control register. Also loads the function
|
|
// TOC in r2 and environment pointer to r11.
|
|
writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
|
|
writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
|
|
writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
|
|
writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
|
|
writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
|
|
writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
|
|
writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
|
|
writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
|
|
writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
|
|
writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
|
|
writeInt32BE(Addr+40, 0x4E800420); // bctr
|
|
|
|
return Addr;
|
|
} else if (Arch == Triple::systemz) {
|
|
writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
|
|
writeInt16BE(Addr+2, 0x0000);
|
|
writeInt16BE(Addr+4, 0x0004);
|
|
writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
|
|
// 8-byte address stored at Addr + 8
|
|
return Addr;
|
|
}
|
|
return Addr;
|
|
}
|
|
|
|
// Assign an address to a symbol name and resolve all the relocations
|
|
// associated with it.
|
|
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
|
|
uint64_t Addr) {
|
|
// The address to use for relocation resolution is not
|
|
// the address of the local section buffer. We must be doing
|
|
// a remote execution environment of some sort. Relocations can't
|
|
// be applied until all the sections have been moved. The client must
|
|
// trigger this with a call to MCJIT::finalize() or
|
|
// RuntimeDyld::resolveRelocations().
|
|
//
|
|
// Addr is a uint64_t because we can't assume the pointer width
|
|
// of the target is the same as that of the host. Just use a generic
|
|
// "big enough" type.
|
|
Sections[SectionID].LoadAddress = Addr;
|
|
}
|
|
|
|
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
|
|
uint64_t Value) {
|
|
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
|
|
const RelocationEntry &RE = Relocs[i];
|
|
// Ignore relocations for sections that were not loaded
|
|
if (Sections[RE.SectionID].Address == 0)
|
|
continue;
|
|
resolveRelocation(RE, Value);
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldImpl::resolveExternalSymbols() {
|
|
StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
|
|
e = ExternalSymbolRelocations.end();
|
|
for (; i != e; i++) {
|
|
StringRef Name = i->first();
|
|
RelocationList &Relocs = i->second;
|
|
SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
|
|
if (Loc == GlobalSymbolTable.end()) {
|
|
if (Name.size() == 0) {
|
|
// This is an absolute symbol, use an address of zero.
|
|
DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
|
|
resolveRelocationList(Relocs, 0);
|
|
} else {
|
|
// This is an external symbol, try to get its address from
|
|
// MemoryManager.
|
|
uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
|
|
true);
|
|
DEBUG(dbgs() << "Resolving relocations Name: " << Name
|
|
<< "\t" << format("%p", Addr)
|
|
<< "\n");
|
|
resolveRelocationList(Relocs, (uintptr_t)Addr);
|
|
}
|
|
} else {
|
|
report_fatal_error("Expected external symbol");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RuntimeDyld class implementation
|
|
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
|
|
// FIXME: There's a potential issue lurking here if a single instance of
|
|
// RuntimeDyld is used to load multiple objects. The current implementation
|
|
// associates a single memory manager with a RuntimeDyld instance. Even
|
|
// though the public class spawns a new 'impl' instance for each load,
|
|
// they share a single memory manager. This can become a problem when page
|
|
// permissions are applied.
|
|
Dyld = 0;
|
|
MM = mm;
|
|
}
|
|
|
|
RuntimeDyld::~RuntimeDyld() {
|
|
delete Dyld;
|
|
}
|
|
|
|
ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
|
|
if (!Dyld) {
|
|
sys::fs::file_magic Type =
|
|
sys::fs::identify_magic(InputBuffer->getBuffer());
|
|
switch (Type) {
|
|
case sys::fs::file_magic::elf_relocatable:
|
|
case sys::fs::file_magic::elf_executable:
|
|
case sys::fs::file_magic::elf_shared_object:
|
|
case sys::fs::file_magic::elf_core:
|
|
Dyld = new RuntimeDyldELF(MM);
|
|
break;
|
|
case sys::fs::file_magic::macho_object:
|
|
case sys::fs::file_magic::macho_executable:
|
|
case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
|
|
case sys::fs::file_magic::macho_core:
|
|
case sys::fs::file_magic::macho_preload_executable:
|
|
case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
|
|
case sys::fs::file_magic::macho_dynamic_linker:
|
|
case sys::fs::file_magic::macho_bundle:
|
|
case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
|
|
case sys::fs::file_magic::macho_dsym_companion:
|
|
Dyld = new RuntimeDyldMachO(MM);
|
|
break;
|
|
case sys::fs::file_magic::unknown:
|
|
case sys::fs::file_magic::bitcode:
|
|
case sys::fs::file_magic::archive:
|
|
case sys::fs::file_magic::coff_object:
|
|
case sys::fs::file_magic::pecoff_executable:
|
|
case sys::fs::file_magic::macho_universal_binary:
|
|
report_fatal_error("Incompatible object format!");
|
|
}
|
|
} else {
|
|
if (!Dyld->isCompatibleFormat(InputBuffer))
|
|
report_fatal_error("Incompatible object format!");
|
|
}
|
|
|
|
return Dyld->loadObject(InputBuffer);
|
|
}
|
|
|
|
void *RuntimeDyld::getSymbolAddress(StringRef Name) {
|
|
return Dyld->getSymbolAddress(Name);
|
|
}
|
|
|
|
uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
|
|
return Dyld->getSymbolLoadAddress(Name);
|
|
}
|
|
|
|
void RuntimeDyld::resolveRelocations() {
|
|
Dyld->resolveRelocations();
|
|
}
|
|
|
|
void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
|
|
uint64_t Addr) {
|
|
Dyld->reassignSectionAddress(SectionID, Addr);
|
|
}
|
|
|
|
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
|
|
uint64_t TargetAddress) {
|
|
Dyld->mapSectionAddress(LocalAddress, TargetAddress);
|
|
}
|
|
|
|
StringRef RuntimeDyld::getErrorString() {
|
|
return Dyld->getErrorString();
|
|
}
|
|
|
|
StringRef RuntimeDyld::getEHFrameSection() {
|
|
return Dyld->getEHFrameSection();
|
|
}
|
|
|
|
} // end namespace llvm
|