llvm-6502/lib/CodeGen/PBQP/Heuristics/Briggs.h
Lang Hames d0f6f01731 Iterating over sets of pointers in a heuristic was a bad idea. Switching
any command line paramater changed the register allocation produced by
PBQP.

Turns out variety is not the spice of life.

Fixed some comparators, added others. All good now.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108613 91177308-0d34-0410-b5e6-96231b3b80d8
2010-07-17 06:31:41 +00:00

461 lines
17 KiB
C++

//===-- Briggs.h --- Briggs Heuristic for PBQP ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements the Briggs test for "allocability" of nodes in a
// PBQP graph representing a register allocation problem. Nodes which can be
// proven allocable (by a safe and relatively accurate test) are removed from
// the PBQP graph first. If no provably allocable node is present in the graph
// then the node with the minimal spill-cost to degree ratio is removed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
#include "../HeuristicSolver.h"
#include "../HeuristicBase.h"
#include <set>
#include <limits>
namespace PBQP {
namespace Heuristics {
/// \brief PBQP Heuristic which applies an allocability test based on
/// Briggs.
///
/// This heuristic assumes that the elements of cost vectors in the PBQP
/// problem represent storage options, with the first being the spill
/// option and subsequent elements representing legal registers for the
/// corresponding node. Edge cost matrices are likewise assumed to represent
/// register constraints.
/// If one or more nodes can be proven allocable by this heuristic (by
/// inspection of their constraint matrices) then the allocable node of
/// highest degree is selected for the next reduction and pushed to the
/// solver stack. If no nodes can be proven allocable then the node with
/// the lowest estimated spill cost is selected and push to the solver stack
/// instead.
///
/// This implementation is built on top of HeuristicBase.
class Briggs : public HeuristicBase<Briggs> {
private:
class LinkDegreeComparator {
public:
LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {}
bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const {
if (s->getSolverDegree(n1Itr) > s->getSolverDegree(n2Itr))
return true;
return false;
}
private:
HeuristicSolverImpl<Briggs> *s;
};
class SpillCostComparator {
public:
SpillCostComparator(HeuristicSolverImpl<Briggs> &s)
: s(&s), g(&s.getGraph()) {}
bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const {
PBQPNum cost1 = g->getNodeCosts(n1Itr)[0] / s->getSolverDegree(n1Itr),
cost2 = g->getNodeCosts(n2Itr)[0] / s->getSolverDegree(n2Itr);
if (cost1 < cost2)
return true;
return false;
}
private:
HeuristicSolverImpl<Briggs> *s;
Graph *g;
};
typedef std::list<Graph::NodeItr> RNAllocableList;
typedef RNAllocableList::iterator RNAllocableListItr;
typedef std::list<Graph::NodeItr> RNUnallocableList;
typedef RNUnallocableList::iterator RNUnallocableListItr;
public:
struct NodeData {
typedef std::vector<unsigned> UnsafeDegreesArray;
bool isHeuristic, isAllocable, isInitialized;
unsigned numDenied, numSafe;
UnsafeDegreesArray unsafeDegrees;
RNAllocableListItr rnaItr;
RNUnallocableListItr rnuItr;
NodeData()
: isHeuristic(false), isAllocable(false), isInitialized(false),
numDenied(0), numSafe(0) { }
};
struct EdgeData {
typedef std::vector<unsigned> UnsafeArray;
unsigned worst, reverseWorst;
UnsafeArray unsafe, reverseUnsafe;
bool isUpToDate;
EdgeData() : worst(0), reverseWorst(0), isUpToDate(false) {}
};
/// \brief Construct an instance of the Briggs heuristic.
/// @param solver A reference to the solver which is using this heuristic.
Briggs(HeuristicSolverImpl<Briggs> &solver) :
HeuristicBase<Briggs>(solver) {}
/// \brief Determine whether a node should be reduced using optimal
/// reduction.
/// @param nItr Node iterator to be considered.
/// @return True if the given node should be optimally reduced, false
/// otherwise.
///
/// Selects nodes of degree 0, 1 or 2 for optimal reduction, with one
/// exception. Nodes whose spill cost (element 0 of their cost vector) is
/// infinite are checked for allocability first. Allocable nodes may be
/// optimally reduced, but nodes whose allocability cannot be proven are
/// selected for heuristic reduction instead.
bool shouldOptimallyReduce(Graph::NodeItr nItr) {
if (getSolver().getSolverDegree(nItr) < 3) {
return true;
}
// else
return false;
}
/// \brief Add a node to the heuristic reduce list.
/// @param nItr Node iterator to add to the heuristic reduce list.
void addToHeuristicReduceList(Graph::NodeItr nItr) {
NodeData &nd = getHeuristicNodeData(nItr);
initializeNode(nItr);
nd.isHeuristic = true;
if (nd.isAllocable) {
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr);
} else {
nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nItr);
}
}
/// \brief Heuristically reduce one of the nodes in the heuristic
/// reduce list.
/// @return True if a reduction takes place, false if the heuristic reduce
/// list is empty.
///
/// If the list of allocable nodes is non-empty a node is selected
/// from it and pushed to the stack. Otherwise if the non-allocable list
/// is non-empty a node is selected from it and pushed to the stack.
/// If both lists are empty the method simply returns false with no action
/// taken.
bool heuristicReduce() {
if (!rnAllocableList.empty()) {
RNAllocableListItr rnaItr =
min_element(rnAllocableList.begin(), rnAllocableList.end(),
LinkDegreeComparator(getSolver()));
Graph::NodeItr nItr = *rnaItr;
rnAllocableList.erase(rnaItr);
handleRemoveNode(nItr);
getSolver().pushToStack(nItr);
return true;
} else if (!rnUnallocableList.empty()) {
RNUnallocableListItr rnuItr =
min_element(rnUnallocableList.begin(), rnUnallocableList.end(),
SpillCostComparator(getSolver()));
Graph::NodeItr nItr = *rnuItr;
rnUnallocableList.erase(rnuItr);
handleRemoveNode(nItr);
getSolver().pushToStack(nItr);
return true;
}
// else
return false;
}
/// \brief Prepare a change in the costs on the given edge.
/// @param eItr Edge iterator.
void preUpdateEdgeCosts(Graph::EdgeItr eItr) {
Graph &g = getGraph();
Graph::NodeItr n1Itr = g.getEdgeNode1(eItr),
n2Itr = g.getEdgeNode2(eItr);
NodeData &n1 = getHeuristicNodeData(n1Itr),
&n2 = getHeuristicNodeData(n2Itr);
if (n1.isHeuristic)
subtractEdgeContributions(eItr, getGraph().getEdgeNode1(eItr));
if (n2.isHeuristic)
subtractEdgeContributions(eItr, getGraph().getEdgeNode2(eItr));
EdgeData &ed = getHeuristicEdgeData(eItr);
ed.isUpToDate = false;
}
/// \brief Handle the change in the costs on the given edge.
/// @param eItr Edge iterator.
void postUpdateEdgeCosts(Graph::EdgeItr eItr) {
// This is effectively the same as adding a new edge now, since
// we've factored out the costs of the old one.
handleAddEdge(eItr);
}
/// \brief Handle the addition of a new edge into the PBQP graph.
/// @param eItr Edge iterator for the added edge.
///
/// Updates allocability of any nodes connected by this edge which are
/// being managed by the heuristic. If allocability changes they are
/// moved to the appropriate list.
void handleAddEdge(Graph::EdgeItr eItr) {
Graph &g = getGraph();
Graph::NodeItr n1Itr = g.getEdgeNode1(eItr),
n2Itr = g.getEdgeNode2(eItr);
NodeData &n1 = getHeuristicNodeData(n1Itr),
&n2 = getHeuristicNodeData(n2Itr);
// If neither node is managed by the heuristic there's nothing to be
// done.
if (!n1.isHeuristic && !n2.isHeuristic)
return;
// Ok - we need to update at least one node.
computeEdgeContributions(eItr);
// Update node 1 if it's managed by the heuristic.
if (n1.isHeuristic) {
bool n1WasAllocable = n1.isAllocable;
addEdgeContributions(eItr, n1Itr);
updateAllocability(n1Itr);
if (n1WasAllocable && !n1.isAllocable) {
rnAllocableList.erase(n1.rnaItr);
n1.rnuItr =
rnUnallocableList.insert(rnUnallocableList.end(), n1Itr);
}
}
// Likewise for node 2.
if (n2.isHeuristic) {
bool n2WasAllocable = n2.isAllocable;
addEdgeContributions(eItr, n2Itr);
updateAllocability(n2Itr);
if (n2WasAllocable && !n2.isAllocable) {
rnAllocableList.erase(n2.rnaItr);
n2.rnuItr =
rnUnallocableList.insert(rnUnallocableList.end(), n2Itr);
}
}
}
/// \brief Handle disconnection of an edge from a node.
/// @param eItr Edge iterator for edge being disconnected.
/// @param nItr Node iterator for the node being disconnected from.
///
/// Updates allocability of the given node and, if appropriate, moves the
/// node to a new list.
void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
NodeData &nd = getHeuristicNodeData(nItr);
// If the node is not managed by the heuristic there's nothing to be
// done.
if (!nd.isHeuristic)
return;
EdgeData &ed = getHeuristicEdgeData(eItr);
(void)ed;
assert(ed.isUpToDate && "Edge data is not up to date.");
// Update node.
bool ndWasAllocable = nd.isAllocable;
subtractEdgeContributions(eItr, nItr);
updateAllocability(nItr);
// If the node has gone optimal...
if (shouldOptimallyReduce(nItr)) {
nd.isHeuristic = false;
addToOptimalReduceList(nItr);
if (ndWasAllocable) {
rnAllocableList.erase(nd.rnaItr);
} else {
rnUnallocableList.erase(nd.rnuItr);
}
} else {
// Node didn't go optimal, but we might have to move it
// from "unallocable" to "allocable".
if (!ndWasAllocable && nd.isAllocable) {
rnUnallocableList.erase(nd.rnuItr);
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr);
}
}
}
private:
NodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
return getSolver().getHeuristicNodeData(nItr);
}
EdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
return getSolver().getHeuristicEdgeData(eItr);
}
// Work out what this edge will contribute to the allocability of the
// nodes connected to it.
void computeEdgeContributions(Graph::EdgeItr eItr) {
EdgeData &ed = getHeuristicEdgeData(eItr);
if (ed.isUpToDate)
return; // Edge data is already up to date.
Matrix &eCosts = getGraph().getEdgeCosts(eItr);
unsigned numRegs = eCosts.getRows() - 1,
numReverseRegs = eCosts.getCols() - 1;
std::vector<unsigned> rowInfCounts(numRegs, 0),
colInfCounts(numReverseRegs, 0);
ed.worst = 0;
ed.reverseWorst = 0;
ed.unsafe.clear();
ed.unsafe.resize(numRegs, 0);
ed.reverseUnsafe.clear();
ed.reverseUnsafe.resize(numReverseRegs, 0);
for (unsigned i = 0; i < numRegs; ++i) {
for (unsigned j = 0; j < numReverseRegs; ++j) {
if (eCosts[i + 1][j + 1] ==
std::numeric_limits<PBQPNum>::infinity()) {
ed.unsafe[i] = 1;
ed.reverseUnsafe[j] = 1;
++rowInfCounts[i];
++colInfCounts[j];
if (colInfCounts[j] > ed.worst) {
ed.worst = colInfCounts[j];
}
if (rowInfCounts[i] > ed.reverseWorst) {
ed.reverseWorst = rowInfCounts[i];
}
}
}
}
ed.isUpToDate = true;
}
// Add the contributions of the given edge to the given node's
// numDenied and safe members. No action is taken other than to update
// these member values. Once updated these numbers can be used by clients
// to update the node's allocability.
void addEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
EdgeData &ed = getHeuristicEdgeData(eItr);
assert(ed.isUpToDate && "Using out-of-date edge numbers.");
NodeData &nd = getHeuristicNodeData(nItr);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr);
EdgeData::UnsafeArray &unsafe =
nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
for (unsigned r = 0; r < numRegs; ++r) {
if (unsafe[r]) {
if (nd.unsafeDegrees[r]==0) {
--nd.numSafe;
}
++nd.unsafeDegrees[r];
}
}
}
// Subtract the contributions of the given edge to the given node's
// numDenied and safe members. No action is taken other than to update
// these member values. Once updated these numbers can be used by clients
// to update the node's allocability.
void subtractEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
EdgeData &ed = getHeuristicEdgeData(eItr);
assert(ed.isUpToDate && "Using out-of-date edge numbers.");
NodeData &nd = getHeuristicNodeData(nItr);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr);
EdgeData::UnsafeArray &unsafe =
nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
for (unsigned r = 0; r < numRegs; ++r) {
if (unsafe[r]) {
if (nd.unsafeDegrees[r] == 1) {
++nd.numSafe;
}
--nd.unsafeDegrees[r];
}
}
}
void updateAllocability(Graph::NodeItr nItr) {
NodeData &nd = getHeuristicNodeData(nItr);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0;
}
void initializeNode(Graph::NodeItr nItr) {
NodeData &nd = getHeuristicNodeData(nItr);
if (nd.isInitialized)
return; // Node data is already up to date.
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
nd.numDenied = 0;
nd.numSafe = numRegs;
nd.unsafeDegrees.resize(numRegs, 0);
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nItr),
aeEnd = getSolver().solverEdgesEnd(nItr);
aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr = *aeItr;
computeEdgeContributions(eItr);
addEdgeContributions(eItr, nItr);
}
updateAllocability(nItr);
nd.isInitialized = true;
}
void handleRemoveNode(Graph::NodeItr xnItr) {
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
std::vector<Graph::EdgeItr> edgesToRemove;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnItr),
aeEnd = getSolver().solverEdgesEnd(xnItr);
aeItr != aeEnd; ++aeItr) {
Graph::NodeItr ynItr = getGraph().getEdgeOtherNode(*aeItr, xnItr);
handleRemoveEdge(*aeItr, ynItr);
edgesToRemove.push_back(*aeItr);
}
while (!edgesToRemove.empty()) {
getSolver().removeSolverEdge(edgesToRemove.back());
edgesToRemove.pop_back();
}
}
RNAllocableList rnAllocableList;
RNUnallocableList rnUnallocableList;
};
}
}
#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H