llvm-6502/include/llvm/CodeGen/SelectionDAG.h
Dan Gohman c533612949 Remove SDNode's virtual destructor. This makes it impossible for
SDNode subclasses to keep state that requires non-trivial
destructors, however it was already effectively impossible,
since the destructor isn't actually ever called. There currently
aren't any SDNode subclasses affected by this, and in general
it's desireable to keep SDNode objects light-weight.

This eliminates the last virtual member function in the SDNode
class, so it eliminates the need for a vtable pointer, making
SDNode smaller.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62539 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-19 22:39:36 +00:00

834 lines
36 KiB
C++

//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SelectionDAG class, and transitively defines the
// SDNode class and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAG_H
#define LLVM_CODEGEN_SELECTIONDAG_H
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include <cassert>
#include <vector>
#include <map>
#include <string>
namespace llvm {
class AliasAnalysis;
class TargetLowering;
class TargetMachine;
class MachineModuleInfo;
class DwarfWriter;
class MachineFunction;
class MachineConstantPoolValue;
class FunctionLoweringInfo;
template<> struct ilist_traits<SDNode> : public ilist_default_traits<SDNode> {
private:
mutable SDNode Sentinel;
public:
ilist_traits() : Sentinel(ISD::DELETED_NODE, SDVTList()) {}
SDNode *createSentinel() const {
return &Sentinel;
}
static void destroySentinel(SDNode *) {}
static void deleteNode(SDNode *) {
assert(0 && "ilist_traits<SDNode> shouldn't see a deleteNode call!");
}
private:
static void createNode(const SDNode &);
};
enum CombineLevel {
Unrestricted, // Combine may create illegal operations and illegal types.
NoIllegalTypes, // Combine may create illegal operations but no illegal types.
NoIllegalOperations // Combine may only create legal operations and types.
};
/// SelectionDAG class - This is used to represent a portion of an LLVM function
/// in a low-level Data Dependence DAG representation suitable for instruction
/// selection. This DAG is constructed as the first step of instruction
/// selection in order to allow implementation of machine specific optimizations
/// and code simplifications.
///
/// The representation used by the SelectionDAG is a target-independent
/// representation, which has some similarities to the GCC RTL representation,
/// but is significantly more simple, powerful, and is a graph form instead of a
/// linear form.
///
class SelectionDAG {
TargetLowering &TLI;
MachineFunction *MF;
FunctionLoweringInfo &FLI;
MachineModuleInfo *MMI;
DwarfWriter *DW;
/// EntryNode - The starting token.
SDNode EntryNode;
/// Root - The root of the entire DAG.
SDValue Root;
/// AllNodes - A linked list of nodes in the current DAG.
ilist<SDNode> AllNodes;
/// NodeAllocatorType - The AllocatorType for allocating SDNodes. We use
/// pool allocation with recycling.
typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
AlignOf<MostAlignedSDNode>::Alignment>
NodeAllocatorType;
/// NodeAllocator - Pool allocation for nodes.
NodeAllocatorType NodeAllocator;
/// CSEMap - This structure is used to memoize nodes, automatically performing
/// CSE with existing nodes with a duplicate is requested.
FoldingSet<SDNode> CSEMap;
/// OperandAllocator - Pool allocation for machine-opcode SDNode operands.
BumpPtrAllocator OperandAllocator;
/// Allocator - Pool allocation for misc. objects that are created once per
/// SelectionDAG.
BumpPtrAllocator Allocator;
/// VerifyNode - Sanity check the given node. Aborts if it is invalid.
void VerifyNode(SDNode *N);
/// setGraphColorHelper - Implementation of setSubgraphColor.
/// Return whether we had to truncate the search.
///
bool setSubgraphColorHelper(SDNode *N, const char *Color, DenseSet<SDNode *> &visited,
int level, bool &printed);
public:
SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli);
~SelectionDAG();
/// init - Prepare this SelectionDAG to process code in the given
/// MachineFunction.
///
void init(MachineFunction &mf, MachineModuleInfo *mmi, DwarfWriter *dw);
/// clear - Clear state and free memory necessary to make this
/// SelectionDAG ready to process a new block.
///
void clear();
MachineFunction &getMachineFunction() const { return *MF; }
const TargetMachine &getTarget() const;
TargetLowering &getTargetLoweringInfo() const { return TLI; }
FunctionLoweringInfo &getFunctionLoweringInfo() const { return FLI; }
MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
DwarfWriter *getDwarfWriter() const { return DW; }
/// viewGraph - Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
///
void viewGraph(const std::string &Title);
void viewGraph();
#ifndef NDEBUG
std::map<const SDNode *, std::string> NodeGraphAttrs;
#endif
/// clearGraphAttrs - Clear all previously defined node graph attributes.
/// Intended to be used from a debugging tool (eg. gdb).
void clearGraphAttrs();
/// setGraphAttrs - Set graph attributes for a node. (eg. "color=red".)
///
void setGraphAttrs(const SDNode *N, const char *Attrs);
/// getGraphAttrs - Get graph attributes for a node. (eg. "color=red".)
/// Used from getNodeAttributes.
const std::string getGraphAttrs(const SDNode *N) const;
/// setGraphColor - Convenience for setting node color attribute.
///
void setGraphColor(const SDNode *N, const char *Color);
/// setGraphColor - Convenience for setting subgraph color attribute.
///
void setSubgraphColor(SDNode *N, const char *Color);
typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
typedef ilist<SDNode>::iterator allnodes_iterator;
allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
allnodes_iterator allnodes_end() { return AllNodes.end(); }
ilist<SDNode>::size_type allnodes_size() const {
return AllNodes.size();
}
/// getRoot - Return the root tag of the SelectionDAG.
///
const SDValue &getRoot() const { return Root; }
/// getEntryNode - Return the token chain corresponding to the entry of the
/// function.
SDValue getEntryNode() const {
return SDValue(const_cast<SDNode *>(&EntryNode), 0);
}
/// setRoot - Set the current root tag of the SelectionDAG.
///
const SDValue &setRoot(SDValue N) {
assert((!N.getNode() || N.getValueType() == MVT::Other) &&
"DAG root value is not a chain!");
return Root = N;
}
/// Combine - This iterates over the nodes in the SelectionDAG, folding
/// certain types of nodes together, or eliminating superfluous nodes. The
/// Level argument controls whether Combine is allowed to produce nodes and
/// types that are illegal on the target.
void Combine(CombineLevel Level, AliasAnalysis &AA, bool Fast);
/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target. Returns "true" if it
/// made any changes.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
bool LegalizeTypes();
/// Legalize - This transforms the SelectionDAG into a SelectionDAG that is
/// compatible with the target instruction selector, as indicated by the
/// TargetLowering object.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void Legalize(bool TypesNeedLegalizing);
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void RemoveDeadNodes();
/// DeleteNode - Remove the specified node from the system. This node must
/// have no referrers.
void DeleteNode(SDNode *N);
/// getVTList - Return an SDVTList that represents the list of values
/// specified.
SDVTList getVTList(MVT VT);
SDVTList getVTList(MVT VT1, MVT VT2);
SDVTList getVTList(MVT VT1, MVT VT2, MVT VT3);
SDVTList getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4);
SDVTList getVTList(const MVT *VTs, unsigned NumVTs);
/// getNodeValueTypes - These are obsolete, use getVTList instead.
const MVT *getNodeValueTypes(MVT VT) {
return getVTList(VT).VTs;
}
const MVT *getNodeValueTypes(MVT VT1, MVT VT2) {
return getVTList(VT1, VT2).VTs;
}
const MVT *getNodeValueTypes(MVT VT1, MVT VT2, MVT VT3) {
return getVTList(VT1, VT2, VT3).VTs;
}
const MVT *getNodeValueTypes(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
return getVTList(VT1, VT2, VT3, VT4).VTs;
}
const MVT *getNodeValueTypes(const std::vector<MVT> &vtList) {
return getVTList(&vtList[0], (unsigned)vtList.size()).VTs;
}
//===--------------------------------------------------------------------===//
// Node creation methods.
//
SDValue getConstant(uint64_t Val, MVT VT, bool isTarget = false);
SDValue getConstant(const APInt &Val, MVT VT, bool isTarget = false);
SDValue getConstant(const ConstantInt &Val, MVT VT, bool isTarget = false);
SDValue getIntPtrConstant(uint64_t Val, bool isTarget = false);
SDValue getTargetConstant(uint64_t Val, MVT VT) {
return getConstant(Val, VT, true);
}
SDValue getTargetConstant(const APInt &Val, MVT VT) {
return getConstant(Val, VT, true);
}
SDValue getTargetConstant(const ConstantInt &Val, MVT VT) {
return getConstant(Val, VT, true);
}
SDValue getConstantFP(double Val, MVT VT, bool isTarget = false);
SDValue getConstantFP(const APFloat& Val, MVT VT, bool isTarget = false);
SDValue getConstantFP(const ConstantFP &CF, MVT VT, bool isTarget = false);
SDValue getTargetConstantFP(double Val, MVT VT) {
return getConstantFP(Val, VT, true);
}
SDValue getTargetConstantFP(const APFloat& Val, MVT VT) {
return getConstantFP(Val, VT, true);
}
SDValue getTargetConstantFP(const ConstantFP &Val, MVT VT) {
return getConstantFP(Val, VT, true);
}
SDValue getGlobalAddress(const GlobalValue *GV, MVT VT,
int64_t offset = 0, bool isTargetGA = false);
SDValue getTargetGlobalAddress(const GlobalValue *GV, MVT VT,
int64_t offset = 0) {
return getGlobalAddress(GV, VT, offset, true);
}
SDValue getFrameIndex(int FI, MVT VT, bool isTarget = false);
SDValue getTargetFrameIndex(int FI, MVT VT) {
return getFrameIndex(FI, VT, true);
}
SDValue getJumpTable(int JTI, MVT VT, bool isTarget = false);
SDValue getTargetJumpTable(int JTI, MVT VT) {
return getJumpTable(JTI, VT, true);
}
SDValue getConstantPool(Constant *C, MVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false);
SDValue getTargetConstantPool(Constant *C, MVT VT,
unsigned Align = 0, int Offset = 0) {
return getConstantPool(C, VT, Align, Offset, true);
}
SDValue getConstantPool(MachineConstantPoolValue *C, MVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false);
SDValue getTargetConstantPool(MachineConstantPoolValue *C,
MVT VT, unsigned Align = 0,
int Offset = 0) {
return getConstantPool(C, VT, Align, Offset, true);
}
SDValue getBasicBlock(MachineBasicBlock *MBB);
SDValue getExternalSymbol(const char *Sym, MVT VT);
SDValue getTargetExternalSymbol(const char *Sym, MVT VT);
SDValue getArgFlags(ISD::ArgFlagsTy Flags);
SDValue getValueType(MVT);
SDValue getRegister(unsigned Reg, MVT VT);
SDValue getDbgStopPoint(SDValue Root, unsigned Line, unsigned Col,
Value *CU);
SDValue getLabel(unsigned Opcode, SDValue Root, unsigned LabelID);
SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N) {
return getNode(ISD::CopyToReg, MVT::Other, Chain,
getRegister(Reg, N.getValueType()), N);
}
// This version of the getCopyToReg method takes an extra operand, which
// indicates that there is potentially an incoming flag value (if Flag is not
// null) and that there should be a flag result.
SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N,
SDValue Flag) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Flag };
return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.getNode() ? 4 : 3);
}
// Similar to last getCopyToReg() except parameter Reg is a SDValue
SDValue getCopyToReg(SDValue Chain, SDValue Reg, SDValue N,
SDValue Flag) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, Reg, N, Flag };
return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.getNode() ? 4 : 3);
}
SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT) {
const MVT *VTs = getNodeValueTypes(VT, MVT::Other);
SDValue Ops[] = { Chain, getRegister(Reg, VT) };
return getNode(ISD::CopyFromReg, VTs, 2, Ops, 2);
}
// This version of the getCopyFromReg method takes an extra operand, which
// indicates that there is potentially an incoming flag value (if Flag is not
// null) and that there should be a flag result.
SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT,
SDValue Flag) {
const MVT *VTs = getNodeValueTypes(VT, MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, getRegister(Reg, VT), Flag };
return getNode(ISD::CopyFromReg, VTs, 3, Ops, Flag.getNode() ? 3 : 2);
}
SDValue getCondCode(ISD::CondCode Cond);
/// Returns the ConvertRndSat Note: Avoid using this node because it may
/// disappear in the future and most targets don't support it.
SDValue getConvertRndSat(MVT VT, SDValue Val, SDValue DTy, SDValue STy,
SDValue Rnd, SDValue Sat, ISD::CvtCode Code);
/// getZeroExtendInReg - Return the expression required to zero extend the Op
/// value assuming it was the smaller SrcTy value.
SDValue getZeroExtendInReg(SDValue Op, MVT SrcTy);
/// getCALLSEQ_START - Return a new CALLSEQ_START node, which always must have
/// a flag result (to ensure it's not CSE'd).
SDValue getCALLSEQ_START(SDValue Chain, SDValue Op) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, Op };
return getNode(ISD::CALLSEQ_START, VTs, 2, Ops, 2);
}
/// getCALLSEQ_END - Return a new CALLSEQ_END node, which always must have a
/// flag result (to ensure it's not CSE'd).
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
SDValue InFlag) {
SDVTList NodeTys = getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 4> Ops;
Ops.push_back(Chain);
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(InFlag);
return getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0],
(unsigned)Ops.size() - (InFlag.getNode() == 0 ? 1 : 0));
}
/// getNode - Gets or creates the specified node.
///
SDValue getNode(unsigned Opcode, MVT VT);
SDValue getNode(unsigned Opcode, MVT VT, SDValue N);
SDValue getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2);
SDValue getNode(unsigned Opcode, MVT VT,
SDValue N1, SDValue N2, SDValue N3);
SDValue getNode(unsigned Opcode, MVT VT,
SDValue N1, SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, MVT VT,
SDValue N1, SDValue N2, SDValue N3, SDValue N4,
SDValue N5);
SDValue getNode(unsigned Opcode, MVT VT,
const SDValue *Ops, unsigned NumOps);
SDValue getNode(unsigned Opcode, MVT VT,
const SDUse *Ops, unsigned NumOps);
SDValue getNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
const SDValue *Ops, unsigned NumOps);
SDValue getNode(unsigned Opcode, const MVT *VTs, unsigned NumVTs,
const SDValue *Ops, unsigned NumOps);
SDValue getNode(unsigned Opcode, SDVTList VTs);
SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N);
SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N1, SDValue N2);
SDValue getNode(unsigned Opcode, SDVTList VTs,
SDValue N1, SDValue N2, SDValue N3);
SDValue getNode(unsigned Opcode, SDVTList VTs,
SDValue N1, SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, SDVTList VTs,
SDValue N1, SDValue N2, SDValue N3, SDValue N4,
SDValue N5);
SDValue getNode(unsigned Opcode, SDVTList VTs,
const SDValue *Ops, unsigned NumOps);
SDValue getMemcpy(SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool AlwaysInline,
const Value *DstSV, uint64_t DstSVOff,
const Value *SrcSV, uint64_t SrcSVOff);
SDValue getMemmove(SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
const Value *DstSV, uint64_t DstOSVff,
const Value *SrcSV, uint64_t SrcSVOff);
SDValue getMemset(SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
const Value *DstSV, uint64_t DstSVOff);
/// getSetCC - Helper function to make it easier to build SetCC's if you just
/// have an ISD::CondCode instead of an SDValue.
///
SDValue getSetCC(MVT VT, SDValue LHS, SDValue RHS,
ISD::CondCode Cond) {
return getNode(ISD::SETCC, VT, LHS, RHS, getCondCode(Cond));
}
/// getVSetCC - Helper function to make it easier to build VSetCC's nodes
/// if you just have an ISD::CondCode instead of an SDValue.
///
SDValue getVSetCC(MVT VT, SDValue LHS, SDValue RHS,
ISD::CondCode Cond) {
return getNode(ISD::VSETCC, VT, LHS, RHS, getCondCode(Cond));
}
/// getSelectCC - Helper function to make it easier to build SelectCC's if you
/// just have an ISD::CondCode instead of an SDValue.
///
SDValue getSelectCC(SDValue LHS, SDValue RHS,
SDValue True, SDValue False, ISD::CondCode Cond) {
return getNode(ISD::SELECT_CC, True.getValueType(), LHS, RHS, True, False,
getCondCode(Cond));
}
/// getVAArg - VAArg produces a result and token chain, and takes a pointer
/// and a source value as input.
SDValue getVAArg(MVT VT, SDValue Chain, SDValue Ptr,
SDValue SV);
/// getAtomic - Gets a node for an atomic op, produces result and chain and
/// takes 3 operands
SDValue getAtomic(unsigned Opcode, MVT MemVT, SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, const Value* PtrVal,
unsigned Alignment=0);
/// getAtomic - Gets a node for an atomic op, produces result and chain and
/// takes 2 operands.
SDValue getAtomic(unsigned Opcode, MVT MemVT, SDValue Chain, SDValue Ptr,
SDValue Val, const Value* PtrVal,
unsigned Alignment = 0);
/// getMemIntrinsicNode - Creates a MemIntrinsicNode that may produce a
/// result and takes a list of operands.
SDValue getMemIntrinsicNode(unsigned Opcode,
const MVT *VTs, unsigned NumVTs,
const SDValue *Ops, unsigned NumOps,
MVT MemVT, const Value *srcValue, int SVOff,
unsigned Align = 0, bool Vol = false,
bool ReadMem = true, bool WriteMem = true);
SDValue getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
const SDValue *Ops, unsigned NumOps,
MVT MemVT, const Value *srcValue, int SVOff,
unsigned Align = 0, bool Vol = false,
bool ReadMem = true, bool WriteMem = true);
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
SDValue getMergeValues(const SDValue *Ops, unsigned NumOps);
/// getCall - Create a CALL node from the given information.
///
SDValue getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
bool isInreg, SDVTList VTs, const SDValue *Operands,
unsigned NumOperands);
/// getLoad - Loads are not normal binary operators: their result type is not
/// determined by their operands, and they produce a value AND a token chain.
///
SDValue getLoad(MVT VT, SDValue Chain, SDValue Ptr,
const Value *SV, int SVOffset, bool isVolatile=false,
unsigned Alignment=0);
SDValue getExtLoad(ISD::LoadExtType ExtType, MVT VT,
SDValue Chain, SDValue Ptr, const Value *SV,
int SVOffset, MVT EVT, bool isVolatile=false,
unsigned Alignment=0);
SDValue getIndexedLoad(SDValue OrigLoad, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
MVT VT, SDValue Chain,
SDValue Ptr, SDValue Offset,
const Value *SV, int SVOffset, MVT EVT,
bool isVolatile=false, unsigned Alignment=0);
/// getStore - Helper function to build ISD::STORE nodes.
///
SDValue getStore(SDValue Chain, SDValue Val, SDValue Ptr,
const Value *SV, int SVOffset, bool isVolatile=false,
unsigned Alignment=0);
SDValue getTruncStore(SDValue Chain, SDValue Val, SDValue Ptr,
const Value *SV, int SVOffset, MVT TVT,
bool isVolatile=false, unsigned Alignment=0);
SDValue getIndexedStore(SDValue OrigStoe, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
// getSrcValue - Construct a node to track a Value* through the backend.
SDValue getSrcValue(const Value *v);
// getMemOperand - Construct a node to track a memory reference
// through the backend.
SDValue getMemOperand(const MachineMemOperand &MO);
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDValue UpdateNodeOperands(SDValue N, SDValue Op);
SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2);
SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
SDValue Op3);
SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4);
SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5);
SDValue UpdateNodeOperands(SDValue N,
const SDValue *Ops, unsigned NumOps);
/// SelectNodeTo - These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ~TargetOpcode in the node opcode field. The resultant node is returned.
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
const SDValue *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, const SDValue *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT1,
MVT VT2, MVT VT3, MVT VT4, const SDValue *Ops,
unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, MVT VT3, SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
const SDValue *Ops, unsigned NumOps);
/// MorphNodeTo - These *mutate* the specified node to have the specified
/// return type, opcode, and operands.
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
SDValue Op1, SDValue Op2);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
const SDValue *Ops, unsigned NumOps);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, const SDValue *Ops, unsigned NumOps);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, SDValue Op1);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
const SDValue *Ops, unsigned NumOps);
/// getTargetNode - These are used for target selectors to create a new node
/// with specified return type(s), target opcode, and operands.
///
/// Note that getTargetNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDNode *getTargetNode(unsigned Opcode, MVT VT);
SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1);
SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1, SDValue Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT,
const SDValue *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1);
SDNode *getTargetNode(unsigned Opcode, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1,
MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
const SDValue *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
SDValue Op1, SDValue Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
const SDValue *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, MVT VT4,
const SDValue *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
const SDValue *Ops, unsigned NumOps);
/// getNodeIfExists - Get the specified node if it's already available, or
/// else return NULL.
SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs,
const SDValue *Ops, unsigned NumOps);
/// DAGUpdateListener - Clients of various APIs that cause global effects on
/// the DAG can optionally implement this interface. This allows the clients
/// to handle the various sorts of updates that happen.
class DAGUpdateListener {
public:
virtual ~DAGUpdateListener();
/// NodeDeleted - The node N that was deleted and, if E is not null, an
/// equivalent node E that replaced it.
virtual void NodeDeleted(SDNode *N, SDNode *E) = 0;
/// NodeUpdated - The node N that was updated.
virtual void NodeUpdated(SDNode *N) = 0;
};
/// RemoveDeadNode - Remove the specified node from the system. If any of its
/// operands then becomes dead, remove them as well. Inform UpdateListener
/// for each node deleted.
void RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener = 0);
/// RemoveDeadNodes - This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
DAGUpdateListener *UpdateListener = 0);
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG. Use the first
/// version if 'From' is known to have a single result, use the second
/// if you have two nodes with identical results, use the third otherwise.
///
/// These methods all take an optional UpdateListener, which (if not null) is
/// informed about nodes that are deleted and modified due to recursive
/// changes in the dag.
///
void ReplaceAllUsesWith(SDValue From, SDValue Op,
DAGUpdateListener *UpdateListener = 0);
void ReplaceAllUsesWith(SDNode *From, SDNode *To,
DAGUpdateListener *UpdateListener = 0);
void ReplaceAllUsesWith(SDNode *From, const SDValue *To,
DAGUpdateListener *UpdateListener = 0);
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.Val alone.
void ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
DAGUpdateListener *UpdateListener = 0);
/// ReplaceAllUsesOfValuesWith - Like ReplaceAllUsesOfValueWith, but
/// for multiple values at once. This correctly handles the case where
/// there is an overlap between the From values and the To values.
void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
unsigned Num,
DAGUpdateListener *UpdateListener = 0);
/// AssignTopologicalOrder - Topological-sort the AllNodes list and a
/// assign a unique node id for each node in the DAG based on their
/// topological order. Returns the number of nodes.
unsigned AssignTopologicalOrder();
/// RepositionNode - Move node N in the AllNodes list to be immediately
/// before the given iterator Position. This may be used to update the
/// topological ordering when the list of nodes is modified.
void RepositionNode(allnodes_iterator Position, SDNode *N) {
AllNodes.insert(Position, AllNodes.remove(N));
}
/// isCommutativeBinOp - Returns true if the opcode is a commutative binary
/// operation.
static bool isCommutativeBinOp(unsigned Opcode) {
// FIXME: This should get its info from the td file, so that we can include
// target info.
switch (Opcode) {
case ISD::ADD:
case ISD::MUL:
case ISD::MULHU:
case ISD::MULHS:
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
case ISD::FADD:
case ISD::FMUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADDC:
case ISD::ADDE: return true;
default: return false;
}
}
void dump() const;
/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type. If minAlign is specified, the slot size will have
/// at least that alignment.
SDValue CreateStackTemporary(MVT VT, unsigned minAlign = 1);
/// CreateStackTemporary - Create a stack temporary suitable for holding
/// either of the specified value types.
SDValue CreateStackTemporary(MVT VT1, MVT VT2);
/// FoldConstantArithmetic -
SDValue FoldConstantArithmetic(unsigned Opcode,
MVT VT,
ConstantSDNode *Cst1,
ConstantSDNode *Cst2);
/// FoldSetCC - Constant fold a setcc to true or false.
SDValue FoldSetCC(MVT VT, SDValue N1,
SDValue N2, ISD::CondCode Cond);
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
/// use this predicate to simplify operations downstream.
bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We
/// use this predicate to simplify operations downstream. Op and Mask are
/// known to be the same type.
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
const;
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
/// processing. Targets can implement the computeMaskedBitsForTargetNode
/// method in the TargetLowering class to allow target nodes to be understood.
void ComputeMaskedBits(SDValue Op, const APInt &Mask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0) const;
/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits. We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information. For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3. Targets can
/// implement the ComputeNumSignBitsForTarget method in the TargetLowering
/// class to allow target nodes to be understood.
unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
/// isVerifiedDebugInfoDesc - Returns true if the specified SDValue has
/// been verified as a debug information descriptor.
bool isVerifiedDebugInfoDesc(SDValue Op) const;
/// getShuffleScalarElt - Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
SDValue getShuffleScalarElt(const SDNode *N, unsigned Idx);
private:
bool RemoveNodeFromCSEMaps(SDNode *N);
SDNode *AddNonLeafNodeToCSEMaps(SDNode *N);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, const SDValue *Ops, unsigned NumOps,
void *&InsertPos);
void DeleteNodeNotInCSEMaps(SDNode *N);
void DeallocateNode(SDNode *N);
unsigned getMVTAlignment(MVT MemoryVT) const;
void allnodes_clear();
// List of non-single value types.
std::vector<SDVTList> VTList;
// Maps to auto-CSE operations.
std::vector<CondCodeSDNode*> CondCodeNodes;
std::vector<SDNode*> ValueTypeNodes;
std::map<MVT, SDNode*, MVT::compareRawBits> ExtendedValueTypeNodes;
StringMap<SDNode*> ExternalSymbols;
StringMap<SDNode*> TargetExternalSymbols;
};
template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
typedef SelectionDAG::allnodes_iterator nodes_iterator;
static nodes_iterator nodes_begin(SelectionDAG *G) {
return G->allnodes_begin();
}
static nodes_iterator nodes_end(SelectionDAG *G) {
return G->allnodes_end();
}
};
} // end namespace llvm
#endif