mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-18 13:34:04 +00:00
27608d8393
Instructions are now generally selected to the e64 forms originally, and shrunk down later. Rename foldOperands to legalizeOperands, since that's really most of what it tries to do. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217959 91177308-0d34-0410-b5e6-96231b3b80d8
1982 lines
68 KiB
C++
1982 lines
68 KiB
C++
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief Custom DAG lowering for SI
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifdef _MSC_VER
|
|
// Provide M_PI.
|
|
#define _USE_MATH_DEFINES
|
|
#include <cmath>
|
|
#endif
|
|
|
|
#include "SIISelLowering.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUIntrinsicInfo.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
using namespace llvm;
|
|
|
|
SITargetLowering::SITargetLowering(TargetMachine &TM) :
|
|
AMDGPUTargetLowering(TM) {
|
|
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
|
|
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
|
|
|
|
addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
|
|
addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
|
|
|
|
addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
|
|
addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass);
|
|
|
|
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
|
|
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
|
|
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
|
|
|
|
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
|
|
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
|
|
|
|
addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
|
|
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
|
|
|
|
addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
|
|
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
|
|
|
|
computeRegisterProperties();
|
|
|
|
// Condition Codes
|
|
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
|
|
|
|
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETULE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
|
|
|
|
setOperationAction(ISD::ADD, MVT::i32, Legal);
|
|
setOperationAction(ISD::ADDC, MVT::i32, Legal);
|
|
setOperationAction(ISD::ADDE, MVT::i32, Legal);
|
|
setOperationAction(ISD::SUBC, MVT::i32, Legal);
|
|
setOperationAction(ISD::SUBE, MVT::i32, Legal);
|
|
|
|
setOperationAction(ISD::FSIN, MVT::f32, Custom);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Custom);
|
|
|
|
// We need to custom lower vector stores from local memory
|
|
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
|
|
|
|
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
|
|
|
|
setOperationAction(ISD::STORE, MVT::i1, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, MVT::f32, Promote);
|
|
AddPromotedToType(ISD::SELECT, MVT::f32, MVT::i32);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Promote);
|
|
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
|
|
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
|
|
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, Expand);
|
|
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Expand);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
|
|
setTruncStoreAction(MVT::i32, MVT::i8, Custom);
|
|
setTruncStoreAction(MVT::i32, MVT::i16, Custom);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
|
|
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
|
|
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::i1, Custom);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
|
|
|
|
// These should use UDIVREM, so set them to expand
|
|
setOperationAction(ISD::UDIV, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// We only support LOAD/STORE and vector manipulation ops for vectors
|
|
// with > 4 elements.
|
|
MVT VecTypes[] = {
|
|
MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32
|
|
};
|
|
|
|
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::i1, Promote);
|
|
|
|
for (MVT VT : VecTypes) {
|
|
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
|
|
switch(Op) {
|
|
case ISD::LOAD:
|
|
case ISD::STORE:
|
|
case ISD::BUILD_VECTOR:
|
|
case ISD::BITCAST:
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
case ISD::INSERT_SUBVECTOR:
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
break;
|
|
case ISD::CONCAT_VECTORS:
|
|
setOperationAction(Op, VT, Custom);
|
|
break;
|
|
default:
|
|
setOperationAction(Op, VT, Expand);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int I = MVT::v1f64; I <= MVT::v8f64; ++I) {
|
|
MVT::SimpleValueType VT = static_cast<MVT::SimpleValueType>(I);
|
|
setOperationAction(ISD::FTRUNC, VT, Expand);
|
|
setOperationAction(ISD::FCEIL, VT, Expand);
|
|
setOperationAction(ISD::FFLOOR, VT, Expand);
|
|
}
|
|
|
|
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f64, Legal);
|
|
}
|
|
|
|
setOperationAction(ISD::FDIV, MVT::f32, Custom);
|
|
|
|
setTargetDAGCombine(ISD::FSUB);
|
|
setTargetDAGCombine(ISD::SELECT_CC);
|
|
setTargetDAGCombine(ISD::SETCC);
|
|
|
|
setTargetDAGCombine(ISD::UINT_TO_FP);
|
|
|
|
// All memory operations. Some folding on the pointer operand is done to help
|
|
// matching the constant offsets in the addressing modes.
|
|
setTargetDAGCombine(ISD::LOAD);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD);
|
|
setTargetDAGCombine(ISD::ATOMIC_STORE);
|
|
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
|
|
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
|
|
setTargetDAGCombine(ISD::ATOMIC_SWAP);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
|
|
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetLowering queries
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// FIXME: This really needs an address space argument. The immediate offset
|
|
// size is different for different sets of memory instruction sets.
|
|
|
|
// The single offset DS instructions have a 16-bit unsigned byte offset.
|
|
//
|
|
// MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
|
|
// r + i with addr64. 32-bit has more addressing mode options. Depending on the
|
|
// resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
|
|
//
|
|
// SMRD instructions have an 8-bit, dword offset.
|
|
//
|
|
bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// Allow a 16-bit unsigned immediate field, since this is what DS instructions
|
|
// use.
|
|
if (!isUInt<16>(AM.BaseOffs))
|
|
return false;
|
|
|
|
// Only support r+r,
|
|
switch (AM.Scale) {
|
|
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
|
break;
|
|
case 1:
|
|
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
|
|
return false;
|
|
// Otherwise we have r+r or r+i.
|
|
break;
|
|
case 2:
|
|
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
|
|
return false;
|
|
// Allow 2*r as r+r.
|
|
break;
|
|
default: // Don't allow n * r
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned AddrSpace,
|
|
unsigned Align,
|
|
bool *IsFast) const {
|
|
if (IsFast)
|
|
*IsFast = false;
|
|
|
|
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
|
|
// which isn't a simple VT.
|
|
if (!VT.isSimple() || VT == MVT::Other)
|
|
return false;
|
|
|
|
// XXX - CI changes say "Support for unaligned memory accesses" but I don't
|
|
// see what for specifically. The wording everywhere else seems to be the
|
|
// same.
|
|
|
|
// XXX - The only mention I see of this in the ISA manual is for LDS direct
|
|
// reads the "byte address and must be dword aligned". Is it also true for the
|
|
// normal loads and stores?
|
|
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
|
|
// ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
|
|
// aligned, 8 byte access in a single operation using ds_read2/write2_b32
|
|
// with adjacent offsets.
|
|
return Align % 4 == 0;
|
|
}
|
|
|
|
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
|
|
// byte-address are ignored, thus forcing Dword alignment.
|
|
// This applies to private, global, and constant memory.
|
|
if (IsFast)
|
|
*IsFast = true;
|
|
return VT.bitsGT(MVT::i32);
|
|
}
|
|
|
|
EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
|
|
unsigned SrcAlign, bool IsMemset,
|
|
bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
// FIXME: Should account for address space here.
|
|
|
|
// The default fallback uses the private pointer size as a guess for a type to
|
|
// use. Make sure we switch these to 64-bit accesses.
|
|
|
|
if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
|
|
return MVT::v4i32;
|
|
|
|
if (Size >= 8 && DstAlign >= 4)
|
|
return MVT::v2i32;
|
|
|
|
// Use the default.
|
|
return MVT::Other;
|
|
}
|
|
|
|
TargetLoweringBase::LegalizeTypeAction
|
|
SITargetLowering::getPreferredVectorAction(EVT VT) const {
|
|
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
|
|
return TypeSplitVector;
|
|
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
|
|
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const {
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
return TII->isInlineConstant(Imm);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
|
|
SDLoc SL, SDValue Chain,
|
|
unsigned Offset, bool Signed) const {
|
|
const DataLayout *DL = getDataLayout();
|
|
|
|
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
|
|
|
|
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
|
|
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
|
|
SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
|
|
MRI.getLiveInVirtReg(AMDGPU::SGPR0_SGPR1), MVT::i64);
|
|
SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
|
|
DAG.getConstant(Offset, MVT::i64));
|
|
SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
|
|
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
|
|
|
|
return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
|
|
VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
|
|
false, // isVolatile
|
|
true, // isNonTemporal
|
|
true, // isInvariant
|
|
DL->getABITypeAlignment(Ty)); // Alignment
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFormalArguments(
|
|
SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc DL, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
FunctionType *FType = MF.getFunction()->getFunctionType();
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
assert(CallConv == CallingConv::C);
|
|
|
|
SmallVector<ISD::InputArg, 16> Splits;
|
|
BitVector Skipped(Ins.size());
|
|
|
|
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
|
|
const ISD::InputArg &Arg = Ins[i];
|
|
|
|
// First check if it's a PS input addr
|
|
if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
|
|
!Arg.Flags.isByVal()) {
|
|
|
|
assert((PSInputNum <= 15) && "Too many PS inputs!");
|
|
|
|
if (!Arg.Used) {
|
|
// We can savely skip PS inputs
|
|
Skipped.set(i);
|
|
++PSInputNum;
|
|
continue;
|
|
}
|
|
|
|
Info->PSInputAddr |= 1 << PSInputNum++;
|
|
}
|
|
|
|
// Second split vertices into their elements
|
|
if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
|
|
ISD::InputArg NewArg = Arg;
|
|
NewArg.Flags.setSplit();
|
|
NewArg.VT = Arg.VT.getVectorElementType();
|
|
|
|
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
|
|
// three or five element vertex only needs three or five registers,
|
|
// NOT four or eigth.
|
|
Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
|
|
unsigned NumElements = ParamType->getVectorNumElements();
|
|
|
|
for (unsigned j = 0; j != NumElements; ++j) {
|
|
Splits.push_back(NewArg);
|
|
NewArg.PartOffset += NewArg.VT.getStoreSize();
|
|
}
|
|
|
|
} else if (Info->getShaderType() != ShaderType::COMPUTE) {
|
|
Splits.push_back(Arg);
|
|
}
|
|
}
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// At least one interpolation mode must be enabled or else the GPU will hang.
|
|
if (Info->getShaderType() == ShaderType::PIXEL &&
|
|
(Info->PSInputAddr & 0x7F) == 0) {
|
|
Info->PSInputAddr |= 1;
|
|
CCInfo.AllocateReg(AMDGPU::VGPR0);
|
|
CCInfo.AllocateReg(AMDGPU::VGPR1);
|
|
}
|
|
|
|
// The pointer to the list of arguments is stored in SGPR0, SGPR1
|
|
// The pointer to the scratch buffer is stored in SGPR2, SGPR3
|
|
if (Info->getShaderType() == ShaderType::COMPUTE) {
|
|
Info->NumUserSGPRs = 4;
|
|
CCInfo.AllocateReg(AMDGPU::SGPR0);
|
|
CCInfo.AllocateReg(AMDGPU::SGPR1);
|
|
CCInfo.AllocateReg(AMDGPU::SGPR2);
|
|
CCInfo.AllocateReg(AMDGPU::SGPR3);
|
|
MF.addLiveIn(AMDGPU::SGPR0_SGPR1, &AMDGPU::SReg_64RegClass);
|
|
MF.addLiveIn(AMDGPU::SGPR2_SGPR3, &AMDGPU::SReg_64RegClass);
|
|
}
|
|
|
|
if (Info->getShaderType() == ShaderType::COMPUTE) {
|
|
getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
|
|
Splits);
|
|
}
|
|
|
|
AnalyzeFormalArguments(CCInfo, Splits);
|
|
|
|
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
|
|
|
|
const ISD::InputArg &Arg = Ins[i];
|
|
if (Skipped[i]) {
|
|
InVals.push_back(DAG.getUNDEF(Arg.VT));
|
|
continue;
|
|
}
|
|
|
|
CCValAssign &VA = ArgLocs[ArgIdx++];
|
|
EVT VT = VA.getLocVT();
|
|
|
|
if (VA.isMemLoc()) {
|
|
VT = Ins[i].VT;
|
|
EVT MemVT = Splits[i].VT;
|
|
// The first 36 bytes of the input buffer contains information about
|
|
// thread group and global sizes.
|
|
SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(),
|
|
36 + VA.getLocMemOffset(),
|
|
Ins[i].Flags.isSExt());
|
|
|
|
const PointerType *ParamTy =
|
|
dyn_cast<PointerType>(FType->getParamType(Ins[i].OrigArgIndex));
|
|
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
|
|
ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
|
|
// On SI local pointers are just offsets into LDS, so they are always
|
|
// less than 16-bits. On CI and newer they could potentially be
|
|
// real pointers, so we can't guarantee their size.
|
|
Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
|
|
DAG.getValueType(MVT::i16));
|
|
}
|
|
|
|
InVals.push_back(Arg);
|
|
continue;
|
|
}
|
|
assert(VA.isRegLoc() && "Parameter must be in a register!");
|
|
|
|
unsigned Reg = VA.getLocReg();
|
|
|
|
if (VT == MVT::i64) {
|
|
// For now assume it is a pointer
|
|
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
|
|
&AMDGPU::SReg_64RegClass);
|
|
Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
|
|
InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
|
|
continue;
|
|
}
|
|
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
|
|
|
|
Reg = MF.addLiveIn(Reg, RC);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
|
|
|
|
if (Arg.VT.isVector()) {
|
|
|
|
// Build a vector from the registers
|
|
Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
|
|
unsigned NumElements = ParamType->getVectorNumElements();
|
|
|
|
SmallVector<SDValue, 4> Regs;
|
|
Regs.push_back(Val);
|
|
for (unsigned j = 1; j != NumElements; ++j) {
|
|
Reg = ArgLocs[ArgIdx++].getLocReg();
|
|
Reg = MF.addLiveIn(Reg, RC);
|
|
Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
|
|
}
|
|
|
|
// Fill up the missing vector elements
|
|
NumElements = Arg.VT.getVectorNumElements() - NumElements;
|
|
for (unsigned j = 0; j != NumElements; ++j)
|
|
Regs.push_back(DAG.getUNDEF(VT));
|
|
|
|
InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
|
|
continue;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
return Chain;
|
|
}
|
|
|
|
MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
|
|
MachineInstr * MI, MachineBasicBlock * BB) const {
|
|
|
|
MachineBasicBlock::iterator I = *MI;
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
|
|
case AMDGPU::BRANCH: return BB;
|
|
case AMDGPU::SI_ADDR64_RSRC: {
|
|
unsigned SuperReg = MI->getOperand(0).getReg();
|
|
unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
|
|
unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
|
|
unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo)
|
|
.addOperand(MI->getOperand(1));
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo)
|
|
.addImm(0);
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi)
|
|
.addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi)
|
|
.addReg(SubRegHiLo)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(SubRegHiHi)
|
|
.addImm(AMDGPU::sub1);
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg)
|
|
.addReg(SubRegLo)
|
|
.addImm(AMDGPU::sub0_sub1)
|
|
.addReg(SubRegHi)
|
|
.addImm(AMDGPU::sub2_sub3);
|
|
MI->eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::SI_BUFFER_RSRC: {
|
|
unsigned SuperReg = MI->getOperand(0).getReg();
|
|
unsigned Args[4];
|
|
for (unsigned i = 0, e = 4; i < e; ++i) {
|
|
MachineOperand &Arg = MI->getOperand(i + 1);
|
|
|
|
if (Arg.isReg()) {
|
|
Args[i] = Arg.getReg();
|
|
continue;
|
|
}
|
|
|
|
assert(Arg.isImm());
|
|
unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), Reg)
|
|
.addImm(Arg.getImm());
|
|
Args[i] = Reg;
|
|
}
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE),
|
|
SuperReg)
|
|
.addReg(Args[0])
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(Args[1])
|
|
.addImm(AMDGPU::sub1)
|
|
.addReg(Args[2])
|
|
.addImm(AMDGPU::sub2)
|
|
.addReg(Args[3])
|
|
.addImm(AMDGPU::sub3);
|
|
MI->eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::V_SUB_F64: {
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64), DestReg)
|
|
.addImm(0) // SRC0 modifiers
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addImm(1) // SRC1 modifiers
|
|
.addReg(MI->getOperand(2).getReg())
|
|
.addImm(0) // CLAMP
|
|
.addImm(0); // OMOD
|
|
MI->eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::SI_RegisterStorePseudo: {
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
|
|
Reg);
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
|
|
MIB.addOperand(MI->getOperand(i));
|
|
|
|
MI->eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::FCLAMP_SI: {
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
BuildMI(*BB, I, DL, TII->get(AMDGPU::V_ADD_F32_e64), DestReg)
|
|
.addImm(0) // SRC0 modifiers
|
|
.addOperand(MI->getOperand(1))
|
|
.addImm(0) // SRC1 modifiers
|
|
.addImm(0) // SRC1
|
|
.addImm(1) // CLAMP
|
|
.addImm(0); // OMOD
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
return BB;
|
|
}
|
|
|
|
EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
|
if (!VT.isVector()) {
|
|
return MVT::i1;
|
|
}
|
|
return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
|
|
}
|
|
|
|
MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
|
|
return MVT::i32;
|
|
}
|
|
|
|
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
|
VT = VT.getScalarType();
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f32:
|
|
return false; /* There is V_MAD_F32 for f32 */
|
|
case MVT::f64:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom DAG Lowering Operations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
|
|
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::LOAD: {
|
|
SDValue Result = LowerLOAD(Op, DAG);
|
|
assert((!Result.getNode() ||
|
|
Result.getNode()->getNumValues() == 2) &&
|
|
"Load should return a value and a chain");
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FSIN:
|
|
case ISD::FCOS:
|
|
return LowerTrig(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::FDIV: return LowerFDIV(Op, DAG);
|
|
case ISD::STORE: return LowerSTORE(Op, DAG);
|
|
case ISD::GlobalAddress: {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
return LowerGlobalAddress(MFI, Op, DAG);
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Helper function for LowerBRCOND
|
|
static SDNode *findUser(SDValue Value, unsigned Opcode) {
|
|
|
|
SDNode *Parent = Value.getNode();
|
|
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
|
|
I != E; ++I) {
|
|
|
|
if (I.getUse().get() != Value)
|
|
continue;
|
|
|
|
if (I->getOpcode() == Opcode)
|
|
return *I;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
|
|
unsigned FrameIndex = FINode->getIndex();
|
|
|
|
return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
|
|
}
|
|
|
|
/// This transforms the control flow intrinsics to get the branch destination as
|
|
/// last parameter, also switches branch target with BR if the need arise
|
|
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
|
|
SelectionDAG &DAG) const {
|
|
|
|
SDLoc DL(BRCOND);
|
|
|
|
SDNode *Intr = BRCOND.getOperand(1).getNode();
|
|
SDValue Target = BRCOND.getOperand(2);
|
|
SDNode *BR = nullptr;
|
|
|
|
if (Intr->getOpcode() == ISD::SETCC) {
|
|
// As long as we negate the condition everything is fine
|
|
SDNode *SetCC = Intr;
|
|
assert(SetCC->getConstantOperandVal(1) == 1);
|
|
assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
|
|
ISD::SETNE);
|
|
Intr = SetCC->getOperand(0).getNode();
|
|
|
|
} else {
|
|
// Get the target from BR if we don't negate the condition
|
|
BR = findUser(BRCOND, ISD::BR);
|
|
Target = BR->getOperand(1);
|
|
}
|
|
|
|
assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
|
|
|
|
// Build the result and
|
|
SmallVector<EVT, 4> Res;
|
|
for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
|
|
Res.push_back(Intr->getValueType(i));
|
|
|
|
// operands of the new intrinsic call
|
|
SmallVector<SDValue, 4> Ops;
|
|
Ops.push_back(BRCOND.getOperand(0));
|
|
for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(Intr->getOperand(i));
|
|
Ops.push_back(Target);
|
|
|
|
// build the new intrinsic call
|
|
SDNode *Result = DAG.getNode(
|
|
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
|
|
DAG.getVTList(Res), Ops).getNode();
|
|
|
|
if (BR) {
|
|
// Give the branch instruction our target
|
|
SDValue Ops[] = {
|
|
BR->getOperand(0),
|
|
BRCOND.getOperand(2)
|
|
};
|
|
SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
|
|
DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
|
|
BR = NewBR.getNode();
|
|
}
|
|
|
|
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
|
|
|
|
// Copy the intrinsic results to registers
|
|
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
|
|
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
|
|
if (!CopyToReg)
|
|
continue;
|
|
|
|
Chain = DAG.getCopyToReg(
|
|
Chain, DL,
|
|
CopyToReg->getOperand(1),
|
|
SDValue(Result, i - 1),
|
|
SDValue());
|
|
|
|
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
|
|
}
|
|
|
|
// Remove the old intrinsic from the chain
|
|
DAG.ReplaceAllUsesOfValueWith(
|
|
SDValue(Intr, Intr->getNumValues() - 1),
|
|
Intr->getOperand(0));
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
|
|
SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
|
|
|
|
if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
|
|
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
|
|
|
|
SDLoc DL(GSD);
|
|
const GlobalValue *GV = GSD->getGlobal();
|
|
MVT PtrVT = getPointerTy(GSD->getAddressSpace());
|
|
|
|
SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
|
|
|
|
SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
|
|
PtrLo, GA);
|
|
SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
|
|
PtrHi, DAG.getConstant(0, MVT::i32),
|
|
SDValue(Lo.getNode(), 1));
|
|
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::r600_read_ngroups_x:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 0, false);
|
|
case Intrinsic::r600_read_ngroups_y:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 4, false);
|
|
case Intrinsic::r600_read_ngroups_z:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8, false);
|
|
case Intrinsic::r600_read_global_size_x:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 12, false);
|
|
case Intrinsic::r600_read_global_size_y:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 16, false);
|
|
case Intrinsic::r600_read_global_size_z:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 20, false);
|
|
case Intrinsic::r600_read_local_size_x:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 24, false);
|
|
case Intrinsic::r600_read_local_size_y:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 28, false);
|
|
case Intrinsic::r600_read_local_size_z:
|
|
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 32, false);
|
|
case Intrinsic::r600_read_tgid_x:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
|
|
AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 0), VT);
|
|
case Intrinsic::r600_read_tgid_y:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
|
|
AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 1), VT);
|
|
case Intrinsic::r600_read_tgid_z:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
|
|
AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 2), VT);
|
|
case Intrinsic::r600_read_tidig_x:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
|
|
AMDGPU::VGPR0, VT);
|
|
case Intrinsic::r600_read_tidig_y:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
|
|
AMDGPU::VGPR1, VT);
|
|
case Intrinsic::r600_read_tidig_z:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
|
|
AMDGPU::VGPR2, VT);
|
|
case AMDGPUIntrinsic::SI_load_const: {
|
|
SDValue Ops[] = {
|
|
Op.getOperand(1),
|
|
Op.getOperand(2)
|
|
};
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo(),
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
|
|
VT.getStoreSize(), 4);
|
|
return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
|
|
Op->getVTList(), Ops, VT, MMO);
|
|
}
|
|
case AMDGPUIntrinsic::SI_sample:
|
|
return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
|
|
case AMDGPUIntrinsic::SI_sampleb:
|
|
return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
|
|
case AMDGPUIntrinsic::SI_sampled:
|
|
return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
|
|
case AMDGPUIntrinsic::SI_samplel:
|
|
return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
|
|
case AMDGPUIntrinsic::SI_vs_load_input:
|
|
return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
|
|
Op.getOperand(1),
|
|
Op.getOperand(2),
|
|
Op.getOperand(3));
|
|
default:
|
|
return AMDGPUTargetLowering::LowerOperation(Op, DAG);
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SDValue Chain = Op.getOperand(0);
|
|
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
|
|
switch (IntrinsicID) {
|
|
case AMDGPUIntrinsic::SI_tbuffer_store: {
|
|
SDLoc DL(Op);
|
|
SDValue Ops[] = {
|
|
Chain,
|
|
Op.getOperand(2),
|
|
Op.getOperand(3),
|
|
Op.getOperand(4),
|
|
Op.getOperand(5),
|
|
Op.getOperand(6),
|
|
Op.getOperand(7),
|
|
Op.getOperand(8),
|
|
Op.getOperand(9),
|
|
Op.getOperand(10),
|
|
Op.getOperand(11),
|
|
Op.getOperand(12),
|
|
Op.getOperand(13),
|
|
Op.getOperand(14)
|
|
};
|
|
|
|
EVT VT = Op.getOperand(3).getValueType();
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo(),
|
|
MachineMemOperand::MOStore,
|
|
VT.getStoreSize(), 4);
|
|
return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
|
|
Op->getVTList(), Ops, VT, MMO);
|
|
}
|
|
default:
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
LoadSDNode *Load = cast<LoadSDNode>(Op);
|
|
|
|
if (Op.getValueType().isVector()) {
|
|
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
|
|
"Custom lowering for non-i32 vectors hasn't been implemented.");
|
|
unsigned NumElements = Op.getValueType().getVectorNumElements();
|
|
assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
|
|
switch (Load->getAddressSpace()) {
|
|
default: break;
|
|
case AMDGPUAS::GLOBAL_ADDRESS:
|
|
case AMDGPUAS::PRIVATE_ADDRESS:
|
|
// v4 loads are supported for private and global memory.
|
|
if (NumElements <= 4)
|
|
break;
|
|
// fall-through
|
|
case AMDGPUAS::LOCAL_ADDRESS:
|
|
return ScalarizeVectorLoad(Op, DAG);
|
|
}
|
|
}
|
|
|
|
return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
|
|
const SDValue &Op,
|
|
SelectionDAG &DAG) const {
|
|
return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
|
|
Op.getOperand(2),
|
|
Op.getOperand(3),
|
|
Op.getOperand(4));
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Op.getValueType() != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Cond = Op.getOperand(0);
|
|
|
|
SDValue Zero = DAG.getConstant(0, MVT::i32);
|
|
SDValue One = DAG.getConstant(1, MVT::i32);
|
|
|
|
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
|
|
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
|
|
|
|
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
|
|
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
|
|
|
|
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
|
|
|
|
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
|
|
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
|
|
|
|
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
|
|
|
|
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
|
|
}
|
|
|
|
// Catch division cases where we can use shortcuts with rcp and rsq
|
|
// instructions.
|
|
SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
EVT VT = Op.getValueType();
|
|
bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
|
|
|
|
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
|
|
if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
|
|
CLHS->isExactlyValue(1.0)) {
|
|
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
|
|
// the CI documentation has a worst case error of 1 ulp.
|
|
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
|
|
// use it as long as we aren't trying to use denormals.
|
|
|
|
// 1.0 / sqrt(x) -> rsq(x)
|
|
//
|
|
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
|
|
// error seems really high at 2^29 ULP.
|
|
if (RHS.getOpcode() == ISD::FSQRT)
|
|
return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
|
|
|
|
// 1.0 / x -> rcp(x)
|
|
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
|
|
}
|
|
}
|
|
|
|
if (Unsafe) {
|
|
// Turn into multiply by the reciprocal.
|
|
// x / y -> x * (1.0 / y)
|
|
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
|
|
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue FastLowered = LowerFastFDIV(Op, DAG);
|
|
if (FastLowered.getNode())
|
|
return FastLowered;
|
|
|
|
// This uses v_rcp_f32 which does not handle denormals. Let this hit a
|
|
// selection error for now rather than do something incorrect.
|
|
if (Subtarget->hasFP32Denormals())
|
|
return SDValue();
|
|
|
|
SDLoc SL(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
|
|
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
|
|
|
|
const APFloat K0Val(BitsToFloat(0x6f800000));
|
|
const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);
|
|
|
|
const APFloat K1Val(BitsToFloat(0x2f800000));
|
|
const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
|
|
|
|
const SDValue One = DAG.getTargetConstantFP(1.0, MVT::f32);
|
|
|
|
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
|
|
|
|
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
|
|
|
|
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
|
|
|
|
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
|
|
|
|
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
|
|
|
|
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
|
|
|
|
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT == MVT::f32)
|
|
return LowerFDIV32(Op, DAG);
|
|
|
|
if (VT == MVT::f64)
|
|
return LowerFDIV64(Op, DAG);
|
|
|
|
llvm_unreachable("Unexpected type for fdiv");
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
StoreSDNode *Store = cast<StoreSDNode>(Op);
|
|
EVT VT = Store->getMemoryVT();
|
|
|
|
// These stores are legal.
|
|
if (Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
|
|
VT.isVector() && VT.getVectorNumElements() == 2 &&
|
|
VT.getVectorElementType() == MVT::i32)
|
|
return SDValue();
|
|
|
|
if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
|
|
if (VT.isVector() && VT.getVectorNumElements() > 4)
|
|
return ScalarizeVectorStore(Op, DAG);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
|
|
if (Ret.getNode())
|
|
return Ret;
|
|
|
|
if (VT.isVector() && VT.getVectorNumElements() >= 8)
|
|
return ScalarizeVectorStore(Op, DAG);
|
|
|
|
if (VT == MVT::i1)
|
|
return DAG.getTruncStore(Store->getChain(), DL,
|
|
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
|
|
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDValue Arg = Op.getOperand(0);
|
|
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
|
|
DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
|
|
DAG.getConstantFP(0.5 / M_PI, VT)));
|
|
|
|
switch (Op.getOpcode()) {
|
|
case ISD::FCOS:
|
|
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
|
|
case ISD::FSIN:
|
|
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
|
|
default:
|
|
llvm_unreachable("Wrong trig opcode");
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom DAG optimizations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) {
|
|
EVT VT = N->getValueType(0);
|
|
EVT ScalarVT = VT.getScalarType();
|
|
if (ScalarVT != MVT::f32)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
|
|
// TODO: We could try to match extracting the higher bytes, which would be
|
|
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
|
|
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
|
|
// about in practice.
|
|
if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
|
|
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
|
|
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
|
|
DCI.AddToWorklist(Cvt.getNode());
|
|
return Cvt;
|
|
}
|
|
}
|
|
|
|
// We are primarily trying to catch operations on illegal vector types
|
|
// before they are expanded.
|
|
// For scalars, we can use the more flexible method of checking masked bits
|
|
// after legalization.
|
|
if (!DCI.isBeforeLegalize() ||
|
|
!SrcVT.isVector() ||
|
|
SrcVT.getVectorElementType() != MVT::i8) {
|
|
return SDValue();
|
|
}
|
|
|
|
assert(DCI.isBeforeLegalize() && "Unexpected legal type");
|
|
|
|
// Weird sized vectors are a pain to handle, but we know 3 is really the same
|
|
// size as 4.
|
|
unsigned NElts = SrcVT.getVectorNumElements();
|
|
if (!SrcVT.isSimple() && NElts != 3)
|
|
return SDValue();
|
|
|
|
// Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
|
|
// prevent a mess from expanding to v4i32 and repacking.
|
|
if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
|
|
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
|
|
EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
|
|
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
|
|
|
|
LoadSDNode *Load = cast<LoadSDNode>(Src);
|
|
SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
|
|
Load->getChain(),
|
|
Load->getBasePtr(),
|
|
LoadVT,
|
|
Load->getMemOperand());
|
|
|
|
// Make sure successors of the original load stay after it by updating
|
|
// them to use the new Chain.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
|
|
|
|
SmallVector<SDValue, 4> Elts;
|
|
if (RegVT.isVector())
|
|
DAG.ExtractVectorElements(NewLoad, Elts);
|
|
else
|
|
Elts.push_back(NewLoad);
|
|
|
|
SmallVector<SDValue, 4> Ops;
|
|
|
|
unsigned EltIdx = 0;
|
|
for (SDValue Elt : Elts) {
|
|
unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
|
|
for (unsigned I = 0; I < ComponentsInElt; ++I) {
|
|
unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
|
|
SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
|
|
DCI.AddToWorklist(Cvt.getNode());
|
|
Ops.push_back(Cvt);
|
|
}
|
|
|
|
++EltIdx;
|
|
}
|
|
|
|
assert(Ops.size() == NElts);
|
|
|
|
return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
|
|
|
|
// This is a variant of
|
|
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
|
|
//
|
|
// The normal DAG combiner will do this, but only if the add has one use since
|
|
// that would increase the number of instructions.
|
|
//
|
|
// This prevents us from seeing a constant offset that can be folded into a
|
|
// memory instruction's addressing mode. If we know the resulting add offset of
|
|
// a pointer can be folded into an addressing offset, we can replace the pointer
|
|
// operand with the add of new constant offset. This eliminates one of the uses,
|
|
// and may allow the remaining use to also be simplified.
|
|
//
|
|
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
|
|
unsigned AddrSpace,
|
|
DAGCombinerInfo &DCI) const {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
if (N0.getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
|
|
const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
|
|
if (!CN1)
|
|
return SDValue();
|
|
|
|
const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!CAdd)
|
|
return SDValue();
|
|
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
|
|
// If the resulting offset is too large, we can't fold it into the addressing
|
|
// mode offset.
|
|
APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
|
|
if (!TII->canFoldOffset(Offset.getZExtValue(), AddrSpace))
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc SL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
|
|
SDValue COffset = DAG.getConstant(Offset, MVT::i32);
|
|
|
|
return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
|
|
}
|
|
|
|
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
switch (N->getOpcode()) {
|
|
default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
|
|
case ISD::SETCC: {
|
|
SDValue Arg0 = N->getOperand(0);
|
|
SDValue Arg1 = N->getOperand(1);
|
|
SDValue CC = N->getOperand(2);
|
|
ConstantSDNode * C = nullptr;
|
|
ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();
|
|
|
|
// i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
|
|
if (VT == MVT::i1
|
|
&& Arg0.getOpcode() == ISD::SIGN_EXTEND
|
|
&& Arg0.getOperand(0).getValueType() == MVT::i1
|
|
&& (C = dyn_cast<ConstantSDNode>(Arg1))
|
|
&& C->isNullValue()
|
|
&& CCOp == ISD::SETNE) {
|
|
return SimplifySetCC(VT, Arg0.getOperand(0),
|
|
DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AMDGPUISD::CVT_F32_UBYTE0:
|
|
case AMDGPUISD::CVT_F32_UBYTE1:
|
|
case AMDGPUISD::CVT_F32_UBYTE2:
|
|
case AMDGPUISD::CVT_F32_UBYTE3: {
|
|
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
|
|
|
|
APInt KnownZero, KnownOne;
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
|
|
!DCI.isBeforeLegalizeOps());
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
|
|
TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case ISD::UINT_TO_FP: {
|
|
return performUCharToFloatCombine(N, DCI);
|
|
|
|
case ISD::FSUB: {
|
|
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
|
|
break;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Try to get the fneg to fold into the source modifier. This undoes generic
|
|
// DAG combines and folds them into the mad.
|
|
if (VT == MVT::f32) {
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
if (LHS.getOpcode() == ISD::FMUL) {
|
|
// (fsub (fmul a, b), c) -> mad a, b, (fneg c)
|
|
|
|
SDValue A = LHS.getOperand(0);
|
|
SDValue B = LHS.getOperand(1);
|
|
SDValue C = DAG.getNode(ISD::FNEG, DL, VT, RHS);
|
|
|
|
return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C);
|
|
}
|
|
|
|
if (RHS.getOpcode() == ISD::FMUL) {
|
|
// (fsub c, (fmul a, b)) -> mad (fneg a), b, c
|
|
|
|
SDValue A = DAG.getNode(ISD::FNEG, DL, VT, RHS.getOperand(0));
|
|
SDValue B = RHS.getOperand(1);
|
|
SDValue C = LHS;
|
|
|
|
return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
case ISD::LOAD:
|
|
case ISD::STORE:
|
|
case ISD::ATOMIC_LOAD:
|
|
case ISD::ATOMIC_STORE:
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
|
|
case ISD::ATOMIC_SWAP:
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
|
|
if (DCI.isBeforeLegalize())
|
|
break;
|
|
|
|
MemSDNode *MemNode = cast<MemSDNode>(N);
|
|
SDValue Ptr = MemNode->getBasePtr();
|
|
|
|
// TODO: We could also do this for multiplies.
|
|
unsigned AS = MemNode->getAddressSpace();
|
|
if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
|
|
SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
|
|
if (NewPtr) {
|
|
SmallVector<SDValue, 8> NewOps;
|
|
for (unsigned I = 0, E = MemNode->getNumOperands(); I != E; ++I)
|
|
NewOps.push_back(MemNode->getOperand(I));
|
|
|
|
NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
|
|
return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
|
|
}
|
|
|
|
/// \brief Test if RegClass is one of the VSrc classes
|
|
static bool isVSrc(unsigned RegClass) {
|
|
return AMDGPU::VSrc_32RegClassID == RegClass ||
|
|
AMDGPU::VSrc_64RegClassID == RegClass;
|
|
}
|
|
|
|
/// \brief Test if RegClass is one of the SSrc classes
|
|
static bool isSSrc(unsigned RegClass) {
|
|
return AMDGPU::SSrc_32RegClassID == RegClass ||
|
|
AMDGPU::SSrc_64RegClassID == RegClass;
|
|
}
|
|
|
|
/// \brief Analyze the possible immediate value Op
|
|
///
|
|
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
|
|
/// and the immediate value if it's a literal immediate
|
|
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
|
|
|
|
union {
|
|
int32_t I;
|
|
float F;
|
|
} Imm;
|
|
|
|
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
|
|
if (Node->getZExtValue() >> 32) {
|
|
return -1;
|
|
}
|
|
Imm.I = Node->getSExtValue();
|
|
} else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
|
|
if (N->getValueType(0) != MVT::f32)
|
|
return -1;
|
|
Imm.F = Node->getValueAPF().convertToFloat();
|
|
} else
|
|
return -1; // It isn't an immediate
|
|
|
|
if ((Imm.I >= -16 && Imm.I <= 64) ||
|
|
Imm.F == 0.5f || Imm.F == -0.5f ||
|
|
Imm.F == 1.0f || Imm.F == -1.0f ||
|
|
Imm.F == 2.0f || Imm.F == -2.0f ||
|
|
Imm.F == 4.0f || Imm.F == -4.0f)
|
|
return 0; // It's an inline immediate
|
|
|
|
return Imm.I; // It's a literal immediate
|
|
}
|
|
|
|
/// \brief Try to fold an immediate directly into an instruction
|
|
bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
|
|
bool &ScalarSlotUsed) const {
|
|
|
|
MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
if (!Mov || !TII->isMov(Mov->getMachineOpcode()))
|
|
return false;
|
|
|
|
const SDValue &Op = Mov->getOperand(0);
|
|
int32_t Value = analyzeImmediate(Op.getNode());
|
|
if (Value == -1) {
|
|
// Not an immediate at all
|
|
return false;
|
|
|
|
} else if (Value == 0) {
|
|
// Inline immediates can always be fold
|
|
Operand = Op;
|
|
return true;
|
|
|
|
} else if (Value == Immediate) {
|
|
// Already fold literal immediate
|
|
Operand = Op;
|
|
return true;
|
|
|
|
} else if (!ScalarSlotUsed && !Immediate) {
|
|
// Fold this literal immediate
|
|
ScalarSlotUsed = true;
|
|
Immediate = Value;
|
|
Operand = Op;
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const TargetRegisterClass *SITargetLowering::getRegClassForNode(
|
|
SelectionDAG &DAG, const SDValue &Op) const {
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
|
|
if (!Op->isMachineOpcode()) {
|
|
switch(Op->getOpcode()) {
|
|
case ISD::CopyFromReg: {
|
|
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
|
|
unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
return MRI.getRegClass(Reg);
|
|
}
|
|
return TRI.getPhysRegClass(Reg);
|
|
}
|
|
default: return nullptr;
|
|
}
|
|
}
|
|
const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
|
|
int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
|
|
if (OpClassID != -1) {
|
|
return TRI.getRegClass(OpClassID);
|
|
}
|
|
switch(Op.getMachineOpcode()) {
|
|
case AMDGPU::COPY_TO_REGCLASS:
|
|
// Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
|
|
OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
|
|
|
|
// If the COPY_TO_REGCLASS instruction is copying to a VSrc register
|
|
// class, then the register class for the value could be either a
|
|
// VReg or and SReg. In order to get a more accurate
|
|
if (OpClassID == AMDGPU::VSrc_32RegClassID ||
|
|
OpClassID == AMDGPU::VSrc_64RegClassID) {
|
|
return getRegClassForNode(DAG, Op.getOperand(0));
|
|
}
|
|
return TRI.getRegClass(OpClassID);
|
|
case AMDGPU::EXTRACT_SUBREG: {
|
|
int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
const TargetRegisterClass *SuperClass =
|
|
getRegClassForNode(DAG, Op.getOperand(0));
|
|
return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
|
|
}
|
|
case AMDGPU::REG_SEQUENCE:
|
|
// Operand 0 is the register class id for REG_SEQUENCE instructions.
|
|
return TRI.getRegClass(
|
|
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
|
|
default:
|
|
return getRegClassFor(Op.getSimpleValueType());
|
|
}
|
|
}
|
|
|
|
/// \brief Does "Op" fit into register class "RegClass" ?
|
|
bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
|
|
unsigned RegClass) const {
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
|
|
if (!RC) {
|
|
return false;
|
|
}
|
|
return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
|
|
}
|
|
|
|
/// \brief Make sure that we don't exeed the number of allowed scalars
|
|
void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
|
|
unsigned RegClass,
|
|
bool &ScalarSlotUsed) const {
|
|
|
|
// First map the operands register class to a destination class
|
|
if (RegClass == AMDGPU::VSrc_32RegClassID)
|
|
RegClass = AMDGPU::VReg_32RegClassID;
|
|
else if (RegClass == AMDGPU::VSrc_64RegClassID)
|
|
RegClass = AMDGPU::VReg_64RegClassID;
|
|
else
|
|
return;
|
|
|
|
// Nothing to do if they fit naturally
|
|
if (fitsRegClass(DAG, Operand, RegClass))
|
|
return;
|
|
|
|
// If the scalar slot isn't used yet use it now
|
|
if (!ScalarSlotUsed) {
|
|
ScalarSlotUsed = true;
|
|
return;
|
|
}
|
|
|
|
// This is a conservative aproach. It is possible that we can't determine the
|
|
// correct register class and copy too often, but better safe than sorry.
|
|
|
|
SDNode *Node;
|
|
// We can't use COPY_TO_REGCLASS with FrameIndex arguments.
|
|
if (isa<FrameIndexSDNode>(Operand) ||
|
|
isa<GlobalAddressSDNode>(Operand)) {
|
|
unsigned Opcode = Operand.getValueType() == MVT::i32 ?
|
|
AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
|
|
Node = DAG.getMachineNode(Opcode, SDLoc(), Operand.getValueType(),
|
|
Operand);
|
|
} else {
|
|
SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
|
|
Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(),
|
|
Operand.getValueType(), Operand, RC);
|
|
}
|
|
Operand = SDValue(Node, 0);
|
|
}
|
|
|
|
/// \returns true if \p Node's operands are different from the SDValue list
|
|
/// \p Ops
|
|
static bool isNodeChanged(const SDNode *Node, const std::vector<SDValue> &Ops) {
|
|
for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) {
|
|
if (Ops[i].getNode() != Node->getOperand(i).getNode()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Try to commute instructions and insert copies in order to satisfy the
|
|
/// operand constraints.
|
|
SDNode *SITargetLowering::legalizeOperands(MachineSDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
// Original encoding (either e32 or e64)
|
|
int Opcode = Node->getMachineOpcode();
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
const MCInstrDesc *Desc = &TII->get(Opcode);
|
|
|
|
unsigned NumDefs = Desc->getNumDefs();
|
|
unsigned NumOps = Desc->getNumOperands();
|
|
|
|
// Commuted opcode if available
|
|
int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
|
|
const MCInstrDesc *DescRev = OpcodeRev == -1 ? nullptr : &TII->get(OpcodeRev);
|
|
|
|
assert(!DescRev || DescRev->getNumDefs() == NumDefs);
|
|
assert(!DescRev || DescRev->getNumOperands() == NumOps);
|
|
|
|
int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
|
|
bool HaveVSrc = false, HaveSSrc = false;
|
|
|
|
// First figure out what we already have in this instruction.
|
|
for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
|
|
i != e && Op < NumOps; ++i, ++Op) {
|
|
|
|
unsigned RegClass = Desc->OpInfo[Op].RegClass;
|
|
if (isVSrc(RegClass))
|
|
HaveVSrc = true;
|
|
else if (isSSrc(RegClass))
|
|
HaveSSrc = true;
|
|
else
|
|
continue;
|
|
|
|
int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
|
|
if (Imm != -1 && Imm != 0) {
|
|
// Literal immediate
|
|
Immediate = Imm;
|
|
}
|
|
}
|
|
|
|
// If we neither have VSrc nor SSrc, it makes no sense to continue.
|
|
if (!HaveVSrc && !HaveSSrc)
|
|
return Node;
|
|
|
|
// No scalar allowed when we have both VSrc and SSrc
|
|
bool ScalarSlotUsed = HaveVSrc && HaveSSrc;
|
|
|
|
// Second go over the operands and try to fold them
|
|
std::vector<SDValue> Ops;
|
|
for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
|
|
i != e && Op < NumOps; ++i, ++Op) {
|
|
|
|
const SDValue &Operand = Node->getOperand(i);
|
|
Ops.push_back(Operand);
|
|
|
|
// Already folded immediate?
|
|
if (isa<ConstantSDNode>(Operand.getNode()) ||
|
|
isa<ConstantFPSDNode>(Operand.getNode()))
|
|
continue;
|
|
|
|
// Is this a VSrc or SSrc operand?
|
|
unsigned RegClass = Desc->OpInfo[Op].RegClass;
|
|
if (isVSrc(RegClass) || isSSrc(RegClass)) {
|
|
// Try to fold the immediates
|
|
if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
|
|
// Folding didn't work, make sure we don't hit the SReg limit.
|
|
ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
|
|
}
|
|
continue;
|
|
} else {
|
|
// If it's not a VSrc or SSrc operand check if we have a GlobalAddress.
|
|
// These will be lowered to immediates, so we will need to insert a MOV.
|
|
if (isa<GlobalAddressSDNode>(Ops[i])) {
|
|
SDNode *Node = DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(),
|
|
Operand.getValueType(), Operand);
|
|
Ops[i] = SDValue(Node, 0);
|
|
}
|
|
}
|
|
|
|
if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {
|
|
|
|
unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
|
|
assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));
|
|
|
|
// Test if it makes sense to swap operands
|
|
if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
|
|
(!fitsRegClass(DAG, Ops[1], RegClass) &&
|
|
fitsRegClass(DAG, Ops[1], OtherRegClass))) {
|
|
|
|
// Swap commutable operands
|
|
std::swap(Ops[0], Ops[1]);
|
|
|
|
Desc = DescRev;
|
|
DescRev = nullptr;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add optional chain and glue
|
|
for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
|
|
Ops.push_back(Node->getOperand(i));
|
|
|
|
// Nodes that have a glue result are not CSE'd by getMachineNode(), so in
|
|
// this case a brand new node is always be created, even if the operands
|
|
// are the same as before. So, manually check if anything has been changed.
|
|
if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) {
|
|
return Node;
|
|
}
|
|
|
|
// Create a complete new instruction
|
|
return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops);
|
|
}
|
|
|
|
/// \brief Helper function for adjustWritemask
|
|
static unsigned SubIdx2Lane(unsigned Idx) {
|
|
switch (Idx) {
|
|
default: return 0;
|
|
case AMDGPU::sub0: return 0;
|
|
case AMDGPU::sub1: return 1;
|
|
case AMDGPU::sub2: return 2;
|
|
case AMDGPU::sub3: return 3;
|
|
}
|
|
}
|
|
|
|
/// \brief Adjust the writemask of MIMG instructions
|
|
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
|
|
SelectionDAG &DAG) const {
|
|
SDNode *Users[4] = { };
|
|
unsigned Lane = 0;
|
|
unsigned OldDmask = Node->getConstantOperandVal(0);
|
|
unsigned NewDmask = 0;
|
|
|
|
// Try to figure out the used register components
|
|
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
|
|
I != E; ++I) {
|
|
|
|
// Abort if we can't understand the usage
|
|
if (!I->isMachineOpcode() ||
|
|
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
|
|
return;
|
|
|
|
// Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
|
|
// Note that subregs are packed, i.e. Lane==0 is the first bit set
|
|
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
|
|
// set, etc.
|
|
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
|
|
|
|
// Set which texture component corresponds to the lane.
|
|
unsigned Comp;
|
|
for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
|
|
assert(Dmask);
|
|
Comp = countTrailingZeros(Dmask);
|
|
Dmask &= ~(1 << Comp);
|
|
}
|
|
|
|
// Abort if we have more than one user per component
|
|
if (Users[Lane])
|
|
return;
|
|
|
|
Users[Lane] = *I;
|
|
NewDmask |= 1 << Comp;
|
|
}
|
|
|
|
// Abort if there's no change
|
|
if (NewDmask == OldDmask)
|
|
return;
|
|
|
|
// Adjust the writemask in the node
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
|
|
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(Node->getOperand(i));
|
|
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
|
|
|
|
// If we only got one lane, replace it with a copy
|
|
// (if NewDmask has only one bit set...)
|
|
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
|
|
SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
|
|
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
|
|
SDLoc(), Users[Lane]->getValueType(0),
|
|
SDValue(Node, 0), RC);
|
|
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
|
|
return;
|
|
}
|
|
|
|
// Update the users of the node with the new indices
|
|
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
|
|
|
|
SDNode *User = Users[i];
|
|
if (!User)
|
|
continue;
|
|
|
|
SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
|
|
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
|
|
|
|
switch (Idx) {
|
|
default: break;
|
|
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
|
|
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
|
|
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Fold the instructions after selecting them.
|
|
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
Node = AdjustRegClass(Node, DAG);
|
|
|
|
if (TII->isMIMG(Node->getMachineOpcode()))
|
|
adjustWritemask(Node, DAG);
|
|
|
|
return legalizeOperands(Node, DAG);
|
|
}
|
|
|
|
/// \brief Assign the register class depending on the number of
|
|
/// bits set in the writemask
|
|
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
|
|
SDNode *Node) const {
|
|
const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo());
|
|
|
|
if (TII->isMIMG(MI->getOpcode())) {
|
|
unsigned VReg = MI->getOperand(0).getReg();
|
|
unsigned Writemask = MI->getOperand(1).getImm();
|
|
unsigned BitsSet = 0;
|
|
for (unsigned i = 0; i < 4; ++i)
|
|
BitsSet += Writemask & (1 << i) ? 1 : 0;
|
|
|
|
const TargetRegisterClass *RC;
|
|
switch (BitsSet) {
|
|
default: return;
|
|
case 1: RC = &AMDGPU::VReg_32RegClass; break;
|
|
case 2: RC = &AMDGPU::VReg_64RegClass; break;
|
|
case 3: RC = &AMDGPU::VReg_96RegClass; break;
|
|
}
|
|
|
|
unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
|
|
MI->setDesc(TII->get(NewOpcode));
|
|
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
|
|
MRI.setRegClass(VReg, RC);
|
|
return;
|
|
}
|
|
|
|
// Replace unused atomics with the no return version.
|
|
int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
|
|
if (NoRetAtomicOp != -1) {
|
|
if (!Node->hasAnyUseOfValue(0)) {
|
|
MI->setDesc(TII->get(NoRetAtomicOp));
|
|
MI->RemoveOperand(0);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
|
|
SelectionDAG &DAG) const {
|
|
|
|
SDLoc DL(N);
|
|
unsigned NewOpcode = N->getMachineOpcode();
|
|
|
|
switch (N->getMachineOpcode()) {
|
|
default: return N;
|
|
case AMDGPU::S_LOAD_DWORD_IMM:
|
|
NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
|
|
// Fall-through
|
|
case AMDGPU::S_LOAD_DWORDX2_SGPR:
|
|
if (NewOpcode == N->getMachineOpcode()) {
|
|
NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
|
|
}
|
|
// Fall-through
|
|
case AMDGPU::S_LOAD_DWORDX4_IMM:
|
|
case AMDGPU::S_LOAD_DWORDX4_SGPR: {
|
|
if (NewOpcode == N->getMachineOpcode()) {
|
|
NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
|
|
}
|
|
if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
|
|
return N;
|
|
}
|
|
ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
|
|
MachineSDNode *RSrc = DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL,
|
|
MVT::i128,
|
|
DAG.getConstant(0, MVT::i64));
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(SDValue(RSrc, 0));
|
|
Ops.push_back(N->getOperand(0));
|
|
Ops.push_back(DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32));
|
|
|
|
// Copy remaining operands so we keep any chain and glue nodes that follow
|
|
// the normal operands.
|
|
for (unsigned I = 2, E = N->getNumOperands(); I != E; ++I)
|
|
Ops.push_back(N->getOperand(I));
|
|
|
|
return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Reg, EVT VT) const {
|
|
SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
|
|
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
|
|
cast<RegisterSDNode>(VReg)->getReg(), VT);
|
|
}
|