llvm-6502/lib/Target/AArch64/AArch64PromoteConstant.cpp
2015-02-06 14:43:55 +00:00

555 lines
21 KiB
C++

//=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64PromoteConstant pass which promotes constants
// to global variables when this is likely to be more efficient. Currently only
// types related to constant vector (i.e., constant vector, array of constant
// vectors, constant structure with a constant vector field, etc.) are promoted
// to global variables. Constant vectors are likely to be lowered in target
// constant pool during instruction selection already; therefore, the access
// will remain the same (memory load), but the structure types are not split
// into different constant pool accesses for each field. A bonus side effect is
// that created globals may be merged by the global merge pass.
//
// FIXME: This pass may be useful for other targets too.
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-promote-const"
// Stress testing mode - disable heuristics.
static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
cl::desc("Promote all vector constants"));
STATISTIC(NumPromoted, "Number of promoted constants");
STATISTIC(NumPromotedUses, "Number of promoted constants uses");
//===----------------------------------------------------------------------===//
// AArch64PromoteConstant
//===----------------------------------------------------------------------===//
namespace {
/// Promotes interesting constant into global variables.
/// The motivating example is:
/// static const uint16_t TableA[32] = {
/// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
/// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
/// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
/// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
/// };
///
/// uint8x16x4_t LoadStatic(void) {
/// uint8x16x4_t ret;
/// ret.val[0] = vld1q_u16(TableA + 0);
/// ret.val[1] = vld1q_u16(TableA + 8);
/// ret.val[2] = vld1q_u16(TableA + 16);
/// ret.val[3] = vld1q_u16(TableA + 24);
/// return ret;
/// }
///
/// The constants in this example are folded into the uses. Thus, 4 different
/// constants are created.
///
/// As their type is vector the cheapest way to create them is to load them
/// for the memory.
///
/// Therefore the final assembly final has 4 different loads. With this pass
/// enabled, only one load is issued for the constants.
class AArch64PromoteConstant : public ModulePass {
public:
static char ID;
AArch64PromoteConstant() : ModulePass(ID) {}
const char *getPassName() const override { return "AArch64 Promote Constant"; }
/// Iterate over the functions and promote the interesting constants into
/// global variables with module scope.
bool runOnModule(Module &M) override {
DEBUG(dbgs() << getPassName() << '\n');
bool Changed = false;
for (auto &MF : M) {
Changed |= runOnFunction(MF);
}
return Changed;
}
private:
/// Look for interesting constants used within the given function.
/// Promote them into global variables, load these global variables within
/// the related function, so that the number of inserted load is minimal.
bool runOnFunction(Function &F);
// This transformation requires dominator info
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
/// Type to store a list of Uses.
typedef SmallVector<Use *, 4> Uses;
/// Map an insertion point to all the uses it dominates.
typedef DenseMap<Instruction *, Uses> InsertionPoints;
/// Map a function to the required insertion point of load for a
/// global variable.
typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc;
/// Find the closest point that dominates the given Use.
Instruction *findInsertionPoint(Use &Use);
/// Check if the given insertion point is dominated by an existing
/// insertion point.
/// If true, the given use is added to the list of dominated uses for
/// the related existing point.
/// \param NewPt the insertion point to be checked
/// \param Use the use to be added into the list of dominated uses
/// \param InsertPts existing insertion points
/// \pre NewPt and all instruction in InsertPts belong to the same function
/// \return true if one of the insertion point in InsertPts dominates NewPt,
/// false otherwise
bool isDominated(Instruction *NewPt, Use &Use, InsertionPoints &InsertPts);
/// Check if the given insertion point can be merged with an existing
/// insertion point in a common dominator.
/// If true, the given use is added to the list of the created insertion
/// point.
/// \param NewPt the insertion point to be checked
/// \param Use the use to be added into the list of dominated uses
/// \param InsertPts existing insertion points
/// \pre NewPt and all instruction in InsertPts belong to the same function
/// \pre isDominated returns false for the exact same parameters.
/// \return true if it exists an insertion point in InsertPts that could
/// have been merged with NewPt in a common dominator,
/// false otherwise
bool tryAndMerge(Instruction *NewPt, Use &Use, InsertionPoints &InsertPts);
/// Compute the minimal insertion points to dominates all the interesting
/// uses of value.
/// Insertion points are group per function and each insertion point
/// contains a list of all the uses it dominates within the related function
/// \param Val constant to be examined
/// \param[out] InsPtsPerFunc output storage of the analysis
void computeInsertionPoints(Constant *Val,
InsertionPointsPerFunc &InsPtsPerFunc);
/// Insert a definition of a new global variable at each point contained in
/// InsPtsPerFunc and update the related uses (also contained in
/// InsPtsPerFunc).
bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc);
/// Compute the minimal insertion points to dominate all the interesting
/// uses of Val and insert a definition of a new global variable
/// at these points.
/// Also update the uses of Val accordingly.
/// Currently a use of Val is considered interesting if:
/// - Val is not UndefValue
/// - Val is not zeroinitialized
/// - Replacing Val per a load of a global variable is valid.
/// \see shouldConvert for more details
bool computeAndInsertDefinitions(Constant *Val);
/// Promote the given constant into a global variable if it is expected to
/// be profitable.
/// \return true if Cst has been promoted
bool promoteConstant(Constant *Cst);
/// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
/// Append Use to this list and delete the entry of IPI in InsertPts.
static void appendAndTransferDominatedUses(Instruction *NewPt, Use &Use,
InsertionPoints::iterator &IPI,
InsertionPoints &InsertPts) {
// Record the dominated use.
IPI->second.push_back(&Use);
// Transfer the dominated uses of IPI to NewPt
// Inserting into the DenseMap may invalidate existing iterator.
// Keep a copy of the key to find the iterator to erase.
Instruction *OldInstr = IPI->first;
InsertPts[NewPt] = std::move(IPI->second);
// Erase IPI.
InsertPts.erase(OldInstr);
}
};
} // end anonymous namespace
char AArch64PromoteConstant::ID = 0;
namespace llvm {
void initializeAArch64PromoteConstantPass(PassRegistry &);
}
INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
"AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
"AArch64 Promote Constant Pass", false, false)
ModulePass *llvm::createAArch64PromoteConstantPass() {
return new AArch64PromoteConstant();
}
/// Check if the given type uses a vector type.
static bool isConstantUsingVectorTy(const Type *CstTy) {
if (CstTy->isVectorTy())
return true;
if (CstTy->isStructTy()) {
for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
EltIdx < EndEltIdx; ++EltIdx)
if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
return true;
} else if (CstTy->isArrayTy())
return isConstantUsingVectorTy(CstTy->getArrayElementType());
return false;
}
/// Check if the given use (Instruction + OpIdx) of Cst should be converted into
/// a load of a global variable initialized with Cst.
/// A use should be converted if it is legal to do so.
/// For instance, it is not legal to turn the mask operand of a shuffle vector
/// into a load of a global variable.
static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
unsigned OpIdx) {
// shufflevector instruction expects a const for the mask argument, i.e., the
// third argument. Do not promote this use in that case.
if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
return false;
// extractvalue instruction expects a const idx.
if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
return false;
// extractvalue instruction expects a const idx.
if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
return false;
if (isa<const AllocaInst>(Instr) && OpIdx > 0)
return false;
// Alignment argument must be constant.
if (isa<const LoadInst>(Instr) && OpIdx > 0)
return false;
// Alignment argument must be constant.
if (isa<const StoreInst>(Instr) && OpIdx > 1)
return false;
// Index must be constant.
if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
return false;
// Personality function and filters must be constant.
// Give up on that instruction.
if (isa<const LandingPadInst>(Instr))
return false;
// Switch instruction expects constants to compare to.
if (isa<const SwitchInst>(Instr))
return false;
// Expected address must be a constant.
if (isa<const IndirectBrInst>(Instr))
return false;
// Do not mess with intrinsics.
if (isa<const IntrinsicInst>(Instr))
return false;
// Do not mess with inline asm.
const CallInst *CI = dyn_cast<const CallInst>(Instr);
if (CI && isa<const InlineAsm>(CI->getCalledValue()))
return false;
return true;
}
/// Check if the given Cst should be converted into
/// a load of a global variable initialized with Cst.
/// A constant should be converted if it is likely that the materialization of
/// the constant will be tricky. Thus, we give up on zero or undef values.
///
/// \todo Currently, accept only vector related types.
/// Also we give up on all simple vector type to keep the existing
/// behavior. Otherwise, we should push here all the check of the lowering of
/// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
/// constant via global merge and the fact that the same constant is stored
/// only once with this method (versus, as many function that uses the constant
/// for the regular approach, even for float).
/// Again, the simplest solution would be to promote every
/// constant and rematerialize them when they are actually cheap to create.
static bool shouldConvert(const Constant *Cst) {
if (isa<const UndefValue>(Cst))
return false;
// FIXME: In some cases, it may be interesting to promote in memory
// a zero initialized constant.
// E.g., when the type of Cst require more instructions than the
// adrp/add/load sequence or when this sequence can be shared by several
// instances of Cst.
// Ideally, we could promote this into a global and rematerialize the constant
// when it was a bad idea.
if (Cst->isZeroValue())
return false;
if (Stress)
return true;
// FIXME: see function \todo
if (Cst->getType()->isVectorTy())
return false;
return isConstantUsingVectorTy(Cst->getType());
}
Instruction *AArch64PromoteConstant::findInsertionPoint(Use &Use) {
Instruction *User = cast<Instruction>(Use.getUser());
// If this user is a phi, the insertion point is in the related
// incoming basic block.
if (PHINode *PhiInst = dyn_cast<PHINode>(User))
return PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator();
return User;
}
bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Use &Use,
InsertionPoints &InsertPts) {
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
*NewPt->getParent()->getParent()).getDomTree();
// Traverse all the existing insertion points and check if one is dominating
// NewPt. If it is, remember that.
for (auto &IPI : InsertPts) {
if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
// When IPI.first is a terminator instruction, DT may think that
// the result is defined on the edge.
// Here we are testing the insertion point, not the definition.
(IPI.first->getParent() != NewPt->getParent() &&
DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
// No need to insert this point. Just record the dominated use.
DEBUG(dbgs() << "Insertion point dominated by:\n");
DEBUG(IPI.first->print(dbgs()));
DEBUG(dbgs() << '\n');
IPI.second.push_back(&Use);
return true;
}
}
return false;
}
bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Use &Use,
InsertionPoints &InsertPts) {
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
*NewPt->getParent()->getParent()).getDomTree();
BasicBlock *NewBB = NewPt->getParent();
// Traverse all the existing insertion point and check if one is dominated by
// NewPt and thus useless or can be combined with NewPt into a common
// dominator.
for (InsertionPoints::iterator IPI = InsertPts.begin(),
EndIPI = InsertPts.end();
IPI != EndIPI; ++IPI) {
BasicBlock *CurBB = IPI->first->getParent();
if (NewBB == CurBB) {
// Instructions are in the same block.
// By construction, NewPt is dominating the other.
// Indeed, isDominated returned false with the exact same arguments.
DEBUG(dbgs() << "Merge insertion point with:\n");
DEBUG(IPI->first->print(dbgs()));
DEBUG(dbgs() << "\nat considered insertion point.\n");
appendAndTransferDominatedUses(NewPt, Use, IPI, InsertPts);
return true;
}
// Look for a common dominator
BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
// If none exists, we cannot merge these two points.
if (!CommonDominator)
continue;
if (CommonDominator != NewBB) {
// By construction, the CommonDominator cannot be CurBB.
assert(CommonDominator != CurBB &&
"Instruction has not been rejected during isDominated check!");
// Take the last instruction of the CommonDominator as insertion point
NewPt = CommonDominator->getTerminator();
}
// else, CommonDominator is the block of NewBB, hence NewBB is the last
// possible insertion point in that block.
DEBUG(dbgs() << "Merge insertion point with:\n");
DEBUG(IPI->first->print(dbgs()));
DEBUG(dbgs() << '\n');
DEBUG(NewPt->print(dbgs()));
DEBUG(dbgs() << '\n');
appendAndTransferDominatedUses(NewPt, Use, IPI, InsertPts);
return true;
}
return false;
}
void AArch64PromoteConstant::computeInsertionPoints(
Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) {
DEBUG(dbgs() << "** Compute insertion points **\n");
for (Use &Use : Val->uses()) {
Instruction *User = dyn_cast<Instruction>(Use.getUser());
// If the user is not an Instruction, we cannot modify it.
if (!User)
continue;
// Filter out uses that should not be converted.
if (!shouldConvertUse(Val, User, Use.getOperandNo()))
continue;
DEBUG(dbgs() << "Considered use, opidx " << Use.getOperandNo() << ":\n");
DEBUG(User->print(dbgs()));
DEBUG(dbgs() << '\n');
Instruction *InsertionPoint = findInsertionPoint(Use);
DEBUG(dbgs() << "Considered insertion point:\n");
DEBUG(InsertionPoint->print(dbgs()));
DEBUG(dbgs() << '\n');
// Check if the current insertion point is useless, i.e., it is dominated
// by another one.
InsertionPoints &InsertPts =
InsPtsPerFunc[InsertionPoint->getParent()->getParent()];
if (isDominated(InsertionPoint, Use, InsertPts))
continue;
// This insertion point is useful, check if we can merge some insertion
// point in a common dominator or if NewPt dominates an existing one.
if (tryAndMerge(InsertionPoint, Use, InsertPts))
continue;
DEBUG(dbgs() << "Keep considered insertion point\n");
// It is definitely useful by its own
InsertPts[InsertionPoint].push_back(&Use);
}
}
bool AArch64PromoteConstant::insertDefinitions(
Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc) {
// We will create one global variable per Module.
DenseMap<Module *, GlobalVariable *> ModuleToMergedGV;
bool HasChanged = false;
// Traverse all insertion points in all the function.
for (const auto &FctToInstPtsIt : InsPtsPerFunc) {
const InsertionPoints &InsertPts = FctToInstPtsIt.second;
// Do more checking for debug purposes.
#ifndef NDEBUG
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
*FctToInstPtsIt.first).getDomTree();
#endif
assert(!InsertPts.empty() && "Empty uses does not need a definition");
Module *M = FctToInstPtsIt.first->getParent();
GlobalVariable *&PromotedGV = ModuleToMergedGV[M];
if (!PromotedGV) {
PromotedGV = new GlobalVariable(
*M, Cst->getType(), true, GlobalValue::InternalLinkage, nullptr,
"_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
PromotedGV->setInitializer(Cst);
DEBUG(dbgs() << "Global replacement: ");
DEBUG(PromotedGV->print(dbgs()));
DEBUG(dbgs() << '\n');
++NumPromoted;
HasChanged = true;
}
for (const auto &IPI : InsertPts) {
// Create the load of the global variable.
IRBuilder<> Builder(IPI.first->getParent(), IPI.first);
LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV);
DEBUG(dbgs() << "**********\n");
DEBUG(dbgs() << "New def: ");
DEBUG(LoadedCst->print(dbgs()));
DEBUG(dbgs() << '\n');
// Update the dominated uses.
for (Use *Use : IPI.second) {
#ifndef NDEBUG
assert(DT.dominates(LoadedCst, findInsertionPoint(*Use)) &&
"Inserted definition does not dominate all its uses!");
#endif
DEBUG(dbgs() << "Use to update " << Use->getOperandNo() << ":");
DEBUG(Use->getUser()->print(dbgs()));
DEBUG(dbgs() << '\n');
Use->set(LoadedCst);
++NumPromotedUses;
}
}
}
return HasChanged;
}
bool AArch64PromoteConstant::computeAndInsertDefinitions(Constant *Val) {
InsertionPointsPerFunc InsertPtsPerFunc;
computeInsertionPoints(Val, InsertPtsPerFunc);
return insertDefinitions(Val, InsertPtsPerFunc);
}
bool AArch64PromoteConstant::promoteConstant(Constant *Cst) {
assert(Cst && "Given variable is not a valid constant.");
if (!shouldConvert(Cst))
return false;
DEBUG(dbgs() << "******************************\n");
DEBUG(dbgs() << "Candidate constant: ");
DEBUG(Cst->print(dbgs()));
DEBUG(dbgs() << '\n');
return computeAndInsertDefinitions(Cst);
}
bool AArch64PromoteConstant::runOnFunction(Function &F) {
// Look for instructions using constant vector. Promote that constant to a
// global variable. Create as few loads of this variable as possible and
// update the uses accordingly.
bool LocalChange = false;
SmallPtrSet<Constant *, 8> AlreadyChecked;
for (Instruction &I : inst_range(&F)) {
// Traverse the operand, looking for constant vectors. Replace them by a
// load of a global variable of constant vector type.
for (Value *Op : I.operand_values()) {
Constant *Cst = dyn_cast<Constant>(Op);
// There is no point in promoting global values as they are already
// global. Do not promote constant expressions either, as they may
// require some code expansion.
if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) &&
AlreadyChecked.insert(Cst).second)
LocalChange |= promoteConstant(Cst);
}
}
return LocalChange;
}