mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 02:33:33 +00:00
9763e2bf39
This method could probably be used by LiveIntervalAnalysis::shrinkToUses, and now it can use extendIntervalEndTo() which coalesces ranges. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126803 91177308-0d34-0410-b5e6-96231b3b80d8
906 lines
33 KiB
C++
906 lines
33 KiB
C++
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the SplitAnalysis class as well as mutator functions for
|
|
// live range splitting.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "SplitKit.h"
|
|
#include "LiveRangeEdit.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
AllowSplit("spiller-splits-edges",
|
|
cl::desc("Allow critical edge splitting during spilling"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
|
|
const LiveIntervals &lis,
|
|
const MachineLoopInfo &mli)
|
|
: MF(vrm.getMachineFunction()),
|
|
VRM(vrm),
|
|
LIS(lis),
|
|
Loops(mli),
|
|
TII(*MF.getTarget().getInstrInfo()),
|
|
CurLI(0) {}
|
|
|
|
void SplitAnalysis::clear() {
|
|
UseSlots.clear();
|
|
UsingInstrs.clear();
|
|
UsingBlocks.clear();
|
|
LiveBlocks.clear();
|
|
CurLI = 0;
|
|
}
|
|
|
|
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
|
|
MachineBasicBlock *T, *F;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
|
|
}
|
|
|
|
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
|
|
void SplitAnalysis::analyzeUses() {
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
|
|
E = MRI.reg_end(); I != E; ++I) {
|
|
MachineOperand &MO = I.getOperand();
|
|
if (MO.isUse() && MO.isUndef())
|
|
continue;
|
|
MachineInstr *MI = MO.getParent();
|
|
if (MI->isDebugValue() || !UsingInstrs.insert(MI))
|
|
continue;
|
|
UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
UsingBlocks[MBB]++;
|
|
}
|
|
array_pod_sort(UseSlots.begin(), UseSlots.end());
|
|
calcLiveBlockInfo();
|
|
DEBUG(dbgs() << " counted "
|
|
<< UsingInstrs.size() << " instrs, "
|
|
<< UsingBlocks.size() << " blocks.\n");
|
|
}
|
|
|
|
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
|
|
/// where CurLI is live.
|
|
void SplitAnalysis::calcLiveBlockInfo() {
|
|
if (CurLI->empty())
|
|
return;
|
|
|
|
LiveInterval::const_iterator LVI = CurLI->begin();
|
|
LiveInterval::const_iterator LVE = CurLI->end();
|
|
|
|
SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
|
|
UseI = UseSlots.begin();
|
|
UseE = UseSlots.end();
|
|
|
|
// Loop over basic blocks where CurLI is live.
|
|
MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
|
|
for (;;) {
|
|
BlockInfo BI;
|
|
BI.MBB = MFI;
|
|
SlotIndex Start, Stop;
|
|
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
|
|
|
|
// The last split point is the latest possible insertion point that dominates
|
|
// all successor blocks. If interference reaches LastSplitPoint, it is not
|
|
// possible to insert a split or reload that makes CurLI live in the
|
|
// outgoing bundle.
|
|
MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
|
|
if (LSP == BI.MBB->end())
|
|
BI.LastSplitPoint = Stop;
|
|
else
|
|
BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
|
|
|
|
// LVI is the first live segment overlapping MBB.
|
|
BI.LiveIn = LVI->start <= Start;
|
|
if (!BI.LiveIn)
|
|
BI.Def = LVI->start;
|
|
|
|
// Find the first and last uses in the block.
|
|
BI.Uses = hasUses(MFI);
|
|
if (BI.Uses && UseI != UseE) {
|
|
BI.FirstUse = *UseI;
|
|
assert(BI.FirstUse >= Start);
|
|
do ++UseI;
|
|
while (UseI != UseE && *UseI < Stop);
|
|
BI.LastUse = UseI[-1];
|
|
assert(BI.LastUse < Stop);
|
|
}
|
|
|
|
// Look for gaps in the live range.
|
|
bool hasGap = false;
|
|
BI.LiveOut = true;
|
|
while (LVI->end < Stop) {
|
|
SlotIndex LastStop = LVI->end;
|
|
if (++LVI == LVE || LVI->start >= Stop) {
|
|
BI.Kill = LastStop;
|
|
BI.LiveOut = false;
|
|
break;
|
|
}
|
|
if (LastStop < LVI->start) {
|
|
hasGap = true;
|
|
BI.Kill = LastStop;
|
|
BI.Def = LVI->start;
|
|
}
|
|
}
|
|
|
|
// Don't set LiveThrough when the block has a gap.
|
|
BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
|
|
LiveBlocks.push_back(BI);
|
|
|
|
// LVI is now at LVE or LVI->end >= Stop.
|
|
if (LVI == LVE)
|
|
break;
|
|
|
|
// Live segment ends exactly at Stop. Move to the next segment.
|
|
if (LVI->end == Stop && ++LVI == LVE)
|
|
break;
|
|
|
|
// Pick the next basic block.
|
|
if (LVI->start < Stop)
|
|
++MFI;
|
|
else
|
|
MFI = LIS.getMBBFromIndex(LVI->start);
|
|
}
|
|
}
|
|
|
|
bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
|
|
unsigned OrigReg = VRM.getOriginal(CurLI->reg);
|
|
const LiveInterval &Orig = LIS.getInterval(OrigReg);
|
|
assert(!Orig.empty() && "Splitting empty interval?");
|
|
LiveInterval::const_iterator I = Orig.find(Idx);
|
|
|
|
// Range containing Idx should begin at Idx.
|
|
if (I != Orig.end() && I->start <= Idx)
|
|
return I->start == Idx;
|
|
|
|
// Range does not contain Idx, previous must end at Idx.
|
|
return I != Orig.begin() && (--I)->end == Idx;
|
|
}
|
|
|
|
void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
|
|
for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
unsigned count = UsingBlocks.lookup(*I);
|
|
OS << " BB#" << (*I)->getNumber();
|
|
if (count)
|
|
OS << '(' << count << ')';
|
|
}
|
|
}
|
|
|
|
void SplitAnalysis::analyze(const LiveInterval *li) {
|
|
clear();
|
|
CurLI = li;
|
|
analyzeUses();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LiveIntervalMap
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Work around the fact that the std::pair constructors are broken for pointer
|
|
// pairs in some implementations. makeVV(x, 0) works.
|
|
static inline std::pair<const VNInfo*, VNInfo*>
|
|
makeVV(const VNInfo *a, VNInfo *b) {
|
|
return std::make_pair(a, b);
|
|
}
|
|
|
|
void LiveIntervalMap::reset(LiveInterval *li) {
|
|
LI = li;
|
|
LiveOutCache.clear();
|
|
}
|
|
|
|
|
|
// mapValue - Find the mapped value for ParentVNI at Idx.
|
|
// Potentially create phi-def values.
|
|
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
|
bool *simple) {
|
|
assert(LI && "call reset first");
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
|
|
|
// This is a complex mapped value. There may be multiple defs, and we may need
|
|
// to create phi-defs.
|
|
if (simple) *simple = false;
|
|
MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
|
|
assert(IdxMBB && "No MBB at Idx");
|
|
|
|
// Is there a def in the same MBB we can extend?
|
|
if (VNInfo *VNI = LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
|
|
return VNI;
|
|
|
|
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
|
|
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
|
|
// Perform a search for all predecessor blocks where we know the dominating
|
|
// VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
|
|
DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
|
|
<< " at " << Idx << " in " << *LI << '\n');
|
|
|
|
// Blocks where LI should be live-in.
|
|
SmallVector<MachineDomTreeNode*, 16> LiveIn;
|
|
LiveIn.push_back(MDT[IdxMBB]);
|
|
|
|
// Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
|
|
for (unsigned i = 0; i != LiveIn.size(); ++i) {
|
|
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
MachineBasicBlock *Pred = *PI;
|
|
// Is this a known live-out block?
|
|
std::pair<LiveOutMap::iterator,bool> LOIP =
|
|
LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
|
|
// Yes, we have been here before.
|
|
if (!LOIP.second) {
|
|
DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
|
|
dbgs() << " known valno #" << VNI->id
|
|
<< " at BB#" << Pred->getNumber() << '\n');
|
|
continue;
|
|
}
|
|
|
|
// Does Pred provide a live-out value?
|
|
SlotIndex Start, Last;
|
|
tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
|
|
Last = Last.getPrevSlot();
|
|
if (VNInfo *VNI = LI->extendInBlock(Start, Last)) {
|
|
MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
|
|
DEBUG(dbgs() << " found valno #" << VNI->id
|
|
<< " from BB#" << DefMBB->getNumber()
|
|
<< " at BB#" << Pred->getNumber() << '\n');
|
|
LiveOutPair &LOP = LOIP.first->second;
|
|
LOP.first = VNI;
|
|
LOP.second = MDT[DefMBB];
|
|
continue;
|
|
}
|
|
// No, we need a live-in value for Pred as well
|
|
if (Pred != IdxMBB)
|
|
LiveIn.push_back(MDT[Pred]);
|
|
}
|
|
}
|
|
|
|
// We may need to add phi-def values to preserve the SSA form.
|
|
// This is essentially the same iterative algorithm that SSAUpdater uses,
|
|
// except we already have a dominator tree, so we don't have to recompute it.
|
|
VNInfo *IdxVNI = 0;
|
|
unsigned Changes;
|
|
do {
|
|
Changes = 0;
|
|
DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n");
|
|
// Propagate live-out values down the dominator tree, inserting phi-defs when
|
|
// necessary. Since LiveIn was created by a BFS, going backwards makes it more
|
|
// likely for us to visit immediate dominators before their children.
|
|
for (unsigned i = LiveIn.size(); i; --i) {
|
|
MachineDomTreeNode *Node = LiveIn[i-1];
|
|
MachineBasicBlock *MBB = Node->getBlock();
|
|
MachineDomTreeNode *IDom = Node->getIDom();
|
|
LiveOutPair IDomValue;
|
|
// We need a live-in value to a block with no immediate dominator?
|
|
// This is probably an unreachable block that has survived somehow.
|
|
bool needPHI = !IDom;
|
|
|
|
// Get the IDom live-out value.
|
|
if (!needPHI) {
|
|
LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
|
|
if (I != LiveOutCache.end())
|
|
IDomValue = I->second;
|
|
else
|
|
// If IDom is outside our set of live-out blocks, there must be new
|
|
// defs, and we need a phi-def here.
|
|
needPHI = true;
|
|
}
|
|
|
|
// IDom dominates all of our predecessors, but it may not be the immediate
|
|
// dominator. Check if any of them have live-out values that are properly
|
|
// dominated by IDom. If so, we need a phi-def here.
|
|
if (!needPHI) {
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
LiveOutPair Value = LiveOutCache[*PI];
|
|
if (!Value.first || Value.first == IDomValue.first)
|
|
continue;
|
|
// This predecessor is carrying something other than IDomValue.
|
|
// It could be because IDomValue hasn't propagated yet, or it could be
|
|
// because MBB is in the dominance frontier of that value.
|
|
if (MDT.dominates(IDom, Value.second)) {
|
|
needPHI = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a phi-def if required.
|
|
if (needPHI) {
|
|
++Changes;
|
|
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
|
VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
|
|
VNI->setIsPHIDef(true);
|
|
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
|
|
<< " phi-def #" << VNI->id << " at " << Start << '\n');
|
|
// We no longer need LI to be live-in.
|
|
LiveIn.erase(LiveIn.begin()+(i-1));
|
|
// Blocks in LiveIn are either IdxMBB, or have a value live-through.
|
|
if (MBB == IdxMBB)
|
|
IdxVNI = VNI;
|
|
// Check if we need to update live-out info.
|
|
LiveOutMap::iterator I = LiveOutCache.find(MBB);
|
|
if (I == LiveOutCache.end() || I->second.second == Node) {
|
|
// We already have a live-out defined in MBB, so this must be IdxMBB.
|
|
assert(MBB == IdxMBB && "Adding phi-def to known live-out");
|
|
LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
|
|
} else {
|
|
// This phi-def is also live-out, so color the whole block.
|
|
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
|
I->second = LiveOutPair(VNI, Node);
|
|
}
|
|
} else if (IDomValue.first) {
|
|
// No phi-def here. Remember incoming value for IdxMBB.
|
|
if (MBB == IdxMBB)
|
|
IdxVNI = IDomValue.first;
|
|
// Propagate IDomValue if needed:
|
|
// MBB is live-out and doesn't define its own value.
|
|
LiveOutMap::iterator I = LiveOutCache.find(MBB);
|
|
if (I != LiveOutCache.end() && I->second.second != Node &&
|
|
I->second.first != IDomValue.first) {
|
|
++Changes;
|
|
I->second = IDomValue;
|
|
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
|
|
<< " idom valno #" << IDomValue.first->id
|
|
<< " from BB#" << IDom->getBlock()->getNumber() << '\n');
|
|
}
|
|
}
|
|
}
|
|
DEBUG(dbgs() << " - made " << Changes << " changes.\n");
|
|
} while (Changes);
|
|
|
|
assert(IdxVNI && "Didn't find value for Idx");
|
|
|
|
#ifndef NDEBUG
|
|
// Check the LiveOutCache invariants.
|
|
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
|
|
I != E; ++I) {
|
|
assert(I->first && "Null MBB entry in cache");
|
|
assert(I->second.first && "Null VNInfo in cache");
|
|
assert(I->second.second && "Null DomTreeNode in cache");
|
|
if (I->second.second->getBlock() == I->first)
|
|
continue;
|
|
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
|
|
PE = I->first->pred_end(); PI != PE; ++PI)
|
|
assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
|
|
}
|
|
#endif
|
|
|
|
// Since we went through the trouble of a full BFS visiting all reaching defs,
|
|
// the values in LiveIn are now accurate. No more phi-defs are needed
|
|
// for these blocks, so we can color the live ranges.
|
|
// This makes the next mapValue call much faster.
|
|
for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
|
|
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
|
|
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
|
VNInfo *VNI = LiveOutCache.lookup(MBB).first;
|
|
|
|
// Anything in LiveIn other than IdxMBB is live-through.
|
|
// In IdxMBB, we should stop at Idx unless the same value is live-out.
|
|
if (MBB == IdxMBB && IdxVNI != VNI)
|
|
LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
|
|
else
|
|
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
|
}
|
|
|
|
return IdxVNI;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void LiveIntervalMap::dumpCache() {
|
|
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
|
|
I != E; ++I) {
|
|
assert(I->first && "Null MBB entry in cache");
|
|
assert(I->second.first && "Null VNInfo in cache");
|
|
assert(I->second.second && "Null DomTreeNode in cache");
|
|
dbgs() << " cache: BB#" << I->first->getNumber()
|
|
<< " has valno #" << I->second.first->id << " from BB#"
|
|
<< I->second.second->getBlock()->getNumber() << ", preds";
|
|
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
|
|
PE = I->first->pred_end(); PI != PE; ++PI)
|
|
dbgs() << " BB#" << (*PI)->getNumber();
|
|
dbgs() << '\n';
|
|
}
|
|
dbgs() << " cache: " << LiveOutCache.size() << " entries.\n";
|
|
}
|
|
#endif
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Editor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
|
|
SplitEditor::SplitEditor(SplitAnalysis &sa,
|
|
LiveIntervals &lis,
|
|
VirtRegMap &vrm,
|
|
MachineDominatorTree &mdt,
|
|
LiveRangeEdit &edit)
|
|
: SA(sa), LIS(lis), VRM(vrm),
|
|
MRI(vrm.getMachineFunction().getRegInfo()),
|
|
MDT(mdt),
|
|
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
|
|
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
|
|
Edit(edit),
|
|
OpenIdx(0),
|
|
RegAssign(Allocator)
|
|
{
|
|
// We don't need an AliasAnalysis since we will only be performing
|
|
// cheap-as-a-copy remats anyway.
|
|
Edit.anyRematerializable(LIS, TII, 0);
|
|
}
|
|
|
|
void SplitEditor::dump() const {
|
|
if (RegAssign.empty()) {
|
|
dbgs() << " empty\n";
|
|
return;
|
|
}
|
|
|
|
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
|
|
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
VNInfo *SplitEditor::defValue(unsigned RegIdx,
|
|
const VNInfo *ParentVNI,
|
|
SlotIndex Idx) {
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(Edit.getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
|
|
LiveInterval *LI = Edit.get(RegIdx);
|
|
|
|
// Create a new value.
|
|
VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
|
|
|
|
// Preserve the PHIDef bit.
|
|
if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
|
|
VNI->setIsPHIDef(true);
|
|
|
|
// Use insert for lookup, so we can add missing values with a second lookup.
|
|
std::pair<ValueMap::iterator, bool> InsP =
|
|
Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
|
|
|
|
// This was the first time (RegIdx, ParentVNI) was mapped.
|
|
// Keep it as a simple def without any liveness.
|
|
if (InsP.second)
|
|
return VNI;
|
|
|
|
// If the previous value was a simple mapping, add liveness for it now.
|
|
if (VNInfo *OldVNI = InsP.first->second) {
|
|
SlotIndex Def = OldVNI->def;
|
|
LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
|
|
// No longer a simple mapping.
|
|
InsP.first->second = 0;
|
|
}
|
|
|
|
// This is a complex mapping, add liveness for VNI
|
|
SlotIndex Def = VNI->def;
|
|
LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
|
|
|
|
return VNI;
|
|
}
|
|
|
|
void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
|
|
|
|
// ParentVNI was either unmapped or already complex mapped. Either way.
|
|
if (!VNI)
|
|
return;
|
|
|
|
// This was previously a single mapping. Make sure the old def is represented
|
|
// by a trivial live range.
|
|
SlotIndex Def = VNI->def;
|
|
Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
|
|
VNI = 0;
|
|
}
|
|
|
|
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
|
|
VNInfo *ParentVNI,
|
|
SlotIndex UseIdx,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
MachineInstr *CopyMI = 0;
|
|
SlotIndex Def;
|
|
LiveInterval *LI = Edit.get(RegIdx);
|
|
|
|
// Attempt cheap-as-a-copy rematerialization.
|
|
LiveRangeEdit::Remat RM(ParentVNI);
|
|
if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
|
|
Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
|
|
} else {
|
|
// Can't remat, just insert a copy from parent.
|
|
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
|
|
.addReg(Edit.getReg());
|
|
Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
|
|
}
|
|
|
|
// Temporarily mark all values as complex mapped.
|
|
markComplexMapped(RegIdx, ParentVNI);
|
|
|
|
// Define the value in Reg.
|
|
VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
|
|
VNI->setCopy(CopyMI);
|
|
return VNI;
|
|
}
|
|
|
|
/// Create a new virtual register and live interval.
|
|
void SplitEditor::openIntv() {
|
|
assert(!OpenIdx && "Previous LI not closed before openIntv");
|
|
|
|
// Create the complement as index 0.
|
|
if (Edit.empty()) {
|
|
Edit.create(MRI, LIS, VRM);
|
|
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
|
|
LIMappers.back().reset(Edit.get(0));
|
|
}
|
|
|
|
// Create the open interval.
|
|
OpenIdx = Edit.size();
|
|
Edit.create(MRI, LIS, VRM);
|
|
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
|
|
LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvBefore");
|
|
DEBUG(dbgs() << " enterIntvBefore " << Idx);
|
|
Idx = Idx.getBaseIndex();
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "enterIntvBefore called with invalid index");
|
|
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
|
|
SlotIndex End = LIS.getMBBEndIdx(&MBB);
|
|
SlotIndex Last = End.getPrevSlot();
|
|
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return End;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
|
|
LIS.getLastSplitPoint(Edit.getParent(), &MBB));
|
|
RegAssign.insert(VNI->def, End, OpenIdx);
|
|
DEBUG(dump());
|
|
return VNI->def;
|
|
}
|
|
|
|
/// useIntv - indicate that all instructions in MBB should use OpenLI.
|
|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
|
|
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
|
|
}
|
|
|
|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(OpenIdx && "openIntv not called before useIntv");
|
|
DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
|
|
RegAssign.insert(Start, End, OpenIdx);
|
|
DEBUG(dump());
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
|
|
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
|
|
|
|
// The interval must be live beyond the instruction at Idx.
|
|
Idx = Idx.getBoundaryIndex();
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx.getNextSlot();
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "No instruction at index");
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
|
|
llvm::next(MachineBasicBlock::iterator(MI)));
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvBefore");
|
|
DEBUG(dbgs() << " leaveIntvBefore " << Idx);
|
|
|
|
// The interval must be live into the instruction at Idx.
|
|
Idx = Idx.getBoundaryIndex();
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx.getNextSlot();
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "No instruction at index");
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
|
|
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
|
|
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
|
|
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Start;
|
|
}
|
|
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
|
|
MBB.SkipPHIsAndLabels(MBB.begin()));
|
|
RegAssign.insert(Start, VNI->def, OpenIdx);
|
|
DEBUG(dump());
|
|
return VNI->def;
|
|
}
|
|
|
|
void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(OpenIdx && "openIntv not called before overlapIntv");
|
|
assert(Edit.getParent().getVNInfoAt(Start) ==
|
|
Edit.getParent().getVNInfoAt(End.getPrevSlot()) &&
|
|
"Parent changes value in extended range");
|
|
assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*");
|
|
assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
|
|
"Range cannot span basic blocks");
|
|
|
|
// Treat this as useIntv() for now. The complement interval will be extended
|
|
// as needed by mapValue().
|
|
DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
|
|
RegAssign.insert(Start, End, OpenIdx);
|
|
DEBUG(dump());
|
|
}
|
|
|
|
/// closeIntv - Indicate that we are done editing the currently open
|
|
/// LiveInterval, and ranges can be trimmed.
|
|
void SplitEditor::closeIntv() {
|
|
assert(OpenIdx && "openIntv not called before closeIntv");
|
|
OpenIdx = 0;
|
|
}
|
|
|
|
/// rewriteAssigned - Rewrite all uses of Edit.getReg().
|
|
void SplitEditor::rewriteAssigned() {
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
|
|
RE = MRI.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = RI.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
++RI;
|
|
// LiveDebugVariables should have handled all DBG_VALUE instructions.
|
|
if (MI->isDebugValue()) {
|
|
DEBUG(dbgs() << "Zapping " << *MI);
|
|
MO.setReg(0);
|
|
continue;
|
|
}
|
|
|
|
// <undef> operands don't really read the register, so just assign them to
|
|
// the complement.
|
|
if (MO.isUse() && MO.isUndef()) {
|
|
MO.setReg(Edit.get(0)->reg);
|
|
continue;
|
|
}
|
|
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI);
|
|
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
|
|
|
|
// Rewrite to the mapped register at Idx.
|
|
unsigned RegIdx = RegAssign.lookup(Idx);
|
|
MO.setReg(Edit.get(RegIdx)->reg);
|
|
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
|
|
<< Idx << ':' << RegIdx << '\t' << *MI);
|
|
|
|
// Extend liveness to Idx.
|
|
const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
|
LIMappers[RegIdx].mapValue(ParentVNI, Idx);
|
|
}
|
|
}
|
|
|
|
/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
|
|
void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
|
|
const ConnectedVNInfoEqClasses &ConEq) {
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
|
|
RE = MRI.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = RI.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
++RI;
|
|
if (MO.isUse() && MO.isUndef())
|
|
continue;
|
|
// DBG_VALUE instructions should have been eliminated earlier.
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI);
|
|
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
|
|
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
|
|
<< Idx << ':');
|
|
const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
|
|
assert(VNI && "Interval not live at use.");
|
|
MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
|
|
DEBUG(dbgs() << VNI->id << '\t' << *MI);
|
|
}
|
|
}
|
|
|
|
void SplitEditor::finish() {
|
|
assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
|
|
|
|
// At this point, the live intervals in Edit contain VNInfos corresponding to
|
|
// the inserted copies.
|
|
|
|
// Add the original defs from the parent interval.
|
|
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
|
|
E = Edit.getParent().vni_end(); I != E; ++I) {
|
|
const VNInfo *ParentVNI = *I;
|
|
if (ParentVNI->isUnused())
|
|
continue;
|
|
unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
|
|
// Mark all values as complex to force liveness computation.
|
|
// This should really only be necessary for remat victims, but we are lazy.
|
|
markComplexMapped(RegIdx, ParentVNI);
|
|
defValue(RegIdx, ParentVNI, ParentVNI->def);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Every new interval must have a def by now, otherwise the split is bogus.
|
|
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
|
|
assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
|
|
#endif
|
|
|
|
// FIXME: Don't recompute the liveness of all values, infer it from the
|
|
// overlaps between the parent live interval and RegAssign.
|
|
// The mapValue algorithm is only necessary when:
|
|
// - The parent value maps to multiple defs, and new phis are needed, or
|
|
// - The value has been rematerialized before some uses, and we want to
|
|
// minimize the live range so it only reaches the remaining uses.
|
|
// All other values have simple liveness that can be computed from RegAssign
|
|
// and the parent live interval.
|
|
|
|
// Extend live ranges to be live-out for successor PHI values.
|
|
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
|
|
E = Edit.getParent().vni_end(); I != E; ++I) {
|
|
const VNInfo *PHIVNI = *I;
|
|
if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
|
|
continue;
|
|
unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
|
|
LiveIntervalMap &LIM = LIMappers[RegIdx];
|
|
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
|
|
DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def
|
|
<< " -> " << RegIdx << '\n');
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
|
|
DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End);
|
|
// The predecessor may not have a live-out value. That is OK, like an
|
|
// undef PHI operand.
|
|
if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) {
|
|
DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n");
|
|
assert(RegAssign.lookup(End) == RegIdx &&
|
|
"Different register assignment in phi predecessor");
|
|
LIM.mapValue(VNI, End);
|
|
}
|
|
else
|
|
DEBUG(dbgs() << " is not live-out\n");
|
|
}
|
|
DEBUG(dbgs() << " " << *LIM.getLI() << '\n');
|
|
}
|
|
|
|
// Rewrite instructions.
|
|
rewriteAssigned();
|
|
|
|
// FIXME: Delete defs that were rematted everywhere.
|
|
|
|
// Get rid of unused values and set phi-kill flags.
|
|
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
|
|
(*I)->RenumberValues(LIS);
|
|
|
|
// Now check if any registers were separated into multiple components.
|
|
ConnectedVNInfoEqClasses ConEQ(LIS);
|
|
for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
|
|
// Don't use iterators, they are invalidated by create() below.
|
|
LiveInterval *li = Edit.get(i);
|
|
unsigned NumComp = ConEQ.Classify(li);
|
|
if (NumComp <= 1)
|
|
continue;
|
|
DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
|
|
SmallVector<LiveInterval*, 8> dups;
|
|
dups.push_back(li);
|
|
for (unsigned i = 1; i != NumComp; ++i)
|
|
dups.push_back(&Edit.create(MRI, LIS, VRM));
|
|
rewriteComponents(dups, ConEQ);
|
|
ConEQ.Distribute(&dups[0]);
|
|
}
|
|
|
|
// Calculate spill weight and allocation hints for new intervals.
|
|
VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
|
|
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
|
|
LiveInterval &li = **I;
|
|
vrai.CalculateRegClass(li.reg);
|
|
vrai.CalculateWeightAndHint(li);
|
|
DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName()
|
|
<< ":" << li << '\n');
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
|
|
/// may be an advantage to split CurLI for the duration of the block.
|
|
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
|
|
// If CurLI is local to one block, there is no point to splitting it.
|
|
if (LiveBlocks.size() <= 1)
|
|
return false;
|
|
// Add blocks with multiple uses.
|
|
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
|
|
const BlockInfo &BI = LiveBlocks[i];
|
|
if (!BI.Uses)
|
|
continue;
|
|
unsigned Instrs = UsingBlocks.lookup(BI.MBB);
|
|
if (Instrs <= 1)
|
|
continue;
|
|
if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
|
|
continue;
|
|
Blocks.insert(BI.MBB);
|
|
}
|
|
return !Blocks.empty();
|
|
}
|
|
|
|
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
|
|
/// basic block in Blocks.
|
|
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
|
|
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
|
|
|
|
for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
|
|
const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
|
|
if (!BI.Uses || !Blocks.count(BI.MBB))
|
|
continue;
|
|
|
|
openIntv();
|
|
SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
|
|
if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) {
|
|
useIntv(SegStart, leaveIntvAfter(BI.LastUse));
|
|
} else {
|
|
// The last use is after the last valid split point.
|
|
SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
|
|
useIntv(SegStart, SegStop);
|
|
overlapIntv(SegStop, BI.LastUse);
|
|
}
|
|
closeIntv();
|
|
}
|
|
finish();
|
|
}
|