llvm-6502/lib/CodeGen/AsmPrinter/DwarfWriter.cpp
Bill Wendling bc12c2be18 - Record that the debug info is actually used so that the label folder doesn't
blast it away.
- Move InlineInfo bookkeeping to bookkeep the correct debug info object.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71519 91177308-0d34-0410-b5e6-96231b3b80d8
2009-05-12 00:06:59 +00:00

4910 lines
159 KiB
C++

//===-- llvm/CodeGen/DwarfWriter.cpp - Dwarf Framework --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing dwarf info into asm files.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Path.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include <ostream>
#include <string>
using namespace llvm;
using namespace llvm::dwarf;
static RegisterPass<DwarfWriter>
X("dwarfwriter", "DWARF Information Writer");
char DwarfWriter::ID = 0;
static TimerGroup &getDwarfTimerGroup() {
static TimerGroup DwarfTimerGroup("Dwarf Exception and Debugging");
return DwarfTimerGroup;
}
namespace llvm {
//===----------------------------------------------------------------------===//
/// Configuration values for initial hash set sizes (log2).
///
static const unsigned InitDiesSetSize = 9; // log2(512)
static const unsigned InitAbbreviationsSetSize = 9; // log2(512)
static const unsigned InitValuesSetSize = 9; // log2(512)
//===----------------------------------------------------------------------===//
/// Forward declarations.
///
class DIE;
class DIEValue;
//===----------------------------------------------------------------------===//
/// DWLabel - Labels are used to track locations in the assembler file.
/// Labels appear in the form @verbatim <prefix><Tag><Number> @endverbatim,
/// where the tag is a category of label (Ex. location) and number is a value
/// unique in that category.
class DWLabel {
public:
/// Tag - Label category tag. Should always be a staticly declared C string.
///
const char *Tag;
/// Number - Value to make label unique.
///
unsigned Number;
DWLabel(const char *T, unsigned N) : Tag(T), Number(N) {}
void Profile(FoldingSetNodeID &ID) const {
ID.AddString(Tag);
ID.AddInteger(Number);
}
#ifndef NDEBUG
void print(std::ostream *O) const {
if (O) print(*O);
}
void print(std::ostream &O) const {
O << "." << Tag;
if (Number) O << Number;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEAbbrevData - Dwarf abbreviation data, describes the one attribute of a
/// Dwarf abbreviation.
class DIEAbbrevData {
/// Attribute - Dwarf attribute code.
///
unsigned Attribute;
/// Form - Dwarf form code.
///
unsigned Form;
public:
DIEAbbrevData(unsigned A, unsigned F) : Attribute(A), Form(F) {}
// Accessors.
unsigned getAttribute() const { return Attribute; }
unsigned getForm() const { return Form; }
/// Profile - Used to gather unique data for the abbreviation folding set.
///
void Profile(FoldingSetNodeID &ID)const {
ID.AddInteger(Attribute);
ID.AddInteger(Form);
}
};
//===----------------------------------------------------------------------===//
/// DIEAbbrev - Dwarf abbreviation, describes the organization of a debug
/// information object.
class DIEAbbrev : public FoldingSetNode {
private:
/// Tag - Dwarf tag code.
///
unsigned Tag;
/// Unique number for node.
///
unsigned Number;
/// ChildrenFlag - Dwarf children flag.
///
unsigned ChildrenFlag;
/// Data - Raw data bytes for abbreviation.
///
SmallVector<DIEAbbrevData, 8> Data;
public:
DIEAbbrev(unsigned T, unsigned C) : Tag(T), ChildrenFlag(C), Data() {}
virtual ~DIEAbbrev() {}
// Accessors.
unsigned getTag() const { return Tag; }
unsigned getNumber() const { return Number; }
unsigned getChildrenFlag() const { return ChildrenFlag; }
const SmallVector<DIEAbbrevData, 8> &getData() const { return Data; }
void setTag(unsigned T) { Tag = T; }
void setChildrenFlag(unsigned CF) { ChildrenFlag = CF; }
void setNumber(unsigned N) { Number = N; }
/// AddAttribute - Adds another set of attribute information to the
/// abbreviation.
void AddAttribute(unsigned Attribute, unsigned Form) {
Data.push_back(DIEAbbrevData(Attribute, Form));
}
/// AddFirstAttribute - Adds a set of attribute information to the front
/// of the abbreviation.
void AddFirstAttribute(unsigned Attribute, unsigned Form) {
Data.insert(Data.begin(), DIEAbbrevData(Attribute, Form));
}
/// Profile - Used to gather unique data for the abbreviation folding set.
///
void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(Tag);
ID.AddInteger(ChildrenFlag);
// For each attribute description.
for (unsigned i = 0, N = Data.size(); i < N; ++i)
Data[i].Profile(ID);
}
/// Emit - Print the abbreviation using the specified Dwarf writer.
///
void Emit(const DwarfDebug &DD) const;
#ifndef NDEBUG
void print(std::ostream *O) {
if (O) print(*O);
}
void print(std::ostream &O);
void dump();
#endif
};
//===----------------------------------------------------------------------===//
/// DIE - A structured debug information entry. Has an abbreviation which
/// describes it's organization.
class CompileUnit;
class DIE : public FoldingSetNode {
protected:
/// Abbrev - Buffer for constructing abbreviation.
///
DIEAbbrev Abbrev;
/// Offset - Offset in debug info section.
///
unsigned Offset;
/// Size - Size of instance + children.
///
unsigned Size;
/// Children DIEs.
///
std::vector<DIE *> Children;
/// Attributes values.
///
SmallVector<DIEValue*, 32> Values;
/// Abstract compile unit.
CompileUnit *AbstractCU;
public:
explicit DIE(unsigned Tag)
: Abbrev(Tag, DW_CHILDREN_no), Offset(0), Size(0) {}
virtual ~DIE();
// Accessors.
DIEAbbrev &getAbbrev() { return Abbrev; }
unsigned getAbbrevNumber() const {
return Abbrev.getNumber();
}
unsigned getTag() const { return Abbrev.getTag(); }
unsigned getOffset() const { return Offset; }
unsigned getSize() const { return Size; }
const std::vector<DIE *> &getChildren() const { return Children; }
SmallVector<DIEValue*, 32> &getValues() { return Values; }
CompileUnit *getAbstractCompileUnit() const { return AbstractCU; }
void setTag(unsigned Tag) { Abbrev.setTag(Tag); }
void setOffset(unsigned O) { Offset = O; }
void setSize(unsigned S) { Size = S; }
void setAbstractCompileUnit(CompileUnit *CU) { AbstractCU = CU; }
/// AddValue - Add a value and attributes to a DIE.
///
void AddValue(unsigned Attribute, unsigned Form, DIEValue *Value) {
Abbrev.AddAttribute(Attribute, Form);
Values.push_back(Value);
}
/// SiblingOffset - Return the offset of the debug information entry's
/// sibling.
unsigned SiblingOffset() const { return Offset + Size; }
/// AddSiblingOffset - Add a sibling offset field to the front of the DIE.
///
void AddSiblingOffset();
/// AddChild - Add a child to the DIE.
///
void AddChild(DIE *Child) {
Abbrev.setChildrenFlag(DW_CHILDREN_yes);
Children.push_back(Child);
}
/// Detach - Detaches objects connected to it after copying.
///
void Detach() {
Children.clear();
}
/// Profile - Used to gather unique data for the value folding set.
///
void Profile(FoldingSetNodeID &ID) ;
#ifndef NDEBUG
void print(std::ostream *O, unsigned IncIndent = 0) {
if (O) print(*O, IncIndent);
}
void print(std::ostream &O, unsigned IncIndent = 0);
void dump();
#endif
};
//===----------------------------------------------------------------------===//
/// DIEValue - A debug information entry value.
///
class DIEValue : public FoldingSetNode {
public:
enum {
isInteger,
isString,
isLabel,
isAsIsLabel,
isSectionOffset,
isDelta,
isEntry,
isBlock
};
/// Type - Type of data stored in the value.
///
unsigned Type;
explicit DIEValue(unsigned T) : Type(T) {}
virtual ~DIEValue() {}
// Accessors
unsigned getType() const { return Type; }
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *) { return true; }
/// EmitValue - Emit value via the Dwarf writer.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form) = 0;
/// SizeOf - Return the size of a value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const = 0;
/// Profile - Used to gather unique data for the value folding set.
///
virtual void Profile(FoldingSetNodeID &ID) = 0;
#ifndef NDEBUG
void print(std::ostream *O) {
if (O) print(*O);
}
virtual void print(std::ostream &O) = 0;
void dump();
#endif
};
//===----------------------------------------------------------------------===//
/// DWInteger - An integer value DIE.
///
class DIEInteger : public DIEValue {
private:
uint64_t Integer;
public:
explicit DIEInteger(uint64_t I) : DIEValue(isInteger), Integer(I) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEInteger *) { return true; }
static bool classof(const DIEValue *I) { return I->Type == isInteger; }
/// BestForm - Choose the best form for integer.
///
static unsigned BestForm(bool IsSigned, uint64_t Integer) {
if (IsSigned) {
if ((char)Integer == (signed)Integer) return DW_FORM_data1;
if ((short)Integer == (signed)Integer) return DW_FORM_data2;
if ((int)Integer == (signed)Integer) return DW_FORM_data4;
} else {
if ((unsigned char)Integer == Integer) return DW_FORM_data1;
if ((unsigned short)Integer == Integer) return DW_FORM_data2;
if ((unsigned int)Integer == Integer) return DW_FORM_data4;
}
return DW_FORM_data8;
}
/// EmitValue - Emit integer of appropriate size.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of integer value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, unsigned Integer) {
ID.AddInteger(isInteger);
ID.AddInteger(Integer);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Integer); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Int: " << (int64_t)Integer
<< " 0x" << std::hex << Integer << std::dec;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEString - A string value DIE.
///
class DIEString : public DIEValue {
const std::string Str;
public:
explicit DIEString(const std::string &S) : DIEValue(isString), Str(S) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEString *) { return true; }
static bool classof(const DIEValue *S) { return S->Type == isString; }
/// EmitValue - Emit string value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of string value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const {
return Str.size() + sizeof(char); // sizeof('\0');
}
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const std::string &Str) {
ID.AddInteger(isString);
ID.AddString(Str);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Str); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Str: \"" << Str << "\"";
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEDwarfLabel - A Dwarf internal label expression DIE.
//
class DIEDwarfLabel : public DIEValue {
const DWLabel Label;
public:
explicit DIEDwarfLabel(const DWLabel &L) : DIEValue(isLabel), Label(L) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEDwarfLabel *) { return true; }
static bool classof(const DIEValue *L) { return L->Type == isLabel; }
/// EmitValue - Emit label value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of label value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const DWLabel &Label) {
ID.AddInteger(isLabel);
Label.Profile(ID);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Lbl: ";
Label.print(O);
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEObjectLabel - A label to an object in code or data.
//
class DIEObjectLabel : public DIEValue {
const std::string Label;
public:
explicit DIEObjectLabel(const std::string &L)
: DIEValue(isAsIsLabel), Label(L) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEObjectLabel *) { return true; }
static bool classof(const DIEValue *L) { return L->Type == isAsIsLabel; }
/// EmitValue - Emit label value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of label value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const std::string &Label) {
ID.AddInteger(isAsIsLabel);
ID.AddString(Label);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label.c_str()); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Obj: " << Label;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIESectionOffset - A section offset DIE.
//
class DIESectionOffset : public DIEValue {
const DWLabel Label;
const DWLabel Section;
bool IsEH : 1;
bool UseSet : 1;
public:
DIESectionOffset(const DWLabel &Lab, const DWLabel &Sec,
bool isEH = false, bool useSet = true)
: DIEValue(isSectionOffset), Label(Lab), Section(Sec),
IsEH(isEH), UseSet(useSet) {}
// Implement isa/cast/dyncast.
static bool classof(const DIESectionOffset *) { return true; }
static bool classof(const DIEValue *D) { return D->Type == isSectionOffset; }
/// EmitValue - Emit section offset.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of section offset value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const DWLabel &Label,
const DWLabel &Section) {
ID.AddInteger(isSectionOffset);
Label.Profile(ID);
Section.Profile(ID);
// IsEH and UseSet are specific to the Label/Section that we will emit
// the offset for; so Label/Section are enough for uniqueness.
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label, Section); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Off: ";
Label.print(O);
O << "-";
Section.print(O);
O << "-" << IsEH << "-" << UseSet;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEDelta - A simple label difference DIE.
///
class DIEDelta : public DIEValue {
const DWLabel LabelHi;
const DWLabel LabelLo;
public:
DIEDelta(const DWLabel &Hi, const DWLabel &Lo)
: DIEValue(isDelta), LabelHi(Hi), LabelLo(Lo) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEDelta *) { return true; }
static bool classof(const DIEValue *D) { return D->Type == isDelta; }
/// EmitValue - Emit delta value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of delta value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const DWLabel &LabelHi,
const DWLabel &LabelLo) {
ID.AddInteger(isDelta);
LabelHi.Profile(ID);
LabelLo.Profile(ID);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, LabelHi, LabelLo); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Del: ";
LabelHi.print(O);
O << "-";
LabelLo.print(O);
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEntry - A pointer to another debug information entry. An instance of this
/// class can also be used as a proxy for a debug information entry not yet
/// defined (ie. types.)
class DIEntry : public DIEValue {
DIE *Entry;
public:
explicit DIEntry(DIE *E) : DIEValue(isEntry), Entry(E) {}
DIE *getEntry() const { return Entry; }
void setEntry(DIE *E) { Entry = E; }
// Implement isa/cast/dyncast.
static bool classof(const DIEntry *) { return true; }
static bool classof(const DIEValue *E) { return E->Type == isEntry; }
/// EmitValue - Emit debug information entry offset.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of debug information entry in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const {
return sizeof(int32_t);
}
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, DIE *Entry) {
ID.AddInteger(isEntry);
ID.AddPointer(Entry);
}
virtual void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(isEntry);
if (Entry) {
ID.AddPointer(Entry);
} else {
ID.AddPointer(this);
}
}
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Die: 0x" << std::hex << (intptr_t)Entry << std::dec;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEBlock - A block of values. Primarily used for location expressions.
//
class DIEBlock : public DIEValue, public DIE {
unsigned Size; // Size in bytes excluding size header.
public:
DIEBlock()
: DIEValue(isBlock), DIE(0), Size(0) {}
virtual ~DIEBlock() {}
// Implement isa/cast/dyncast.
static bool classof(const DIEBlock *) { return true; }
static bool classof(const DIEValue *E) { return E->Type == isBlock; }
/// ComputeSize - calculate the size of the block.
///
unsigned ComputeSize(DwarfDebug &DD);
/// BestForm - Choose the best form for data.
///
unsigned BestForm() const {
if ((unsigned char)Size == Size) return DW_FORM_block1;
if ((unsigned short)Size == Size) return DW_FORM_block2;
if ((unsigned int)Size == Size) return DW_FORM_block4;
return DW_FORM_block;
}
/// EmitValue - Emit block data.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of block data in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
virtual void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(isBlock);
DIE::Profile(ID);
}
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Blk: ";
DIE::print(O, 5);
}
#endif
};
//===----------------------------------------------------------------------===//
/// CompileUnit - This dwarf writer support class manages information associate
/// with a source file.
class CompileUnit {
/// ID - File identifier for source.
///
unsigned ID;
/// Die - Compile unit debug information entry.
///
DIE *Die;
/// GVToDieMap - Tracks the mapping of unit level debug informaton
/// variables to debug information entries.
std::map<GlobalVariable *, DIE *> GVToDieMap;
/// GVToDIEntryMap - Tracks the mapping of unit level debug informaton
/// descriptors to debug information entries using a DIEntry proxy.
std::map<GlobalVariable *, DIEntry *> GVToDIEntryMap;
/// Globals - A map of globally visible named entities for this unit.
///
StringMap<DIE*> Globals;
/// DiesSet - Used to uniquely define dies within the compile unit.
///
FoldingSet<DIE> DiesSet;
public:
CompileUnit(unsigned I, DIE *D)
: ID(I), Die(D), GVToDieMap(),
GVToDIEntryMap(), Globals(), DiesSet(InitDiesSetSize)
{}
~CompileUnit() {
delete Die;
}
// Accessors.
unsigned getID() const { return ID; }
DIE* getDie() const { return Die; }
StringMap<DIE*> &getGlobals() { return Globals; }
/// hasContent - Return true if this compile unit has something to write out.
///
bool hasContent() const {
return !Die->getChildren().empty();
}
/// AddGlobal - Add a new global entity to the compile unit.
///
void AddGlobal(const std::string &Name, DIE *Die) {
Globals[Name] = Die;
}
/// getDieMapSlotFor - Returns the debug information entry map slot for the
/// specified debug variable.
DIE *&getDieMapSlotFor(GlobalVariable *GV) {
return GVToDieMap[GV];
}
/// getDIEntrySlotFor - Returns the debug information entry proxy slot for the
/// specified debug variable.
DIEntry *&getDIEntrySlotFor(GlobalVariable *GV) {
return GVToDIEntryMap[GV];
}
/// AddDie - Adds or interns the DIE to the compile unit.
///
DIE *AddDie(DIE &Buffer) {
FoldingSetNodeID ID;
Buffer.Profile(ID);
void *Where;
DIE *Die = DiesSet.FindNodeOrInsertPos(ID, Where);
if (!Die) {
Die = new DIE(Buffer);
DiesSet.InsertNode(Die, Where);
this->Die->AddChild(Die);
Buffer.Detach();
}
return Die;
}
};
//===----------------------------------------------------------------------===//
/// Dwarf - Emits general Dwarf directives.
///
class Dwarf {
protected:
//===--------------------------------------------------------------------===//
// Core attributes used by the Dwarf writer.
//
//
/// O - Stream to .s file.
///
raw_ostream &O;
/// Asm - Target of Dwarf emission.
///
AsmPrinter *Asm;
/// TAI - Target asm information.
const TargetAsmInfo *TAI;
/// TD - Target data.
const TargetData *TD;
/// RI - Register Information.
const TargetRegisterInfo *RI;
/// M - Current module.
///
Module *M;
/// MF - Current machine function.
///
MachineFunction *MF;
/// MMI - Collected machine module information.
///
MachineModuleInfo *MMI;
/// SubprogramCount - The running count of functions being compiled.
///
unsigned SubprogramCount;
/// Flavor - A unique string indicating what dwarf producer this is, used to
/// unique labels.
const char * const Flavor;
unsigned SetCounter;
Dwarf(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T,
const char *flavor)
: O(OS)
, Asm(A)
, TAI(T)
, TD(Asm->TM.getTargetData())
, RI(Asm->TM.getRegisterInfo())
, M(NULL)
, MF(NULL)
, MMI(NULL)
, SubprogramCount(0)
, Flavor(flavor)
, SetCounter(1)
{
}
public:
//===--------------------------------------------------------------------===//
// Accessors.
//
const AsmPrinter *getAsm() const { return Asm; }
MachineModuleInfo *getMMI() const { return MMI; }
const TargetAsmInfo *getTargetAsmInfo() const { return TAI; }
const TargetData *getTargetData() const { return TD; }
void PrintRelDirective(bool Force32Bit = false, bool isInSection = false)
const {
if (isInSection && TAI->getDwarfSectionOffsetDirective())
O << TAI->getDwarfSectionOffsetDirective();
else if (Force32Bit || TD->getPointerSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
}
/// PrintLabelName - Print label name in form used by Dwarf writer.
///
void PrintLabelName(DWLabel Label) const {
PrintLabelName(Label.Tag, Label.Number);
}
void PrintLabelName(const char *Tag, unsigned Number) const {
O << TAI->getPrivateGlobalPrefix() << Tag;
if (Number) O << Number;
}
void PrintLabelName(const char *Tag, unsigned Number,
const char *Suffix) const {
O << TAI->getPrivateGlobalPrefix() << Tag;
if (Number) O << Number;
O << Suffix;
}
/// EmitLabel - Emit location label for internal use by Dwarf.
///
void EmitLabel(DWLabel Label) const {
EmitLabel(Label.Tag, Label.Number);
}
void EmitLabel(const char *Tag, unsigned Number) const {
PrintLabelName(Tag, Number);
O << ":\n";
}
/// EmitReference - Emit a reference to a label.
///
void EmitReference(DWLabel Label, bool IsPCRelative = false,
bool Force32Bit = false) const {
EmitReference(Label.Tag, Label.Number, IsPCRelative, Force32Bit);
}
void EmitReference(const char *Tag, unsigned Number,
bool IsPCRelative = false, bool Force32Bit = false) const {
PrintRelDirective(Force32Bit);
PrintLabelName(Tag, Number);
if (IsPCRelative) O << "-" << TAI->getPCSymbol();
}
void EmitReference(const std::string &Name, bool IsPCRelative = false,
bool Force32Bit = false) const {
PrintRelDirective(Force32Bit);
O << Name;
if (IsPCRelative) O << "-" << TAI->getPCSymbol();
}
/// EmitDifference - Emit the difference between two labels. Some
/// assemblers do not behave with absolute expressions with data directives,
/// so there is an option (needsSet) to use an intermediary set expression.
void EmitDifference(DWLabel LabelHi, DWLabel LabelLo,
bool IsSmall = false) {
EmitDifference(LabelHi.Tag, LabelHi.Number,
LabelLo.Tag, LabelLo.Number,
IsSmall);
}
void EmitDifference(const char *TagHi, unsigned NumberHi,
const char *TagLo, unsigned NumberLo,
bool IsSmall = false) {
if (TAI->needsSet()) {
O << "\t.set\t";
PrintLabelName("set", SetCounter, Flavor);
O << ",";
PrintLabelName(TagHi, NumberHi);
O << "-";
PrintLabelName(TagLo, NumberLo);
O << "\n";
PrintRelDirective(IsSmall);
PrintLabelName("set", SetCounter, Flavor);
++SetCounter;
} else {
PrintRelDirective(IsSmall);
PrintLabelName(TagHi, NumberHi);
O << "-";
PrintLabelName(TagLo, NumberLo);
}
}
void EmitSectionOffset(const char* Label, const char* Section,
unsigned LabelNumber, unsigned SectionNumber,
bool IsSmall = false, bool isEH = false,
bool useSet = true) {
bool printAbsolute = false;
if (isEH)
printAbsolute = TAI->isAbsoluteEHSectionOffsets();
else
printAbsolute = TAI->isAbsoluteDebugSectionOffsets();
if (TAI->needsSet() && useSet) {
O << "\t.set\t";
PrintLabelName("set", SetCounter, Flavor);
O << ",";
PrintLabelName(Label, LabelNumber);
if (!printAbsolute) {
O << "-";
PrintLabelName(Section, SectionNumber);
}
O << "\n";
PrintRelDirective(IsSmall);
PrintLabelName("set", SetCounter, Flavor);
++SetCounter;
} else {
PrintRelDirective(IsSmall, true);
PrintLabelName(Label, LabelNumber);
if (!printAbsolute) {
O << "-";
PrintLabelName(Section, SectionNumber);
}
}
}
/// EmitFrameMoves - Emit frame instructions to describe the layout of the
/// frame.
void EmitFrameMoves(const char *BaseLabel, unsigned BaseLabelID,
const std::vector<MachineMove> &Moves, bool isEH) {
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize();
bool IsLocal = BaseLabel && strcmp(BaseLabel, "label") == 0;
for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
const MachineMove &Move = Moves[i];
unsigned LabelID = Move.getLabelID();
if (LabelID) {
LabelID = MMI->MappedLabel(LabelID);
// Throw out move if the label is invalid.
if (!LabelID) continue;
}
const MachineLocation &Dst = Move.getDestination();
const MachineLocation &Src = Move.getSource();
// Advance row if new location.
if (BaseLabel && LabelID && (BaseLabelID != LabelID || !IsLocal)) {
Asm->EmitInt8(DW_CFA_advance_loc4);
Asm->EOL("DW_CFA_advance_loc4");
EmitDifference("label", LabelID, BaseLabel, BaseLabelID, true);
Asm->EOL();
BaseLabelID = LabelID;
BaseLabel = "label";
IsLocal = true;
}
// If advancing cfa.
if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
if (!Src.isReg()) {
if (Src.getReg() == MachineLocation::VirtualFP) {
Asm->EmitInt8(DW_CFA_def_cfa_offset);
Asm->EOL("DW_CFA_def_cfa_offset");
} else {
Asm->EmitInt8(DW_CFA_def_cfa);
Asm->EOL("DW_CFA_def_cfa");
Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), isEH));
Asm->EOL("Register");
}
int Offset = -Src.getOffset();
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
} else {
assert(0 && "Machine move no supported yet.");
}
} else if (Src.isReg() &&
Src.getReg() == MachineLocation::VirtualFP) {
if (Dst.isReg()) {
Asm->EmitInt8(DW_CFA_def_cfa_register);
Asm->EOL("DW_CFA_def_cfa_register");
Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), isEH));
Asm->EOL("Register");
} else {
assert(0 && "Machine move no supported yet.");
}
} else {
unsigned Reg = RI->getDwarfRegNum(Src.getReg(), isEH);
int Offset = Dst.getOffset() / stackGrowth;
if (Offset < 0) {
Asm->EmitInt8(DW_CFA_offset_extended_sf);
Asm->EOL("DW_CFA_offset_extended_sf");
Asm->EmitULEB128Bytes(Reg);
Asm->EOL("Reg");
Asm->EmitSLEB128Bytes(Offset);
Asm->EOL("Offset");
} else if (Reg < 64) {
Asm->EmitInt8(DW_CFA_offset + Reg);
if (Asm->isVerbose())
Asm->EOL("DW_CFA_offset + Reg (" + utostr(Reg) + ")");
else
Asm->EOL();
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
} else {
Asm->EmitInt8(DW_CFA_offset_extended);
Asm->EOL("DW_CFA_offset_extended");
Asm->EmitULEB128Bytes(Reg);
Asm->EOL("Reg");
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
}
}
}
}
};
//===----------------------------------------------------------------------===//
/// SrcLineInfo - This class is used to record source line correspondence.
///
class SrcLineInfo {
unsigned Line; // Source line number.
unsigned Column; // Source column.
unsigned SourceID; // Source ID number.
unsigned LabelID; // Label in code ID number.
public:
SrcLineInfo(unsigned L, unsigned C, unsigned S, unsigned I)
: Line(L), Column(C), SourceID(S), LabelID(I) {}
// Accessors
unsigned getLine() const { return Line; }
unsigned getColumn() const { return Column; }
unsigned getSourceID() const { return SourceID; }
unsigned getLabelID() const { return LabelID; }
};
//===----------------------------------------------------------------------===//
/// DbgVariable - This class is used to track local variable information.
///
class DbgVariable {
DIVariable Var; // Variable Descriptor.
unsigned FrameIndex; // Variable frame index.
public:
DbgVariable(DIVariable V, unsigned I) : Var(V), FrameIndex(I) {}
// Accessors.
DIVariable getVariable() const { return Var; }
unsigned getFrameIndex() const { return FrameIndex; }
};
//===----------------------------------------------------------------------===//
/// DbgScope - This class is used to track scope information.
///
class DbgConcreteScope;
class DbgScope {
DbgScope *Parent; // Parent to this scope.
DIDescriptor Desc; // Debug info descriptor for scope.
// Either subprogram or block.
unsigned StartLabelID; // Label ID of the beginning of scope.
unsigned EndLabelID; // Label ID of the end of scope.
SmallVector<DbgScope *, 4> Scopes; // Scopes defined in scope.
SmallVector<DbgVariable *, 8> Variables;// Variables declared in scope.
SmallVector<DbgConcreteScope *, 8> ConcreteInsts;// Concrete insts of funcs.
public:
DbgScope(DbgScope *P, DIDescriptor D)
: Parent(P), Desc(D), StartLabelID(0), EndLabelID(0) {}
virtual ~DbgScope();
// Accessors.
DbgScope *getParent() const { return Parent; }
DIDescriptor getDesc() const { return Desc; }
unsigned getStartLabelID() const { return StartLabelID; }
unsigned getEndLabelID() const { return EndLabelID; }
SmallVector<DbgScope *, 4> &getScopes() { return Scopes; }
SmallVector<DbgVariable *, 8> &getVariables() { return Variables; }
SmallVector<DbgConcreteScope*,8> &getConcreteInsts() { return ConcreteInsts; }
void setStartLabelID(unsigned S) { StartLabelID = S; }
void setEndLabelID(unsigned E) { EndLabelID = E; }
/// AddScope - Add a scope to the scope.
///
void AddScope(DbgScope *S) { Scopes.push_back(S); }
/// AddVariable - Add a variable to the scope.
///
void AddVariable(DbgVariable *V) { Variables.push_back(V); }
/// AddConcreteInst - Add a concrete instance to the scope.
///
void AddConcreteInst(DbgConcreteScope *C) { ConcreteInsts.push_back(C); }
#ifndef NDEBUG
void dump() const;
#endif
};
#ifndef NDEBUG
void DbgScope::dump() const {
static unsigned IndentLevel = 0;
std::string Indent(IndentLevel, ' ');
cerr << Indent; Desc.dump();
cerr << " [" << StartLabelID << ", " << EndLabelID << "]\n";
IndentLevel += 2;
for (unsigned i = 0, e = Scopes.size(); i != e; ++i)
if (Scopes[i] != this)
Scopes[i]->dump();
IndentLevel -= 2;
}
#endif
//===----------------------------------------------------------------------===//
/// DbgConcreteScope - This class is used to track a scope that holds concrete
/// instance information.
///
class DbgConcreteScope : public DbgScope {
CompileUnit *Unit;
DIE *Die; // Debug info for this concrete scope.
public:
DbgConcreteScope(DIDescriptor D) : DbgScope(NULL, D) {}
// Accessors.
DIE *getDie() const { return Die; }
void setDie(DIE *D) { Die = D; }
};
DbgScope::~DbgScope() {
for (unsigned i = 0, N = Scopes.size(); i < N; ++i)
delete Scopes[i];
for (unsigned j = 0, M = Variables.size(); j < M; ++j)
delete Variables[j];
for (unsigned k = 0, O = ConcreteInsts.size(); k < O; ++k)
delete ConcreteInsts[k];
}
//===----------------------------------------------------------------------===//
/// DwarfDebug - Emits Dwarf debug directives.
///
class DwarfDebug : public Dwarf {
//===--------------------------------------------------------------------===//
// Attributes used to construct specific Dwarf sections.
//
/// CompileUnitMap - A map of global variables representing compile units to
/// compile units.
DenseMap<Value *, CompileUnit *> CompileUnitMap;
/// CompileUnits - All the compile units in this module.
///
SmallVector<CompileUnit *, 8> CompileUnits;
/// MainCU - Some platform prefers one compile unit per .o file. In such
/// cases, all dies are inserted in MainCU.
CompileUnit *MainCU;
/// AbbreviationsSet - Used to uniquely define abbreviations.
///
FoldingSet<DIEAbbrev> AbbreviationsSet;
/// Abbreviations - A list of all the unique abbreviations in use.
///
std::vector<DIEAbbrev *> Abbreviations;
/// DirectoryIdMap - Directory name to directory id map.
///
StringMap<unsigned> DirectoryIdMap;
/// DirectoryNames - A list of directory names.
SmallVector<std::string, 8> DirectoryNames;
/// SourceFileIdMap - Source file name to source file id map.
///
StringMap<unsigned> SourceFileIdMap;
/// SourceFileNames - A list of source file names.
SmallVector<std::string, 8> SourceFileNames;
/// SourceIdMap - Source id map, i.e. pair of directory id and source file
/// id mapped to a unique id.
DenseMap<std::pair<unsigned, unsigned>, unsigned> SourceIdMap;
/// SourceIds - Reverse map from source id to directory id + file id pair.
///
SmallVector<std::pair<unsigned, unsigned>, 8> SourceIds;
/// Lines - List of of source line correspondence.
std::vector<SrcLineInfo> Lines;
/// ValuesSet - Used to uniquely define values.
///
FoldingSet<DIEValue> ValuesSet;
/// Values - A list of all the unique values in use.
///
std::vector<DIEValue *> Values;
/// StringPool - A UniqueVector of strings used by indirect references.
///
UniqueVector<std::string> StringPool;
/// SectionMap - Provides a unique id per text section.
///
UniqueVector<const Section*> SectionMap;
/// SectionSourceLines - Tracks line numbers per text section.
///
std::vector<std::vector<SrcLineInfo> > SectionSourceLines;
/// didInitial - Flag to indicate if initial emission has been done.
///
bool didInitial;
/// shouldEmit - Flag to indicate if debug information should be emitted.
///
bool shouldEmit;
// FunctionDbgScope - Top level scope for the current function.
//
DbgScope *FunctionDbgScope;
/// DbgScopeMap - Tracks the scopes in the current function.
DenseMap<GlobalVariable *, DbgScope *> DbgScopeMap;
/// DbgConcreteScopeMap - Tracks inlined scopes in the current function.
DenseMap<GlobalVariable *,
SmallVector<DbgConcreteScope *, 8> > DbgConcreteScopeMap;
/// InlineInfo - Keep track of inlined functions and their location. This
/// information is used to populate debug_inlined section.
DenseMap<GlobalVariable *, SmallVector<unsigned, 4> > InlineInfo;
/// InlinedVariableScopes - Scopes information for the inlined subroutine
/// variables.
DenseMap<const MachineInstr *, DbgScope *> InlinedVariableScopes;
/// AbstractInstanceRootMap - Map of abstract instance roots of inlined
/// functions. These are subroutine entries that contain a DW_AT_inline
/// attribute.
DenseMap<const GlobalVariable *, DbgScope *> AbstractInstanceRootMap;
/// AbstractInstanceRootList - List of abstract instance roots of inlined
/// functions. These are subroutine entries that contain a DW_AT_inline
/// attribute.
SmallVector<DbgScope *, 32> AbstractInstanceRootList;
/// LexicalScopeStack - A stack of lexical scopes. The top one is the current
/// scope.
SmallVector<DbgScope *, 16> LexicalScopeStack;
/// CompileUnitOffsets - A vector of the offsets of the compile units. This is
/// used when calculating the "origin" of a concrete instance of an inlined
/// function.
DenseMap<CompileUnit *, unsigned> CompileUnitOffsets;
/// DebugTimer - Timer for the Dwarf debug writer.
Timer *DebugTimer;
struct FunctionDebugFrameInfo {
unsigned Number;
std::vector<MachineMove> Moves;
FunctionDebugFrameInfo(unsigned Num, const std::vector<MachineMove> &M):
Number(Num), Moves(M) { }
};
std::vector<FunctionDebugFrameInfo> DebugFrames;
private:
/// getSourceDirectoryAndFileIds - Return the directory and file ids that
/// maps to the source id. Source id starts at 1.
std::pair<unsigned, unsigned>
getSourceDirectoryAndFileIds(unsigned SId) const {
return SourceIds[SId-1];
}
/// getNumSourceDirectories - Return the number of source directories in the
/// debug info.
unsigned getNumSourceDirectories() const {
return DirectoryNames.size();
}
/// getSourceDirectoryName - Return the name of the directory corresponding
/// to the id.
const std::string &getSourceDirectoryName(unsigned Id) const {
return DirectoryNames[Id - 1];
}
/// getSourceFileName - Return the name of the source file corresponding
/// to the id.
const std::string &getSourceFileName(unsigned Id) const {
return SourceFileNames[Id - 1];
}
/// getNumSourceIds - Return the number of unique source ids.
unsigned getNumSourceIds() const {
return SourceIds.size();
}
/// AssignAbbrevNumber - Define a unique number for the abbreviation.
///
void AssignAbbrevNumber(DIEAbbrev &Abbrev) {
// Profile the node so that we can make it unique.
FoldingSetNodeID ID;
Abbrev.Profile(ID);
// Check the set for priors.
DIEAbbrev *InSet = AbbreviationsSet.GetOrInsertNode(&Abbrev);
// If it's newly added.
if (InSet == &Abbrev) {
// Add to abbreviation list.
Abbreviations.push_back(&Abbrev);
// Assign the vector position + 1 as its number.
Abbrev.setNumber(Abbreviations.size());
} else {
// Assign existing abbreviation number.
Abbrev.setNumber(InSet->getNumber());
}
}
/// NewString - Add a string to the constant pool and returns a label.
///
DWLabel NewString(const std::string &String) {
unsigned StringID = StringPool.insert(String);
return DWLabel("string", StringID);
}
/// NewDIEntry - Creates a new DIEntry to be a proxy for a debug information
/// entry.
DIEntry *NewDIEntry(DIE *Entry = NULL) {
DIEntry *Value;
if (Entry) {
FoldingSetNodeID ID;
DIEntry::Profile(ID, Entry);
void *Where;
Value = static_cast<DIEntry *>(ValuesSet.FindNodeOrInsertPos(ID, Where));
if (Value) return Value;
Value = new DIEntry(Entry);
ValuesSet.InsertNode(Value, Where);
} else {
Value = new DIEntry(Entry);
}
Values.push_back(Value);
return Value;
}
/// SetDIEntry - Set a DIEntry once the debug information entry is defined.
///
void SetDIEntry(DIEntry *Value, DIE *Entry) {
Value->setEntry(Entry);
// Add to values set if not already there. If it is, we merely have a
// duplicate in the values list (no harm.)
ValuesSet.GetOrInsertNode(Value);
}
/// AddUInt - Add an unsigned integer attribute data and value.
///
void AddUInt(DIE *Die, unsigned Attribute, unsigned Form, uint64_t Integer) {
if (!Form) Form = DIEInteger::BestForm(false, Integer);
FoldingSetNodeID ID;
DIEInteger::Profile(ID, Integer);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEInteger(Integer);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddSInt - Add an signed integer attribute data and value.
///
void AddSInt(DIE *Die, unsigned Attribute, unsigned Form, int64_t Integer) {
if (!Form) Form = DIEInteger::BestForm(true, Integer);
FoldingSetNodeID ID;
DIEInteger::Profile(ID, (uint64_t)Integer);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEInteger(Integer);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddString - Add a string attribute data and value.
///
void AddString(DIE *Die, unsigned Attribute, unsigned Form,
const std::string &String) {
FoldingSetNodeID ID;
DIEString::Profile(ID, String);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEString(String);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddLabel - Add a Dwarf label attribute data and value.
///
void AddLabel(DIE *Die, unsigned Attribute, unsigned Form,
const DWLabel &Label) {
FoldingSetNodeID ID;
DIEDwarfLabel::Profile(ID, Label);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEDwarfLabel(Label);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddObjectLabel - Add an non-Dwarf label attribute data and value.
///
void AddObjectLabel(DIE *Die, unsigned Attribute, unsigned Form,
const std::string &Label) {
FoldingSetNodeID ID;
DIEObjectLabel::Profile(ID, Label);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEObjectLabel(Label);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddSectionOffset - Add a section offset label attribute data and value.
///
void AddSectionOffset(DIE *Die, unsigned Attribute, unsigned Form,
const DWLabel &Label, const DWLabel &Section,
bool isEH = false, bool useSet = true) {
FoldingSetNodeID ID;
DIESectionOffset::Profile(ID, Label, Section);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIESectionOffset(Label, Section, isEH, useSet);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddDelta - Add a label delta attribute data and value.
///
void AddDelta(DIE *Die, unsigned Attribute, unsigned Form,
const DWLabel &Hi, const DWLabel &Lo) {
FoldingSetNodeID ID;
DIEDelta::Profile(ID, Hi, Lo);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEDelta(Hi, Lo);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddDIEntry - Add a DIE attribute data and value.
///
void AddDIEntry(DIE *Die, unsigned Attribute, unsigned Form, DIE *Entry) {
Die->AddValue(Attribute, Form, NewDIEntry(Entry));
}
/// AddBlock - Add block data.
///
void AddBlock(DIE *Die, unsigned Attribute, unsigned Form, DIEBlock *Block) {
Block->ComputeSize(*this);
FoldingSetNodeID ID;
Block->Profile(ID);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = Block;
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
} else {
// Already exists, reuse the previous one.
delete Block;
Block = cast<DIEBlock>(Value);
}
Die->AddValue(Attribute, Block->BestForm(), Value);
}
/// AddSourceLine - Add location information to specified debug information
/// entry.
void AddSourceLine(DIE *Die, const DIVariable *V) {
// If there is no compile unit specified, don't add a line #.
if (V->getCompileUnit().isNull())
return;
unsigned Line = V->getLineNumber();
unsigned FileID = FindCompileUnit(V->getCompileUnit()).getID();
assert(FileID && "Invalid file id");
AddUInt(Die, DW_AT_decl_file, 0, FileID);
AddUInt(Die, DW_AT_decl_line, 0, Line);
}
/// AddSourceLine - Add location information to specified debug information
/// entry.
void AddSourceLine(DIE *Die, const DIGlobal *G) {
// If there is no compile unit specified, don't add a line #.
if (G->getCompileUnit().isNull())
return;
unsigned Line = G->getLineNumber();
unsigned FileID = FindCompileUnit(G->getCompileUnit()).getID();
assert(FileID && "Invalid file id");
AddUInt(Die, DW_AT_decl_file, 0, FileID);
AddUInt(Die, DW_AT_decl_line, 0, Line);
}
void AddSourceLine(DIE *Die, const DIType *Ty) {
// If there is no compile unit specified, don't add a line #.
DICompileUnit CU = Ty->getCompileUnit();
if (CU.isNull())
return;
unsigned Line = Ty->getLineNumber();
unsigned FileID = FindCompileUnit(CU).getID();
assert(FileID && "Invalid file id");
AddUInt(Die, DW_AT_decl_file, 0, FileID);
AddUInt(Die, DW_AT_decl_line, 0, Line);
}
/// AddAddress - Add an address attribute to a die based on the location
/// provided.
void AddAddress(DIE *Die, unsigned Attribute,
const MachineLocation &Location) {
unsigned Reg = RI->getDwarfRegNum(Location.getReg(), false);
DIEBlock *Block = new DIEBlock();
if (Location.isReg()) {
if (Reg < 32) {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_reg0 + Reg);
} else {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_regx);
AddUInt(Block, 0, DW_FORM_udata, Reg);
}
} else {
if (Reg < 32) {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_breg0 + Reg);
} else {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_bregx);
AddUInt(Block, 0, DW_FORM_udata, Reg);
}
AddUInt(Block, 0, DW_FORM_sdata, Location.getOffset());
}
AddBlock(Die, Attribute, 0, Block);
}
/// AddType - Add a new type attribute to the specified entity.
void AddType(CompileUnit *DW_Unit, DIE *Entity, DIType Ty) {
if (Ty.isNull())
return;
// Check for pre-existence.
DIEntry *&Slot = DW_Unit->getDIEntrySlotFor(Ty.getGV());
// If it exists then use the existing value.
if (Slot) {
Entity->AddValue(DW_AT_type, DW_FORM_ref4, Slot);
return;
}
// Set up proxy.
Slot = NewDIEntry();
// Construct type.
DIE Buffer(DW_TAG_base_type);
if (Ty.isBasicType(Ty.getTag()))
ConstructTypeDIE(DW_Unit, Buffer, DIBasicType(Ty.getGV()));
else if (Ty.isDerivedType(Ty.getTag()))
ConstructTypeDIE(DW_Unit, Buffer, DIDerivedType(Ty.getGV()));
else {
assert(Ty.isCompositeType(Ty.getTag()) && "Unknown kind of DIType");
ConstructTypeDIE(DW_Unit, Buffer, DICompositeType(Ty.getGV()));
}
// Add debug information entry to entity and appropriate context.
DIE *Die = NULL;
DIDescriptor Context = Ty.getContext();
if (!Context.isNull())
Die = DW_Unit->getDieMapSlotFor(Context.getGV());
if (Die) {
DIE *Child = new DIE(Buffer);
Die->AddChild(Child);
Buffer.Detach();
SetDIEntry(Slot, Child);
} else {
Die = DW_Unit->AddDie(Buffer);
SetDIEntry(Slot, Die);
}
Entity->AddValue(DW_AT_type, DW_FORM_ref4, Slot);
}
/// ConstructTypeDIE - Construct basic type die from DIBasicType.
void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DIBasicType BTy) {
// Get core information.
std::string Name;
BTy.getName(Name);
Buffer.setTag(DW_TAG_base_type);
AddUInt(&Buffer, DW_AT_encoding, DW_FORM_data1, BTy.getEncoding());
// Add name if not anonymous or intermediate type.
if (!Name.empty())
AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
uint64_t Size = BTy.getSizeInBits() >> 3;
AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
}
/// ConstructTypeDIE - Construct derived type die from DIDerivedType.
void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DIDerivedType DTy) {
// Get core information.
std::string Name;
DTy.getName(Name);
uint64_t Size = DTy.getSizeInBits() >> 3;
unsigned Tag = DTy.getTag();
// FIXME - Workaround for templates.
if (Tag == DW_TAG_inheritance) Tag = DW_TAG_reference_type;
Buffer.setTag(Tag);
// Map to main type, void will not have a type.
DIType FromTy = DTy.getTypeDerivedFrom();
AddType(DW_Unit, &Buffer, FromTy);
// Add name if not anonymous or intermediate type.
if (!Name.empty())
AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
// Add size if non-zero (derived types might be zero-sized.)
if (Size)
AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
// Add source line info if available and TyDesc is not a forward
// declaration.
if (!DTy.isForwardDecl())
AddSourceLine(&Buffer, &DTy);
}
/// ConstructTypeDIE - Construct type DIE from DICompositeType.
void ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DICompositeType CTy) {
// Get core information.
std::string Name;
CTy.getName(Name);
uint64_t Size = CTy.getSizeInBits() >> 3;
unsigned Tag = CTy.getTag();
Buffer.setTag(Tag);
switch (Tag) {
case DW_TAG_vector_type:
case DW_TAG_array_type:
ConstructArrayTypeDIE(DW_Unit, Buffer, &CTy);
break;
case DW_TAG_enumeration_type:
{
DIArray Elements = CTy.getTypeArray();
// Add enumerators to enumeration type.
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIE *ElemDie = NULL;
DIEnumerator Enum(Elements.getElement(i).getGV());
ElemDie = ConstructEnumTypeDIE(DW_Unit, &Enum);
Buffer.AddChild(ElemDie);
}
}
break;
case DW_TAG_subroutine_type:
{
// Add return type.
DIArray Elements = CTy.getTypeArray();
DIDescriptor RTy = Elements.getElement(0);
AddType(DW_Unit, &Buffer, DIType(RTy.getGV()));
// Add prototype flag.
AddUInt(&Buffer, DW_AT_prototyped, DW_FORM_flag, 1);
// Add arguments.
for (unsigned i = 1, N = Elements.getNumElements(); i < N; ++i) {
DIE *Arg = new DIE(DW_TAG_formal_parameter);
DIDescriptor Ty = Elements.getElement(i);
AddType(DW_Unit, Arg, DIType(Ty.getGV()));
Buffer.AddChild(Arg);
}
}
break;
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_class_type:
{
// Add elements to structure type.
DIArray Elements = CTy.getTypeArray();
// A forward struct declared type may not have elements available.
if (Elements.isNull())
break;
// Add elements to structure type.
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
DIE *ElemDie = NULL;
if (Element.getTag() == dwarf::DW_TAG_subprogram)
ElemDie = CreateSubprogramDIE(DW_Unit,
DISubprogram(Element.getGV()));
else if (Element.getTag() == dwarf::DW_TAG_variable) // ??
ElemDie = CreateGlobalVariableDIE(DW_Unit,
DIGlobalVariable(Element.getGV()));
else
ElemDie = CreateMemberDIE(DW_Unit,
DIDerivedType(Element.getGV()));
Buffer.AddChild(ElemDie);
}
unsigned RLang = CTy.getRunTimeLang();
if (RLang)
AddUInt(&Buffer, DW_AT_APPLE_runtime_class, DW_FORM_data1, RLang);
}
break;
default:
break;
}
// Add name if not anonymous or intermediate type.
if (!Name.empty())
AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
if (Tag == DW_TAG_enumeration_type || Tag == DW_TAG_structure_type
|| Tag == DW_TAG_union_type) {
// Add size if non-zero (derived types might be zero-sized.)
if (Size)
AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
else {
// Add zero size if it is not a forward declaration.
if (CTy.isForwardDecl())
AddUInt(&Buffer, DW_AT_declaration, DW_FORM_flag, 1);
else
AddUInt(&Buffer, DW_AT_byte_size, 0, 0);
}
// Add source line info if available.
if (!CTy.isForwardDecl())
AddSourceLine(&Buffer, &CTy);
}
}
/// ConstructSubrangeDIE - Construct subrange DIE from DISubrange.
void ConstructSubrangeDIE(DIE &Buffer, DISubrange SR, DIE *IndexTy) {
int64_t L = SR.getLo();
int64_t H = SR.getHi();
DIE *DW_Subrange = new DIE(DW_TAG_subrange_type);
if (L != H) {
AddDIEntry(DW_Subrange, DW_AT_type, DW_FORM_ref4, IndexTy);
if (L)
AddSInt(DW_Subrange, DW_AT_lower_bound, 0, L);
AddSInt(DW_Subrange, DW_AT_upper_bound, 0, H);
}
Buffer.AddChild(DW_Subrange);
}
/// ConstructArrayTypeDIE - Construct array type DIE from DICompositeType.
void ConstructArrayTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DICompositeType *CTy) {
Buffer.setTag(DW_TAG_array_type);
if (CTy->getTag() == DW_TAG_vector_type)
AddUInt(&Buffer, DW_AT_GNU_vector, DW_FORM_flag, 1);
// Emit derived type.
AddType(DW_Unit, &Buffer, CTy->getTypeDerivedFrom());
DIArray Elements = CTy->getTypeArray();
// Construct an anonymous type for index type.
DIE IdxBuffer(DW_TAG_base_type);
AddUInt(&IdxBuffer, DW_AT_byte_size, 0, sizeof(int32_t));
AddUInt(&IdxBuffer, DW_AT_encoding, DW_FORM_data1, DW_ATE_signed);
DIE *IndexTy = DW_Unit->AddDie(IdxBuffer);
// Add subranges to array type.
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
if (Element.getTag() == dwarf::DW_TAG_subrange_type)
ConstructSubrangeDIE(Buffer, DISubrange(Element.getGV()), IndexTy);
}
}
/// ConstructEnumTypeDIE - Construct enum type DIE from DIEnumerator.
DIE *ConstructEnumTypeDIE(CompileUnit *DW_Unit, DIEnumerator *ETy) {
DIE *Enumerator = new DIE(DW_TAG_enumerator);
std::string Name;
ETy->getName(Name);
AddString(Enumerator, DW_AT_name, DW_FORM_string, Name);
int64_t Value = ETy->getEnumValue();
AddSInt(Enumerator, DW_AT_const_value, DW_FORM_sdata, Value);
return Enumerator;
}
/// CreateGlobalVariableDIE - Create new DIE using GV.
DIE *CreateGlobalVariableDIE(CompileUnit *DW_Unit, const DIGlobalVariable &GV)
{
DIE *GVDie = new DIE(DW_TAG_variable);
std::string Name;
GV.getDisplayName(Name);
AddString(GVDie, DW_AT_name, DW_FORM_string, Name);
std::string LinkageName;
GV.getLinkageName(LinkageName);
if (!LinkageName.empty())
AddString(GVDie, DW_AT_MIPS_linkage_name, DW_FORM_string, LinkageName);
AddType(DW_Unit, GVDie, GV.getType());
if (!GV.isLocalToUnit())
AddUInt(GVDie, DW_AT_external, DW_FORM_flag, 1);
AddSourceLine(GVDie, &GV);
return GVDie;
}
/// CreateMemberDIE - Create new member DIE.
DIE *CreateMemberDIE(CompileUnit *DW_Unit, const DIDerivedType &DT) {
DIE *MemberDie = new DIE(DT.getTag());
std::string Name;
DT.getName(Name);
if (!Name.empty())
AddString(MemberDie, DW_AT_name, DW_FORM_string, Name);
AddType(DW_Unit, MemberDie, DT.getTypeDerivedFrom());
AddSourceLine(MemberDie, &DT);
uint64_t Size = DT.getSizeInBits();
uint64_t FieldSize = DT.getOriginalTypeSize();
if (Size != FieldSize) {
// Handle bitfield.
AddUInt(MemberDie, DW_AT_byte_size, 0, DT.getOriginalTypeSize() >> 3);
AddUInt(MemberDie, DW_AT_bit_size, 0, DT.getSizeInBits());
uint64_t Offset = DT.getOffsetInBits();
uint64_t FieldOffset = Offset;
uint64_t AlignMask = ~(DT.getAlignInBits() - 1);
uint64_t HiMark = (Offset + FieldSize) & AlignMask;
FieldOffset = (HiMark - FieldSize);
Offset -= FieldOffset;
// Maybe we need to work from the other end.
if (TD->isLittleEndian()) Offset = FieldSize - (Offset + Size);
AddUInt(MemberDie, DW_AT_bit_offset, 0, Offset);
}
DIEBlock *Block = new DIEBlock();
AddUInt(Block, 0, DW_FORM_data1, DW_OP_plus_uconst);
AddUInt(Block, 0, DW_FORM_udata, DT.getOffsetInBits() >> 3);
AddBlock(MemberDie, DW_AT_data_member_location, 0, Block);
if (DT.isProtected())
AddUInt(MemberDie, DW_AT_accessibility, 0, DW_ACCESS_protected);
else if (DT.isPrivate())
AddUInt(MemberDie, DW_AT_accessibility, 0, DW_ACCESS_private);
return MemberDie;
}
/// CreateSubprogramDIE - Create new DIE using SP.
DIE *CreateSubprogramDIE(CompileUnit *DW_Unit,
const DISubprogram &SP,
bool IsConstructor = false) {
DIE *SPDie = new DIE(DW_TAG_subprogram);
std::string Name;
SP.getName(Name);
AddString(SPDie, DW_AT_name, DW_FORM_string, Name);
std::string LinkageName;
SP.getLinkageName(LinkageName);
if (!LinkageName.empty())
AddString(SPDie, DW_AT_MIPS_linkage_name, DW_FORM_string, LinkageName);
AddSourceLine(SPDie, &SP);
DICompositeType SPTy = SP.getType();
DIArray Args = SPTy.getTypeArray();
// Add prototyped tag, if C or ObjC.
unsigned Lang = SP.getCompileUnit().getLanguage();
if (Lang == DW_LANG_C99 || Lang == DW_LANG_C89 || Lang == DW_LANG_ObjC)
AddUInt(SPDie, DW_AT_prototyped, DW_FORM_flag, 1);
// Add Return Type.
unsigned SPTag = SPTy.getTag();
if (!IsConstructor) {
if (Args.isNull() || SPTag != DW_TAG_subroutine_type)
AddType(DW_Unit, SPDie, SPTy);
else
AddType(DW_Unit, SPDie, DIType(Args.getElement(0).getGV()));
}
if (!SP.isDefinition()) {
AddUInt(SPDie, DW_AT_declaration, DW_FORM_flag, 1);
// Add arguments. Do not add arguments for subprogram definition. They
// will be handled through RecordVariable.
if (SPTag == DW_TAG_subroutine_type)
for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) {
DIE *Arg = new DIE(DW_TAG_formal_parameter);
AddType(DW_Unit, Arg, DIType(Args.getElement(i).getGV()));
AddUInt(Arg, DW_AT_artificial, DW_FORM_flag, 1); // ??
SPDie->AddChild(Arg);
}
}
if (!SP.isLocalToUnit())
AddUInt(SPDie, DW_AT_external, DW_FORM_flag, 1);
// DW_TAG_inlined_subroutine may refer to this DIE.
DIE *&Slot = DW_Unit->getDieMapSlotFor(SP.getGV());
Slot = SPDie;
return SPDie;
}
/// FindCompileUnit - Get the compile unit for the given descriptor.
///
CompileUnit &FindCompileUnit(DICompileUnit Unit) const {
DenseMap<Value *, CompileUnit *>::const_iterator I =
CompileUnitMap.find(Unit.getGV());
assert(I != CompileUnitMap.end() && "Missing compile unit.");
return *I->second;
}
/// NewDbgScopeVariable - Create a new scope variable.
///
DIE *NewDbgScopeVariable(DbgVariable *DV, CompileUnit *Unit) {
// Get the descriptor.
const DIVariable &VD = DV->getVariable();
// Translate tag to proper Dwarf tag. The result variable is dropped for
// now.
unsigned Tag;
switch (VD.getTag()) {
case DW_TAG_return_variable: return NULL;
case DW_TAG_arg_variable: Tag = DW_TAG_formal_parameter; break;
case DW_TAG_auto_variable: // fall thru
default: Tag = DW_TAG_variable; break;
}
// Define variable debug information entry.
DIE *VariableDie = new DIE(Tag);
std::string Name;
VD.getName(Name);
AddString(VariableDie, DW_AT_name, DW_FORM_string, Name);
// Add source line info if available.
AddSourceLine(VariableDie, &VD);
// Add variable type.
AddType(Unit, VariableDie, VD.getType());
// Add variable address.
MachineLocation Location;
Location.set(RI->getFrameRegister(*MF),
RI->getFrameIndexOffset(*MF, DV->getFrameIndex()));
AddAddress(VariableDie, DW_AT_location, Location);
return VariableDie;
}
/// getOrCreateScope - Returns the scope associated with the given descriptor.
///
DbgScope *getOrCreateScope(GlobalVariable *V) {
DbgScope *&Slot = DbgScopeMap[V];
if (Slot) return Slot;
DbgScope *Parent = NULL;
DIBlock Block(V);
// Don't create a new scope if we already created one for an inlined
// function.
DenseMap<const GlobalVariable *, DbgScope *>::iterator
II = AbstractInstanceRootMap.find(V);
if (II != AbstractInstanceRootMap.end())
return LexicalScopeStack.back();
if (!Block.isNull()) {
DIDescriptor ParentDesc = Block.getContext();
Parent =
ParentDesc.isNull() ? NULL : getOrCreateScope(ParentDesc.getGV());
}
Slot = new DbgScope(Parent, DIDescriptor(V));
if (Parent)
Parent->AddScope(Slot);
else
// First function is top level function.
FunctionDbgScope = Slot;
return Slot;
}
/// ConstructDbgScope - Construct the components of a scope.
///
void ConstructDbgScope(DbgScope *ParentScope,
unsigned ParentStartID, unsigned ParentEndID,
DIE *ParentDie, CompileUnit *Unit) {
// Add variables to scope.
SmallVector<DbgVariable *, 8> &Variables = ParentScope->getVariables();
for (unsigned i = 0, N = Variables.size(); i < N; ++i) {
DIE *VariableDie = NewDbgScopeVariable(Variables[i], Unit);
if (VariableDie) ParentDie->AddChild(VariableDie);
}
// Add concrete instances to scope.
SmallVector<DbgConcreteScope *, 8> &ConcreteInsts = ParentScope->getConcreteInsts();
for (unsigned i = 0, N = ConcreteInsts.size(); i < N; ++i) {
DbgConcreteScope *ConcreteInst = ConcreteInsts[i];
DIE *Die = ConcreteInst->getDie();
unsigned StartID = ConcreteInst->getStartLabelID();
unsigned EndID = ConcreteInst->getEndLabelID();
// Add the scope bounds.
if (StartID)
AddLabel(Die, DW_AT_low_pc, DW_FORM_addr,
DWLabel("label", StartID));
else
AddLabel(Die, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
if (EndID)
AddLabel(Die, DW_AT_high_pc, DW_FORM_addr,
DWLabel("label", EndID));
else
AddLabel(Die, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
ParentDie->AddChild(Die);
}
// Add nested scopes.
SmallVector<DbgScope *, 4> &Scopes = ParentScope->getScopes();
for (unsigned j = 0, M = Scopes.size(); j < M; ++j) {
// Define the Scope debug information entry.
DbgScope *Scope = Scopes[j];
unsigned StartID = MMI->MappedLabel(Scope->getStartLabelID());
unsigned EndID = MMI->MappedLabel(Scope->getEndLabelID());
// Ignore empty scopes.
if (StartID == EndID && StartID != 0) continue;
// Do not ignore inlined scopes even if they don't have any variables or
// scopes.
if (Scope->getScopes().empty() && Scope->getVariables().empty() &&
Scope->getConcreteInsts().empty())
continue;
if (StartID == ParentStartID && EndID == ParentEndID) {
// Just add stuff to the parent scope.
ConstructDbgScope(Scope, ParentStartID, ParentEndID, ParentDie, Unit);
} else {
DIE *ScopeDie = new DIE(DW_TAG_lexical_block);
// Add the scope bounds.
if (StartID)
AddLabel(ScopeDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("label", StartID));
else
AddLabel(ScopeDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
if (EndID)
AddLabel(ScopeDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("label", EndID));
else
AddLabel(ScopeDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
// Add the scope's contents.
ConstructDbgScope(Scope, StartID, EndID, ScopeDie, Unit);
ParentDie->AddChild(ScopeDie);
}
}
}
/// ConstructFunctionDbgScope - Construct the scope for the subprogram.
///
void ConstructFunctionDbgScope(DbgScope *RootScope) {
// Exit if there is no root scope.
if (!RootScope) return;
DIDescriptor Desc = RootScope->getDesc();
if (Desc.isNull())
return;
// Get the subprogram debug information entry.
DISubprogram SPD(Desc.getGV());
// Get the compile unit context.
CompileUnit *Unit = MainCU;
if (!Unit)
Unit = &FindCompileUnit(SPD.getCompileUnit());
// Get the subprogram die.
DIE *SPDie = Unit->getDieMapSlotFor(SPD.getGV());
assert(SPDie && "Missing subprogram descriptor");
// Add the function bounds.
AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
MachineLocation Location(RI->getFrameRegister(*MF));
AddAddress(SPDie, DW_AT_frame_base, Location);
ConstructDbgScope(RootScope, 0, 0, SPDie, Unit);
}
/// ConstructFunctionDbgScope - Construct the scope for the abstract debug
/// scope.
///
void ConstructAbstractDbgScope(DbgScope *AbsScope) {
// Exit if there is no root scope.
if (!AbsScope) return;
DIDescriptor Desc = AbsScope->getDesc();
if (Desc.isNull())
return;
// Get the subprogram debug information entry.
DISubprogram SPD(Desc.getGV());
// Get the compile unit context.
CompileUnit *Unit = MainCU;
if (!Unit)
Unit = &FindCompileUnit(SPD.getCompileUnit());
// Get the subprogram die.
DIE *SPDie = Unit->getDieMapSlotFor(SPD.getGV());
assert(SPDie && "Missing subprogram descriptor");
ConstructDbgScope(AbsScope, 0, 0, SPDie, Unit);
}
/// ConstructDefaultDbgScope - Construct a default scope for the subprogram.
///
void ConstructDefaultDbgScope(MachineFunction *MF) {
const char *FnName = MF->getFunction()->getNameStart();
if (MainCU) {
StringMap<DIE*> &Globals = MainCU->getGlobals();
StringMap<DIE*>::iterator GI = Globals.find(FnName);
if (GI != Globals.end()) {
DIE *SPDie = GI->second;
// Add the function bounds.
AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
MachineLocation Location(RI->getFrameRegister(*MF));
AddAddress(SPDie, DW_AT_frame_base, Location);
return;
}
} else {
for (unsigned i = 0, e = CompileUnits.size(); i != e; ++i) {
CompileUnit *Unit = CompileUnits[i];
StringMap<DIE*> &Globals = Unit->getGlobals();
StringMap<DIE*>::iterator GI = Globals.find(FnName);
if (GI != Globals.end()) {
DIE *SPDie = GI->second;
// Add the function bounds.
AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
MachineLocation Location(RI->getFrameRegister(*MF));
AddAddress(SPDie, DW_AT_frame_base, Location);
return;
}
}
}
#if 0
// FIXME: This is causing an abort because C++ mangled names are compared
// with their unmangled counterparts. See PR2885. Don't do this assert.
assert(0 && "Couldn't find DIE for machine function!");
#endif
}
/// EmitInitial - Emit initial Dwarf declarations. This is necessary for cc
/// tools to recognize the object file contains Dwarf information.
void EmitInitial() {
// Check to see if we already emitted intial headers.
if (didInitial) return;
didInitial = true;
// Dwarf sections base addresses.
if (TAI->doesDwarfRequireFrameSection()) {
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitLabel("section_debug_frame", 0);
}
Asm->SwitchToDataSection(TAI->getDwarfInfoSection());
EmitLabel("section_info", 0);
Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection());
EmitLabel("section_abbrev", 0);
Asm->SwitchToDataSection(TAI->getDwarfARangesSection());
EmitLabel("section_aranges", 0);
if (TAI->doesSupportMacInfoSection()) {
Asm->SwitchToDataSection(TAI->getDwarfMacInfoSection());
EmitLabel("section_macinfo", 0);
}
Asm->SwitchToDataSection(TAI->getDwarfLineSection());
EmitLabel("section_line", 0);
Asm->SwitchToDataSection(TAI->getDwarfLocSection());
EmitLabel("section_loc", 0);
Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection());
EmitLabel("section_pubnames", 0);
Asm->SwitchToDataSection(TAI->getDwarfStrSection());
EmitLabel("section_str", 0);
Asm->SwitchToDataSection(TAI->getDwarfRangesSection());
EmitLabel("section_ranges", 0);
Asm->SwitchToSection(TAI->getTextSection());
EmitLabel("text_begin", 0);
Asm->SwitchToSection(TAI->getDataSection());
EmitLabel("data_begin", 0);
}
/// EmitDIE - Recusively Emits a debug information entry.
///
void EmitDIE(DIE *Die) {
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1];
Asm->EOL();
// Emit the code (index) for the abbreviation.
Asm->EmitULEB128Bytes(AbbrevNumber);
if (Asm->isVerbose())
Asm->EOL(std::string("Abbrev [" +
utostr(AbbrevNumber) +
"] 0x" + utohexstr(Die->getOffset()) +
":0x" + utohexstr(Die->getSize()) + " " +
TagString(Abbrev->getTag())));
else
Asm->EOL();
SmallVector<DIEValue*, 32> &Values = Die->getValues();
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev->getData();
// Emit the DIE attribute values.
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
unsigned Attr = AbbrevData[i].getAttribute();
unsigned Form = AbbrevData[i].getForm();
assert(Form && "Too many attributes for DIE (check abbreviation)");
switch (Attr) {
case DW_AT_sibling:
Asm->EmitInt32(Die->SiblingOffset());
break;
case DW_AT_abstract_origin: {
DIEntry *E = cast<DIEntry>(Values[i]);
DIE *Origin = E->getEntry();
unsigned Addr =
CompileUnitOffsets[Die->getAbstractCompileUnit()] +
Origin->getOffset();
Asm->EmitInt32(Addr);
break;
}
default:
// Emit an attribute using the defined form.
Values[i]->EmitValue(*this, Form);
break;
}
Asm->EOL(AttributeString(Attr));
}
// Emit the DIE children if any.
if (Abbrev->getChildrenFlag() == DW_CHILDREN_yes) {
const std::vector<DIE *> &Children = Die->getChildren();
for (unsigned j = 0, M = Children.size(); j < M; ++j)
EmitDIE(Children[j]);
Asm->EmitInt8(0); Asm->EOL("End Of Children Mark");
}
}
/// SizeAndOffsetDie - Compute the size and offset of a DIE.
///
unsigned SizeAndOffsetDie(DIE *Die, unsigned Offset, bool Last) {
// Get the children.
const std::vector<DIE *> &Children = Die->getChildren();
// If not last sibling and has children then add sibling offset attribute.
if (!Last && !Children.empty()) Die->AddSiblingOffset();
// Record the abbreviation.
AssignAbbrevNumber(Die->getAbbrev());
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1];
// Set DIE offset
Die->setOffset(Offset);
// Start the size with the size of abbreviation code.
Offset += TargetAsmInfo::getULEB128Size(AbbrevNumber);
const SmallVector<DIEValue*, 32> &Values = Die->getValues();
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev->getData();
// Size the DIE attribute values.
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
// Size attribute value.
Offset += Values[i]->SizeOf(*this, AbbrevData[i].getForm());
}
// Size the DIE children if any.
if (!Children.empty()) {
assert(Abbrev->getChildrenFlag() == DW_CHILDREN_yes &&
"Children flag not set");
for (unsigned j = 0, M = Children.size(); j < M; ++j) {
Offset = SizeAndOffsetDie(Children[j], Offset, (j + 1) == M);
}
// End of children marker.
Offset += sizeof(int8_t);
}
Die->setSize(Offset - Die->getOffset());
return Offset;
}
/// SizeAndOffsets - Compute the size and offset of all the DIEs.
///
void SizeAndOffsets() {
// Compute size of compile unit header.
static unsigned Offset =
sizeof(int32_t) + // Length of Compilation Unit Info
sizeof(int16_t) + // DWARF version number
sizeof(int32_t) + // Offset Into Abbrev. Section
sizeof(int8_t); // Pointer Size (in bytes)
// Process base compile unit.
if (MainCU) {
SizeAndOffsetDie(MainCU->getDie(), Offset, true);
CompileUnitOffsets[MainCU] = 0;
return;
}
// Process all compile units.
unsigned PrevOffset = 0;
for (unsigned i = 0, e = CompileUnits.size(); i != e; ++i) {
CompileUnit *Unit = CompileUnits[i];
CompileUnitOffsets[Unit] = PrevOffset;
PrevOffset += SizeAndOffsetDie(Unit->getDie(), Offset, true)
+ sizeof(int32_t); // FIXME - extra pad for gdb bug.
}
}
/// EmitDebugInfo / EmitDebugInfoPerCU - Emit the debug info section.
///
void EmitDebugInfoPerCU(CompileUnit *Unit) {
DIE *Die = Unit->getDie();
// Emit the compile units header.
EmitLabel("info_begin", Unit->getID());
// Emit size of content not including length itself
unsigned ContentSize = Die->getSize() +
sizeof(int16_t) + // DWARF version number
sizeof(int32_t) + // Offset Into Abbrev. Section
sizeof(int8_t) + // Pointer Size (in bytes)
sizeof(int32_t); // FIXME - extra pad for gdb bug.
Asm->EmitInt32(ContentSize); Asm->EOL("Length of Compilation Unit Info");
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF version number");
EmitSectionOffset("abbrev_begin", "section_abbrev", 0, 0, true, false);
Asm->EOL("Offset Into Abbrev. Section");
Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Address Size (in bytes)");
EmitDIE(Die);
// FIXME - extra padding for gdb bug.
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
EmitLabel("info_end", Unit->getID());
Asm->EOL();
}
void EmitDebugInfo() {
// Start debug info section.
Asm->SwitchToDataSection(TAI->getDwarfInfoSection());
if (MainCU) {
EmitDebugInfoPerCU(MainCU);
return;
}
for (unsigned i = 0, e = CompileUnits.size(); i != e; ++i)
EmitDebugInfoPerCU(CompileUnits[i]);
}
/// EmitAbbreviations - Emit the abbreviation section.
///
void EmitAbbreviations() const {
// Check to see if it is worth the effort.
if (!Abbreviations.empty()) {
// Start the debug abbrev section.
Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection());
EmitLabel("abbrev_begin", 0);
// For each abbrevation.
for (unsigned i = 0, N = Abbreviations.size(); i < N; ++i) {
// Get abbreviation data
const DIEAbbrev *Abbrev = Abbreviations[i];
// Emit the abbrevations code (base 1 index.)
Asm->EmitULEB128Bytes(Abbrev->getNumber());
Asm->EOL("Abbreviation Code");
// Emit the abbreviations data.
Abbrev->Emit(*this);
Asm->EOL();
}
// Mark end of abbreviations.
Asm->EmitULEB128Bytes(0); Asm->EOL("EOM(3)");
EmitLabel("abbrev_end", 0);
Asm->EOL();
}
}
/// EmitEndOfLineMatrix - Emit the last address of the section and the end of
/// the line matrix.
///
void EmitEndOfLineMatrix(unsigned SectionEnd) {
// Define last address of section.
Asm->EmitInt8(0); Asm->EOL("Extended Op");
Asm->EmitInt8(TD->getPointerSize() + 1); Asm->EOL("Op size");
Asm->EmitInt8(DW_LNE_set_address); Asm->EOL("DW_LNE_set_address");
EmitReference("section_end", SectionEnd); Asm->EOL("Section end label");
// Mark end of matrix.
Asm->EmitInt8(0); Asm->EOL("DW_LNE_end_sequence");
Asm->EmitULEB128Bytes(1); Asm->EOL();
Asm->EmitInt8(1); Asm->EOL();
}
/// EmitDebugLines - Emit source line information.
///
void EmitDebugLines() {
// If the target is using .loc/.file, the assembler will be emitting the
// .debug_line table automatically.
if (TAI->hasDotLocAndDotFile())
return;
// Minimum line delta, thus ranging from -10..(255-10).
const int MinLineDelta = -(DW_LNS_fixed_advance_pc + 1);
// Maximum line delta, thus ranging from -10..(255-10).
const int MaxLineDelta = 255 + MinLineDelta;
// Start the dwarf line section.
Asm->SwitchToDataSection(TAI->getDwarfLineSection());
// Construct the section header.
EmitDifference("line_end", 0, "line_begin", 0, true);
Asm->EOL("Length of Source Line Info");
EmitLabel("line_begin", 0);
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF version number");
EmitDifference("line_prolog_end", 0, "line_prolog_begin", 0, true);
Asm->EOL("Prolog Length");
EmitLabel("line_prolog_begin", 0);
Asm->EmitInt8(1); Asm->EOL("Minimum Instruction Length");
Asm->EmitInt8(1); Asm->EOL("Default is_stmt_start flag");
Asm->EmitInt8(MinLineDelta); Asm->EOL("Line Base Value (Special Opcodes)");
Asm->EmitInt8(MaxLineDelta); Asm->EOL("Line Range Value (Special Opcodes)");
Asm->EmitInt8(-MinLineDelta); Asm->EOL("Special Opcode Base");
// Line number standard opcode encodings argument count
Asm->EmitInt8(0); Asm->EOL("DW_LNS_copy arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_advance_pc arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_advance_line arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_set_file arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_set_column arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_negate_stmt arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_set_basic_block arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_const_add_pc arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_fixed_advance_pc arg count");
// Emit directories.
for (unsigned DI = 1, DE = getNumSourceDirectories()+1; DI != DE; ++DI) {
Asm->EmitString(getSourceDirectoryName(DI));
Asm->EOL("Directory");
}
Asm->EmitInt8(0); Asm->EOL("End of directories");
// Emit files.
for (unsigned SI = 1, SE = getNumSourceIds()+1; SI != SE; ++SI) {
// Remember source id starts at 1.
std::pair<unsigned, unsigned> Id = getSourceDirectoryAndFileIds(SI);
Asm->EmitString(getSourceFileName(Id.second));
Asm->EOL("Source");
Asm->EmitULEB128Bytes(Id.first);
Asm->EOL("Directory #");
Asm->EmitULEB128Bytes(0);
Asm->EOL("Mod date");
Asm->EmitULEB128Bytes(0);
Asm->EOL("File size");
}
Asm->EmitInt8(0); Asm->EOL("End of files");
EmitLabel("line_prolog_end", 0);
// A sequence for each text section.
unsigned SecSrcLinesSize = SectionSourceLines.size();
for (unsigned j = 0; j < SecSrcLinesSize; ++j) {
// Isolate current sections line info.
const std::vector<SrcLineInfo> &LineInfos = SectionSourceLines[j];
if (Asm->isVerbose()) {
const Section* S = SectionMap[j + 1];
O << '\t' << TAI->getCommentString() << " Section"
<< S->getName() << '\n';
} else
Asm->EOL();
// Dwarf assumes we start with first line of first source file.
unsigned Source = 1;
unsigned Line = 1;
// Construct rows of the address, source, line, column matrix.
for (unsigned i = 0, N = LineInfos.size(); i < N; ++i) {
const SrcLineInfo &LineInfo = LineInfos[i];
unsigned LabelID = MMI->MappedLabel(LineInfo.getLabelID());
if (!LabelID) continue;
if (!Asm->isVerbose())
Asm->EOL();
else {
std::pair<unsigned, unsigned> SourceID =
getSourceDirectoryAndFileIds(LineInfo.getSourceID());
O << '\t' << TAI->getCommentString() << ' '
<< getSourceDirectoryName(SourceID.first) << ' '
<< getSourceFileName(SourceID.second)
<<" :" << utostr_32(LineInfo.getLine()) << '\n';
}
// Define the line address.
Asm->EmitInt8(0); Asm->EOL("Extended Op");
Asm->EmitInt8(TD->getPointerSize() + 1); Asm->EOL("Op size");
Asm->EmitInt8(DW_LNE_set_address); Asm->EOL("DW_LNE_set_address");
EmitReference("label", LabelID); Asm->EOL("Location label");
// If change of source, then switch to the new source.
if (Source != LineInfo.getSourceID()) {
Source = LineInfo.getSourceID();
Asm->EmitInt8(DW_LNS_set_file); Asm->EOL("DW_LNS_set_file");
Asm->EmitULEB128Bytes(Source); Asm->EOL("New Source");
}
// If change of line.
if (Line != LineInfo.getLine()) {
// Determine offset.
int Offset = LineInfo.getLine() - Line;
int Delta = Offset - MinLineDelta;
// Update line.
Line = LineInfo.getLine();
// If delta is small enough and in range...
if (Delta >= 0 && Delta < (MaxLineDelta - 1)) {
// ... then use fast opcode.
Asm->EmitInt8(Delta - MinLineDelta); Asm->EOL("Line Delta");
} else {
// ... otherwise use long hand.
Asm->EmitInt8(DW_LNS_advance_line); Asm->EOL("DW_LNS_advance_line");
Asm->EmitSLEB128Bytes(Offset); Asm->EOL("Line Offset");
Asm->EmitInt8(DW_LNS_copy); Asm->EOL("DW_LNS_copy");
}
} else {
// Copy the previous row (different address or source)
Asm->EmitInt8(DW_LNS_copy); Asm->EOL("DW_LNS_copy");
}
}
EmitEndOfLineMatrix(j + 1);
}
if (SecSrcLinesSize == 0)
// Because we're emitting a debug_line section, we still need a line
// table. The linker and friends expect it to exist. If there's nothing to
// put into it, emit an empty table.
EmitEndOfLineMatrix(1);
EmitLabel("line_end", 0);
Asm->EOL();
}
/// EmitCommonDebugFrame - Emit common frame info into a debug frame section.
///
void EmitCommonDebugFrame() {
if (!TAI->doesDwarfRequireFrameSection())
return;
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize();
// Start the dwarf frame section.
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitLabel("debug_frame_common", 0);
EmitDifference("debug_frame_common_end", 0,
"debug_frame_common_begin", 0, true);
Asm->EOL("Length of Common Information Entry");
EmitLabel("debug_frame_common_begin", 0);
Asm->EmitInt32((int)DW_CIE_ID);
Asm->EOL("CIE Identifier Tag");
Asm->EmitInt8(DW_CIE_VERSION);
Asm->EOL("CIE Version");
Asm->EmitString("");
Asm->EOL("CIE Augmentation");
Asm->EmitULEB128Bytes(1);
Asm->EOL("CIE Code Alignment Factor");
Asm->EmitSLEB128Bytes(stackGrowth);
Asm->EOL("CIE Data Alignment Factor");
Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), false));
Asm->EOL("CIE RA Column");
std::vector<MachineMove> Moves;
RI->getInitialFrameState(Moves);
EmitFrameMoves(NULL, 0, Moves, false);
Asm->EmitAlignment(2, 0, 0, false);
EmitLabel("debug_frame_common_end", 0);
Asm->EOL();
}
/// EmitFunctionDebugFrame - Emit per function frame info into a debug frame
/// section.
void EmitFunctionDebugFrame(const FunctionDebugFrameInfo &DebugFrameInfo) {
if (!TAI->doesDwarfRequireFrameSection())
return;
// Start the dwarf frame section.
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitDifference("debug_frame_end", DebugFrameInfo.Number,
"debug_frame_begin", DebugFrameInfo.Number, true);
Asm->EOL("Length of Frame Information Entry");
EmitLabel("debug_frame_begin", DebugFrameInfo.Number);
EmitSectionOffset("debug_frame_common", "section_debug_frame",
0, 0, true, false);
Asm->EOL("FDE CIE offset");
EmitReference("func_begin", DebugFrameInfo.Number);
Asm->EOL("FDE initial location");
EmitDifference("func_end", DebugFrameInfo.Number,
"func_begin", DebugFrameInfo.Number);
Asm->EOL("FDE address range");
EmitFrameMoves("func_begin", DebugFrameInfo.Number, DebugFrameInfo.Moves,
false);
Asm->EmitAlignment(2, 0, 0, false);
EmitLabel("debug_frame_end", DebugFrameInfo.Number);
Asm->EOL();
}
void EmitDebugPubNamesPerCU(CompileUnit *Unit) {
EmitDifference("pubnames_end", Unit->getID(),
"pubnames_begin", Unit->getID(), true);
Asm->EOL("Length of Public Names Info");
EmitLabel("pubnames_begin", Unit->getID());
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF Version");
EmitSectionOffset("info_begin", "section_info",
Unit->getID(), 0, true, false);
Asm->EOL("Offset of Compilation Unit Info");
EmitDifference("info_end", Unit->getID(), "info_begin", Unit->getID(),
true);
Asm->EOL("Compilation Unit Length");
StringMap<DIE*> &Globals = Unit->getGlobals();
for (StringMap<DIE*>::const_iterator
GI = Globals.begin(), GE = Globals.end(); GI != GE; ++GI) {
const char *Name = GI->getKeyData();
DIE * Entity = GI->second;
Asm->EmitInt32(Entity->getOffset()); Asm->EOL("DIE offset");
Asm->EmitString(Name, strlen(Name)); Asm->EOL("External Name");
}
Asm->EmitInt32(0); Asm->EOL("End Mark");
EmitLabel("pubnames_end", Unit->getID());
Asm->EOL();
}
/// EmitDebugPubNames - Emit visible names into a debug pubnames section.
///
void EmitDebugPubNames() {
// Start the dwarf pubnames section.
Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection());
if (MainCU) {
EmitDebugPubNamesPerCU(MainCU);
return;
}
for (unsigned i = 0, e = CompileUnits.size(); i != e; ++i)
EmitDebugPubNamesPerCU(CompileUnits[i]);
}
/// EmitDebugStr - Emit visible names into a debug str section.
///
void EmitDebugStr() {
// Check to see if it is worth the effort.
if (!StringPool.empty()) {
// Start the dwarf str section.
Asm->SwitchToDataSection(TAI->getDwarfStrSection());
// For each of strings in the string pool.
for (unsigned StringID = 1, N = StringPool.size();
StringID <= N; ++StringID) {
// Emit a label for reference from debug information entries.
EmitLabel("string", StringID);
// Emit the string itself.
const std::string &String = StringPool[StringID];
Asm->EmitString(String); Asm->EOL();
}
Asm->EOL();
}
}
/// EmitDebugLoc - Emit visible names into a debug loc section.
///
void EmitDebugLoc() {
// Start the dwarf loc section.
Asm->SwitchToDataSection(TAI->getDwarfLocSection());
Asm->EOL();
}
/// EmitDebugARanges - Emit visible names into a debug aranges section.
///
void EmitDebugARanges() {
// Start the dwarf aranges section.
Asm->SwitchToDataSection(TAI->getDwarfARangesSection());
// FIXME - Mock up
#if 0
CompileUnit *Unit = GetBaseCompileUnit();
// Don't include size of length
Asm->EmitInt32(0x1c); Asm->EOL("Length of Address Ranges Info");
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("Dwarf Version");
EmitReference("info_begin", Unit->getID());
Asm->EOL("Offset of Compilation Unit Info");
Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Size of Address");
Asm->EmitInt8(0); Asm->EOL("Size of Segment Descriptor");
Asm->EmitInt16(0); Asm->EOL("Pad (1)");
Asm->EmitInt16(0); Asm->EOL("Pad (2)");
// Range 1
EmitReference("text_begin", 0); Asm->EOL("Address");
EmitDifference("text_end", 0, "text_begin", 0, true); Asm->EOL("Length");
Asm->EmitInt32(0); Asm->EOL("EOM (1)");
Asm->EmitInt32(0); Asm->EOL("EOM (2)");
#endif
Asm->EOL();
}
/// EmitDebugRanges - Emit visible names into a debug ranges section.
///
void EmitDebugRanges() {
// Start the dwarf ranges section.
Asm->SwitchToDataSection(TAI->getDwarfRangesSection());
Asm->EOL();
}
/// EmitDebugMacInfo - Emit visible names into a debug macinfo section.
///
void EmitDebugMacInfo() {
if (TAI->doesSupportMacInfoSection()) {
// Start the dwarf macinfo section.
Asm->SwitchToDataSection(TAI->getDwarfMacInfoSection());
Asm->EOL();
}
}
/// EmitDebugInlineInfo - Emit inline info using following format.
/// Section Header:
/// 1. length of section
/// 2. Dwarf version number
/// 3. address size.
///
/// Entries (one "entry" for each function that was inlined):
///
/// 1. offset into __debug_str section for MIPS linkage name, if exists;
/// otherwise offset into __debug_str for regular function name.
/// 2. offset into __debug_str section for regular function name.
/// 3. an unsigned LEB128 number indicating the number of distinct inlining
/// instances for the function.
///
/// The rest of the entry consists of a {die_offset, low_pc} pair for each
/// inlined instance; the die_offset points to the inlined_subroutine die in
/// the __debug_info section, and the low_pc is the starting address for the
/// inlining instance.
void EmitDebugInlineInfo() {
if (!TAI->doesDwarfUsesInlineInfoSection())
return;
if (!MainCU)
return;
Asm->SwitchToDataSection(TAI->getDwarfDebugInlineSection());
Asm->EOL();
EmitDifference("debug_inlined_end", 1,
"debug_inlined_begin", 1, true);
Asm->EOL("Length of Debug Inlined Information Entry");
EmitLabel("debug_inlined_begin", 1);
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("Dwarf Version");
Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Address Size (in bytes)");
for (DenseMap<GlobalVariable *, SmallVector<unsigned, 4> >::iterator
I = InlineInfo.begin(), E = InlineInfo.end(); I != E; ++I) {
GlobalVariable *GV = I->first;
SmallVector<unsigned, 4> &Labels = I->second;
DISubprogram SP(GV);
std::string Name;
std::string LName;
SP.getLinkageName(LName);
SP.getName(Name);
Asm->EmitString(LName.empty() ? Name : LName);
Asm->EOL("MIPS linkage name");
Asm->EmitString(Name); Asm->EOL("Function name");
Asm->EmitULEB128Bytes(Labels.size()); Asm->EOL("Inline count");
for (SmallVector<unsigned, 4>::iterator LI = Labels.begin(),
LE = Labels.end(); LI != LE; ++LI) {
DIE *SP = MainCU->getDieMapSlotFor(GV);
Asm->EmitInt32(SP->getOffset()); Asm->EOL("DIE offset");
if (TD->getPointerSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
PrintLabelName("label", *LI); Asm->EOL("low_pc");
}
}
EmitLabel("debug_inlined_end", 1);
Asm->EOL();
}
/// GetOrCreateSourceID - Look up the source id with the given directory and
/// source file names. If none currently exists, create a new id and insert it
/// in the SourceIds map. This can update DirectoryNames and SourceFileNames maps
/// as well.
unsigned GetOrCreateSourceID(const std::string &DirName,
const std::string &FileName) {
unsigned DId;
StringMap<unsigned>::iterator DI = DirectoryIdMap.find(DirName);
if (DI != DirectoryIdMap.end()) {
DId = DI->getValue();
} else {
DId = DirectoryNames.size() + 1;
DirectoryIdMap[DirName] = DId;
DirectoryNames.push_back(DirName);
}
unsigned FId;
StringMap<unsigned>::iterator FI = SourceFileIdMap.find(FileName);
if (FI != SourceFileIdMap.end()) {
FId = FI->getValue();
} else {
FId = SourceFileNames.size() + 1;
SourceFileIdMap[FileName] = FId;
SourceFileNames.push_back(FileName);
}
DenseMap<std::pair<unsigned, unsigned>, unsigned>::iterator SI =
SourceIdMap.find(std::make_pair(DId, FId));
if (SI != SourceIdMap.end())
return SI->second;
unsigned SrcId = SourceIds.size() + 1; // DW_AT_decl_file cannot be 0.
SourceIdMap[std::make_pair(DId, FId)] = SrcId;
SourceIds.push_back(std::make_pair(DId, FId));
return SrcId;
}
void ConstructCompileUnit(GlobalVariable *GV) {
DICompileUnit DIUnit(GV);
std::string Dir, FN, Prod;
unsigned ID = GetOrCreateSourceID(DIUnit.getDirectory(Dir),
DIUnit.getFilename(FN));
DIE *Die = new DIE(DW_TAG_compile_unit);
AddSectionOffset(Die, DW_AT_stmt_list, DW_FORM_data4,
DWLabel("section_line", 0), DWLabel("section_line", 0),
false);
AddString(Die, DW_AT_producer, DW_FORM_string, DIUnit.getProducer(Prod));
AddUInt(Die, DW_AT_language, DW_FORM_data1, DIUnit.getLanguage());
AddString(Die, DW_AT_name, DW_FORM_string, FN);
if (!Dir.empty())
AddString(Die, DW_AT_comp_dir, DW_FORM_string, Dir);
if (DIUnit.isOptimized())
AddUInt(Die, DW_AT_APPLE_optimized, DW_FORM_flag, 1);
std::string Flags;
DIUnit.getFlags(Flags);
if (!Flags.empty())
AddString(Die, DW_AT_APPLE_flags, DW_FORM_string, Flags);
unsigned RVer = DIUnit.getRunTimeVersion();
if (RVer)
AddUInt(Die, DW_AT_APPLE_major_runtime_vers, DW_FORM_data1, RVer);
CompileUnit *Unit = new CompileUnit(ID, Die);
if (DIUnit.isMain()) {
assert(!MainCU && "Multiple main compile units are found!");
MainCU = Unit;
}
CompileUnitMap[DIUnit.getGV()] = Unit;
CompileUnits.push_back(Unit);
}
/// ConstructCompileUnits - Create a compile unit DIEs.
void ConstructCompileUnits() {
GlobalVariable *Root = M->getGlobalVariable("llvm.dbg.compile_units");
if (!Root)
return;
assert(Root->hasLinkOnceLinkage() && Root->hasOneUse() &&
"Malformed compile unit descriptor anchor type");
Constant *RootC = cast<Constant>(*Root->use_begin());
assert(RootC->hasNUsesOrMore(1) &&
"Malformed compile unit descriptor anchor type");
for (Value::use_iterator UI = RootC->use_begin(), UE = Root->use_end();
UI != UE; ++UI)
for (Value::use_iterator UUI = UI->use_begin(), UUE = UI->use_end();
UUI != UUE; ++UUI) {
GlobalVariable *GV = cast<GlobalVariable>(*UUI);
ConstructCompileUnit(GV);
}
}
bool ConstructGlobalVariableDIE(GlobalVariable *GV) {
DIGlobalVariable DI_GV(GV);
CompileUnit *DW_Unit = MainCU;
if (!DW_Unit)
DW_Unit = &FindCompileUnit(DI_GV.getCompileUnit());
// Check for pre-existence.
DIE *&Slot = DW_Unit->getDieMapSlotFor(DI_GV.getGV());
if (Slot)
return false;
DIE *VariableDie = CreateGlobalVariableDIE(DW_Unit, DI_GV);
// Add address.
DIEBlock *Block = new DIEBlock();
AddUInt(Block, 0, DW_FORM_data1, DW_OP_addr);
std::string GLN;
AddObjectLabel(Block, 0, DW_FORM_udata,
Asm->getGlobalLinkName(DI_GV.getGlobal(), GLN));
AddBlock(VariableDie, DW_AT_location, 0, Block);
// Add to map.
Slot = VariableDie;
// Add to context owner.
DW_Unit->getDie()->AddChild(VariableDie);
// Expose as global. FIXME - need to check external flag.
std::string Name;
DW_Unit->AddGlobal(DI_GV.getName(Name), VariableDie);
return true;
}
/// ConstructGlobalVariableDIEs - Create DIEs for each of the externally
/// visible global variables. Return true if at least one global DIE is
/// created.
bool ConstructGlobalVariableDIEs() {
GlobalVariable *Root = M->getGlobalVariable("llvm.dbg.global_variables");
if (!Root)
return false;
assert(Root->hasLinkOnceLinkage() && Root->hasOneUse() &&
"Malformed global variable descriptor anchor type");
Constant *RootC = cast<Constant>(*Root->use_begin());
assert(RootC->hasNUsesOrMore(1) &&
"Malformed global variable descriptor anchor type");
bool Result = false;
for (Value::use_iterator UI = RootC->use_begin(), UE = Root->use_end();
UI != UE; ++UI)
for (Value::use_iterator UUI = UI->use_begin(), UUE = UI->use_end();
UUI != UUE; ++UUI)
Result |= ConstructGlobalVariableDIE(cast<GlobalVariable>(*UUI));
return Result;
}
bool ConstructSubprogram(GlobalVariable *GV) {
DISubprogram SP(GV);
CompileUnit *Unit = MainCU;
if (!Unit)
Unit = &FindCompileUnit(SP.getCompileUnit());
// Check for pre-existence.
DIE *&Slot = Unit->getDieMapSlotFor(GV);
if (Slot)
return false;
if (!SP.isDefinition())
// This is a method declaration which will be handled while
// constructing class type.
return false;
DIE *SubprogramDie = CreateSubprogramDIE(Unit, SP);
// Add to map.
Slot = SubprogramDie;
// Add to context owner.
Unit->getDie()->AddChild(SubprogramDie);
// Expose as global.
std::string Name;
Unit->AddGlobal(SP.getName(Name), SubprogramDie);
return true;
}
/// ConstructSubprograms - Create DIEs for each of the externally visible
/// subprograms. Return true if at least one subprogram DIE is created.
bool ConstructSubprograms() {
GlobalVariable *Root = M->getGlobalVariable("llvm.dbg.subprograms");
if (!Root)
return false;
assert(Root->hasLinkOnceLinkage() && Root->hasOneUse() &&
"Malformed subprogram descriptor anchor type");
Constant *RootC = cast<Constant>(*Root->use_begin());
assert(RootC->hasNUsesOrMore(1) &&
"Malformed subprogram descriptor anchor type");
bool Result = false;
for (Value::use_iterator UI = RootC->use_begin(), UE = Root->use_end();
UI != UE; ++UI)
for (Value::use_iterator UUI = UI->use_begin(), UUE = UI->use_end();
UUI != UUE; ++UUI)
Result |= ConstructSubprogram(cast<GlobalVariable>(*UUI));
return Result;
}
public:
//===--------------------------------------------------------------------===//
// Main entry points.
//
DwarfDebug(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T)
: Dwarf(OS, A, T, "dbg"), MainCU(0),
AbbreviationsSet(InitAbbreviationsSetSize), Abbreviations(),
ValuesSet(InitValuesSetSize), Values(), StringPool(), SectionMap(),
SectionSourceLines(), didInitial(false), shouldEmit(false),
FunctionDbgScope(0), DebugTimer(0) {
if (TimePassesIsEnabled)
DebugTimer = new Timer("Dwarf Debug Writer",
getDwarfTimerGroup());
}
virtual ~DwarfDebug() {
for (unsigned j = 0, M = Values.size(); j < M; ++j)
delete Values[j];
for (DenseMap<const GlobalVariable *, DbgScope *>::iterator
I = AbstractInstanceRootMap.begin(),
E = AbstractInstanceRootMap.end(); I != E;++I)
delete I->second;
delete DebugTimer;
}
/// ShouldEmitDwarfDebug - Returns true if Dwarf debugging declarations should
/// be emitted.
bool ShouldEmitDwarfDebug() const { return shouldEmit; }
/// SetDebugInfo - Create global DIEs and emit initial debug info sections.
/// This is inovked by the target AsmPrinter.
void SetDebugInfo(MachineModuleInfo *mmi) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
// Create all the compile unit DIEs.
ConstructCompileUnits();
if (CompileUnits.empty()) {
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return;
}
// Create DIEs for each of the externally visible global variables.
bool globalDIEs = ConstructGlobalVariableDIEs();
// Create DIEs for each of the externally visible subprograms.
bool subprogramDIEs = ConstructSubprograms();
// If there is not any debug info available for any global variables
// and any subprograms then there is not any debug info to emit.
if (!globalDIEs && !subprogramDIEs) {
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return;
}
MMI = mmi;
shouldEmit = true;
MMI->setDebugInfoAvailability(true);
// Prime section data.
SectionMap.insert(TAI->getTextSection());
// Print out .file directives to specify files for .loc directives. These
// are printed out early so that they precede any .loc directives.
if (TAI->hasDotLocAndDotFile()) {
for (unsigned i = 1, e = getNumSourceIds()+1; i != e; ++i) {
// Remember source id starts at 1.
std::pair<unsigned, unsigned> Id = getSourceDirectoryAndFileIds(i);
sys::Path FullPath(getSourceDirectoryName(Id.first));
bool AppendOk =
FullPath.appendComponent(getSourceFileName(Id.second));
assert(AppendOk && "Could not append filename to directory!");
AppendOk = false;
Asm->EmitFile(i, FullPath.toString());
Asm->EOL();
}
}
// Emit initial sections
EmitInitial();
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
}
/// BeginModule - Emit all Dwarf sections that should come prior to the
/// content.
void BeginModule(Module *M) {
this->M = M;
}
/// EndModule - Emit all Dwarf sections that should come after the content.
///
void EndModule() {
if (!ShouldEmitDwarfDebug())
return;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
// Standard sections final addresses.
Asm->SwitchToSection(TAI->getTextSection());
EmitLabel("text_end", 0);
Asm->SwitchToSection(TAI->getDataSection());
EmitLabel("data_end", 0);
// End text sections.
for (unsigned i = 1, N = SectionMap.size(); i <= N; ++i) {
Asm->SwitchToSection(SectionMap[i]);
EmitLabel("section_end", i);
}
// Emit common frame information.
EmitCommonDebugFrame();
// Emit function debug frame information
for (std::vector<FunctionDebugFrameInfo>::iterator I = DebugFrames.begin(),
E = DebugFrames.end(); I != E; ++I)
EmitFunctionDebugFrame(*I);
// Compute DIE offsets and sizes.
SizeAndOffsets();
// Emit all the DIEs into a debug info section
EmitDebugInfo();
// Corresponding abbreviations into a abbrev section.
EmitAbbreviations();
// Emit source line correspondence into a debug line section.
EmitDebugLines();
// Emit info into a debug pubnames section.
EmitDebugPubNames();
// Emit info into a debug str section.
EmitDebugStr();
// Emit info into a debug loc section.
EmitDebugLoc();
// Emit info into a debug aranges section.
EmitDebugARanges();
// Emit info into a debug ranges section.
EmitDebugRanges();
// Emit info into a debug macinfo section.
EmitDebugMacInfo();
// Emit inline info.
EmitDebugInlineInfo();
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
}
/// BeginFunction - Gather pre-function debug information. Assumes being
/// emitted immediately after the function entry point.
void BeginFunction(MachineFunction *MF) {
this->MF = MF;
if (!ShouldEmitDwarfDebug()) return;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
// Begin accumulating function debug information.
MMI->BeginFunction(MF);
// Assumes in correct section after the entry point.
EmitLabel("func_begin", ++SubprogramCount);
// Emit label for the implicitly defined dbg.stoppoint at the start of
// the function.
DebugLoc FDL = MF->getDefaultDebugLoc();
if (!FDL.isUnknown()) {
DebugLocTuple DLT = MF->getDebugLocTuple(FDL);
unsigned LabelID = RecordSourceLine(DLT.Line, DLT.Col,
DICompileUnit(DLT.CompileUnit));
Asm->printLabel(LabelID);
}
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
}
/// EndFunction - Gather and emit post-function debug information.
///
void EndFunction(MachineFunction *MF) {
if (!ShouldEmitDwarfDebug()) return;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
// Define end label for subprogram.
EmitLabel("func_end", SubprogramCount);
// Get function line info.
if (!Lines.empty()) {
// Get section line info.
unsigned ID = SectionMap.insert(Asm->CurrentSection_);
if (SectionSourceLines.size() < ID) SectionSourceLines.resize(ID);
std::vector<SrcLineInfo> &SectionLineInfos = SectionSourceLines[ID-1];
// Append the function info to section info.
SectionLineInfos.insert(SectionLineInfos.end(),
Lines.begin(), Lines.end());
}
// Construct the DbgScope for abstract instances.
for (SmallVector<DbgScope *, 32>::iterator
I = AbstractInstanceRootList.begin(),
E = AbstractInstanceRootList.end(); I != E; ++I)
ConstructAbstractDbgScope(*I);
// Construct scopes for subprogram.
if (FunctionDbgScope)
ConstructFunctionDbgScope(FunctionDbgScope);
else
// FIXME: This is wrong. We are essentially getting past a problem with
// debug information not being able to handle unreachable blocks that have
// debug information in them. In particular, those unreachable blocks that
// have "region end" info in them. That situation results in the "root
// scope" not being created. If that's the case, then emit a "default"
// scope, i.e., one that encompasses the whole function. This isn't
// desirable. And a better way of handling this (and all of the debugging
// information) needs to be explored.
ConstructDefaultDbgScope(MF);
DebugFrames.push_back(FunctionDebugFrameInfo(SubprogramCount,
MMI->getFrameMoves()));
// Clear debug info
if (FunctionDbgScope) {
delete FunctionDbgScope;
DbgScopeMap.clear();
DbgConcreteScopeMap.clear();
InlinedVariableScopes.clear();
FunctionDbgScope = NULL;
LexicalScopeStack.clear();
AbstractInstanceRootList.clear();
}
Lines.clear();
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
}
/// RecordSourceLine - Records location information and associates it with a
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
unsigned RecordSourceLine(Value *V, unsigned Line, unsigned Col) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
CompileUnit *Unit = CompileUnitMap[V];
assert(Unit && "Unable to find CompileUnit");
unsigned ID = MMI->NextLabelID();
Lines.push_back(SrcLineInfo(Line, Col, Unit->getID(), ID));
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return ID;
}
/// RecordSourceLine - Records location information and associates it with a
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
unsigned RecordSourceLine(unsigned Line, unsigned Col, DICompileUnit CU) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
std::string Dir, Fn;
unsigned Src = GetOrCreateSourceID(CU.getDirectory(Dir),
CU.getFilename(Fn));
unsigned ID = MMI->NextLabelID();
Lines.push_back(SrcLineInfo(Line, Col, Src, ID));
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return ID;
}
/// getRecordSourceLineCount - Return the number of source lines in the debug
/// info.
unsigned getRecordSourceLineCount() const {
return Lines.size();
}
/// getOrCreateSourceID - Public version of GetOrCreateSourceID. This can be
/// timed. Look up the source id with the given directory and source file
/// names. If none currently exists, create a new id and insert it in the
/// SourceIds map. This can update DirectoryNames and SourceFileNames maps as
/// well.
unsigned getOrCreateSourceID(const std::string &DirName,
const std::string &FileName) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
unsigned SrcId = GetOrCreateSourceID(DirName, FileName);
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return SrcId;
}
/// RecordRegionStart - Indicate the start of a region.
unsigned RecordRegionStart(GlobalVariable *V) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
DbgScope *Scope = getOrCreateScope(V);
unsigned ID = MMI->NextLabelID();
if (!Scope->getStartLabelID()) Scope->setStartLabelID(ID);
LexicalScopeStack.push_back(Scope);
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return ID;
}
/// RecordRegionEnd - Indicate the end of a region.
unsigned RecordRegionEnd(GlobalVariable *V) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
DbgScope *Scope = getOrCreateScope(V);
unsigned ID = MMI->NextLabelID();
Scope->setEndLabelID(ID);
if (LexicalScopeStack.size() != 0)
LexicalScopeStack.pop_back();
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return ID;
}
/// RecordVariable - Indicate the declaration of a local variable.
void RecordVariable(GlobalVariable *GV, unsigned FrameIndex,
const MachineInstr *MI) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
DIDescriptor Desc(GV);
DbgScope *Scope = NULL;
if (Desc.getTag() == DW_TAG_variable) {
// GV is a global variable.
DIGlobalVariable DG(GV);
Scope = getOrCreateScope(DG.getContext().getGV());
} else {
DenseMap<const MachineInstr *, DbgScope *>::iterator
SI = InlinedVariableScopes.find(MI);
if (SI != InlinedVariableScopes.end()) {
// or GV is an inlined local variable.
Scope = SI->second;
} else {
DIVariable DV(GV);
GlobalVariable *V = DV.getContext().getGV();
// FIXME: The code that checks for the inlined local variable is a hack!
DenseMap<const GlobalVariable *, DbgScope *>::iterator
AI = AbstractInstanceRootMap.find(V);
if (AI != AbstractInstanceRootMap.end())
// or GV is an inlined local variable.
Scope = AI->second;
else
// or GV is a local variable.
Scope = getOrCreateScope(V);
}
}
assert(Scope && "Unable to find variable' scope");
DbgVariable *DV = new DbgVariable(DIVariable(GV), FrameIndex);
Scope->AddVariable(DV);
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
}
//// RecordInlinedFnStart - Indicate the start of inlined subroutine.
unsigned RecordInlinedFnStart(DISubprogram &SP, DICompileUnit CU,
unsigned Line, unsigned Col) {
unsigned LabelID = MMI->NextLabelID();
if (!TAI->doesDwarfUsesInlineInfoSection())
return LabelID;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
GlobalVariable *GV = SP.getGV();
DenseMap<const GlobalVariable *, DbgScope *>::iterator
II = AbstractInstanceRootMap.find(GV);
if (II == AbstractInstanceRootMap.end()) {
// Create an abstract instance entry for this inlined function if it
// doesn't already exist.
DbgScope *Scope = new DbgScope(NULL, DIDescriptor(GV));
// Get the compile unit context.
CompileUnit *Unit = &FindCompileUnit(SP.getCompileUnit());
DIE *SPDie = Unit->getDieMapSlotFor(GV);
if (!SPDie)
SPDie = CreateSubprogramDIE(Unit, SP);
// Mark as being inlined. This makes this subprogram entry an abstract
// instance root.
// FIXME: Our debugger doesn't care about the value of DW_AT_inline, only
// that it's defined. It probably won't change in the future, but this
// could be more elegant.
AddUInt(SPDie, DW_AT_inline, 0, DW_INL_declared_not_inlined);
AbstractInstanceRootMap[GV] = Scope;
AbstractInstanceRootList.push_back(Scope);
}
// Create a concrete inlined instance for this inlined function.
DbgConcreteScope *ConcreteScope = new DbgConcreteScope(DIDescriptor(GV));
DIE *ScopeDie = new DIE(DW_TAG_inlined_subroutine);
CompileUnit *Unit = &FindCompileUnit(SP.getCompileUnit());
ScopeDie->setAbstractCompileUnit(Unit);
DIE *Origin = Unit->getDieMapSlotFor(GV);
AddDIEntry(ScopeDie, DW_AT_abstract_origin, DW_FORM_ref4, Origin);
AddUInt(ScopeDie, DW_AT_call_file, 0, Unit->getID());
AddUInt(ScopeDie, DW_AT_call_line, 0, Line);
AddUInt(ScopeDie, DW_AT_call_column, 0, Col);
ConcreteScope->setDie(ScopeDie);
ConcreteScope->setStartLabelID(LabelID);
MMI->RecordUsedDbgLabel(LabelID);
LexicalScopeStack.back()->AddConcreteInst(ConcreteScope);
// Keep track of the scope that's inlined into this function.
DenseMap<GlobalVariable *, SmallVector<DbgConcreteScope *, 8> >::iterator
SI = DbgConcreteScopeMap.find(GV);
if (SI == DbgConcreteScopeMap.end())
DbgConcreteScopeMap[GV].push_back(ConcreteScope);
else
SI->second.push_back(ConcreteScope);
// Track the start label for this inlined function.
DenseMap<GlobalVariable *, SmallVector<unsigned, 4> >::iterator
I = InlineInfo.find(GV);
if (I == InlineInfo.end())
InlineInfo[GV].push_back(LabelID);
else
I->second.push_back(LabelID);
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return LabelID;
}
/// RecordInlinedFnEnd - Indicate the end of inlined subroutine.
unsigned RecordInlinedFnEnd(DISubprogram &SP) {
if (!TAI->doesDwarfUsesInlineInfoSection())
return 0;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
GlobalVariable *GV = SP.getGV();
DenseMap<GlobalVariable *, SmallVector<DbgConcreteScope *, 8> >::iterator
I = DbgConcreteScopeMap.find(GV);
if (I == DbgConcreteScopeMap.end()) {
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return 0;
}
SmallVector<DbgConcreteScope *, 8> &Scopes = I->second;
assert(!Scopes.empty() && "We should have at least one debug scope!");
DbgConcreteScope *Scope = Scopes.back(); Scopes.pop_back();
unsigned ID = MMI->NextLabelID();
MMI->RecordUsedDbgLabel(ID);
Scope->setEndLabelID(ID);
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return ID;
}
/// RecordVariableScope - Record scope for the variable declared by
/// DeclareMI. DeclareMI must describe TargetInstrInfo::DECLARE.
/// Record scopes for only inlined subroutine variables. Other
/// variables' scopes are determined during RecordVariable().
void RecordVariableScope(DIVariable &DV, const MachineInstr *DeclareMI) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
DISubprogram SP(DV.getContext().getGV());
if (SP.isNull()) {
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
return;
}
DenseMap<GlobalVariable *, SmallVector<DbgConcreteScope *, 8> >::iterator
I = DbgConcreteScopeMap.find(SP.getGV());
if (I != DbgConcreteScopeMap.end())
InlinedVariableScopes[DeclareMI] = I->second.back();
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
}
};
//===----------------------------------------------------------------------===//
/// DwarfException - Emits Dwarf exception handling directives.
///
class DwarfException : public Dwarf {
struct FunctionEHFrameInfo {
std::string FnName;
unsigned Number;
unsigned PersonalityIndex;
bool hasCalls;
bool hasLandingPads;
std::vector<MachineMove> Moves;
const Function * function;
FunctionEHFrameInfo(const std::string &FN, unsigned Num, unsigned P,
bool hC, bool hL,
const std::vector<MachineMove> &M,
const Function *f):
FnName(FN), Number(Num), PersonalityIndex(P),
hasCalls(hC), hasLandingPads(hL), Moves(M), function (f) { }
};
std::vector<FunctionEHFrameInfo> EHFrames;
/// shouldEmitTable - Per-function flag to indicate if EH tables should
/// be emitted.
bool shouldEmitTable;
/// shouldEmitMoves - Per-function flag to indicate if frame moves info
/// should be emitted.
bool shouldEmitMoves;
/// shouldEmitTableModule - Per-module flag to indicate if EH tables
/// should be emitted.
bool shouldEmitTableModule;
/// shouldEmitFrameModule - Per-module flag to indicate if frame moves
/// should be emitted.
bool shouldEmitMovesModule;
/// ExceptionTimer - Timer for the Dwarf exception writer.
Timer *ExceptionTimer;
/// EmitCommonEHFrame - Emit the common eh unwind frame.
///
void EmitCommonEHFrame(const Function *Personality, unsigned Index) {
// Size and sign of stack growth.
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize();
// Begin eh frame section.
Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
if (!TAI->doesRequireNonLocalEHFrameLabel())
O << TAI->getEHGlobalPrefix();
O << "EH_frame" << Index << ":\n";
EmitLabel("section_eh_frame", Index);
// Define base labels.
EmitLabel("eh_frame_common", Index);
// Define the eh frame length.
EmitDifference("eh_frame_common_end", Index,
"eh_frame_common_begin", Index, true);
Asm->EOL("Length of Common Information Entry");
// EH frame header.
EmitLabel("eh_frame_common_begin", Index);
Asm->EmitInt32((int)0);
Asm->EOL("CIE Identifier Tag");
Asm->EmitInt8(DW_CIE_VERSION);
Asm->EOL("CIE Version");
// The personality presence indicates that language specific information
// will show up in the eh frame.
Asm->EmitString(Personality ? "zPLR" : "zR");
Asm->EOL("CIE Augmentation");
// Round out reader.
Asm->EmitULEB128Bytes(1);
Asm->EOL("CIE Code Alignment Factor");
Asm->EmitSLEB128Bytes(stackGrowth);
Asm->EOL("CIE Data Alignment Factor");
Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
Asm->EOL("CIE Return Address Column");
// If there is a personality, we need to indicate the functions location.
if (Personality) {
Asm->EmitULEB128Bytes(7);
Asm->EOL("Augmentation Size");
if (TAI->getNeedsIndirectEncoding()) {
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4 | DW_EH_PE_indirect);
Asm->EOL("Personality (pcrel sdata4 indirect)");
} else {
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("Personality (pcrel sdata4)");
}
PrintRelDirective(true);
O << TAI->getPersonalityPrefix();
Asm->EmitExternalGlobal((const GlobalVariable *)(Personality));
O << TAI->getPersonalitySuffix();
if (strcmp(TAI->getPersonalitySuffix(), "+4@GOTPCREL"))
O << "-" << TAI->getPCSymbol();
Asm->EOL("Personality");
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("LSDA Encoding (pcrel sdata4)");
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("FDE Encoding (pcrel sdata4)");
} else {
Asm->EmitULEB128Bytes(1);
Asm->EOL("Augmentation Size");
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("FDE Encoding (pcrel sdata4)");
}
// Indicate locations of general callee saved registers in frame.
std::vector<MachineMove> Moves;
RI->getInitialFrameState(Moves);
EmitFrameMoves(NULL, 0, Moves, true);
// On Darwin the linker honors the alignment of eh_frame, which means it
// must be 8-byte on 64-bit targets to match what gcc does. Otherwise
// you get holes which confuse readers of eh_frame.
Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
0, 0, false);
EmitLabel("eh_frame_common_end", Index);
Asm->EOL();
}
/// EmitEHFrame - Emit function exception frame information.
///
void EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
Function::LinkageTypes linkage = EHFrameInfo.function->getLinkage();
assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
"Should not emit 'available externally' functions at all");
Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
// Externally visible entry into the functions eh frame info.
// If the corresponding function is static, this should not be
// externally visible.
if (linkage != Function::InternalLinkage &&
linkage != Function::PrivateLinkage) {
if (const char *GlobalEHDirective = TAI->getGlobalEHDirective())
O << GlobalEHDirective << EHFrameInfo.FnName << "\n";
}
// If corresponding function is weak definition, this should be too.
if ((linkage == Function::WeakAnyLinkage ||
linkage == Function::WeakODRLinkage ||
linkage == Function::LinkOnceAnyLinkage ||
linkage == Function::LinkOnceODRLinkage) &&
TAI->getWeakDefDirective())
O << TAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
// If there are no calls then you can't unwind. This may mean we can
// omit the EH Frame, but some environments do not handle weak absolute
// symbols.
// If UnwindTablesMandatory is set we cannot do this optimization; the
// unwind info is to be available for non-EH uses.
if (!EHFrameInfo.hasCalls &&
!UnwindTablesMandatory &&
((linkage != Function::WeakAnyLinkage &&
linkage != Function::WeakODRLinkage &&
linkage != Function::LinkOnceAnyLinkage &&
linkage != Function::LinkOnceODRLinkage) ||
!TAI->getWeakDefDirective() ||
TAI->getSupportsWeakOmittedEHFrame()))
{
O << EHFrameInfo.FnName << " = 0\n";
// This name has no connection to the function, so it might get
// dead-stripped when the function is not, erroneously. Prohibit
// dead-stripping unconditionally.
if (const char *UsedDirective = TAI->getUsedDirective())
O << UsedDirective << EHFrameInfo.FnName << "\n\n";
} else {
O << EHFrameInfo.FnName << ":\n";
// EH frame header.
EmitDifference("eh_frame_end", EHFrameInfo.Number,
"eh_frame_begin", EHFrameInfo.Number, true);
Asm->EOL("Length of Frame Information Entry");
EmitLabel("eh_frame_begin", EHFrameInfo.Number);
if (TAI->doesRequireNonLocalEHFrameLabel()) {
PrintRelDirective(true, true);
PrintLabelName("eh_frame_begin", EHFrameInfo.Number);
if (!TAI->isAbsoluteEHSectionOffsets())
O << "-EH_frame" << EHFrameInfo.PersonalityIndex;
} else {
EmitSectionOffset("eh_frame_begin", "eh_frame_common",
EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
true, true, false);
}
Asm->EOL("FDE CIE offset");
EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
Asm->EOL("FDE initial location");
EmitDifference("eh_func_end", EHFrameInfo.Number,
"eh_func_begin", EHFrameInfo.Number, true);
Asm->EOL("FDE address range");
// If there is a personality and landing pads then point to the language
// specific data area in the exception table.
if (EHFrameInfo.PersonalityIndex) {
Asm->EmitULEB128Bytes(4);
Asm->EOL("Augmentation size");
if (EHFrameInfo.hasLandingPads)
EmitReference("exception", EHFrameInfo.Number, true, true);
else
Asm->EmitInt32((int)0);
Asm->EOL("Language Specific Data Area");
} else {
Asm->EmitULEB128Bytes(0);
Asm->EOL("Augmentation size");
}
// Indicate locations of function specific callee saved registers in
// frame.
EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
true);
// On Darwin the linker honors the alignment of eh_frame, which means it
// must be 8-byte on 64-bit targets to match what gcc does. Otherwise
// you get holes which confuse readers of eh_frame.
Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
0, 0, false);
EmitLabel("eh_frame_end", EHFrameInfo.Number);
// If the function is marked used, this table should be also. We cannot
// make the mark unconditional in this case, since retaining the table
// also retains the function in this case, and there is code around
// that depends on unused functions (calling undefined externals) being
// dead-stripped to link correctly. Yes, there really is.
if (MMI->getUsedFunctions().count(EHFrameInfo.function))
if (const char *UsedDirective = TAI->getUsedDirective())
O << UsedDirective << EHFrameInfo.FnName << "\n\n";
}
}
/// EmitExceptionTable - Emit landing pads and actions.
///
/// The general organization of the table is complex, but the basic concepts
/// are easy. First there is a header which describes the location and
/// organization of the three components that follow.
/// 1. The landing pad site information describes the range of code covered
/// by the try. In our case it's an accumulation of the ranges covered
/// by the invokes in the try. There is also a reference to the landing
/// pad that handles the exception once processed. Finally an index into
/// the actions table.
/// 2. The action table, in our case, is composed of pairs of type ids
/// and next action offset. Starting with the action index from the
/// landing pad site, each type Id is checked for a match to the current
/// exception. If it matches then the exception and type id are passed
/// on to the landing pad. Otherwise the next action is looked up. This
/// chain is terminated with a next action of zero. If no type id is
/// found the the frame is unwound and handling continues.
/// 3. Type id table contains references to all the C++ typeinfo for all
/// catches in the function. This tables is reversed indexed base 1.
/// SharedTypeIds - How many leading type ids two landing pads have in common.
static unsigned SharedTypeIds(const LandingPadInfo *L,
const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
unsigned Count = 0;
for (; Count != MinSize; ++Count)
if (LIds[Count] != RIds[Count])
return Count;
return Count;
}
/// PadLT - Order landing pads lexicographically by type id.
static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
for (unsigned i = 0; i != MinSize; ++i)
if (LIds[i] != RIds[i])
return LIds[i] < RIds[i];
return LSize < RSize;
}
struct KeyInfo {
static inline unsigned getEmptyKey() { return -1U; }
static inline unsigned getTombstoneKey() { return -2U; }
static unsigned getHashValue(const unsigned &Key) { return Key; }
static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
static bool isPod() { return true; }
};
/// ActionEntry - Structure describing an entry in the actions table.
struct ActionEntry {
int ValueForTypeID; // The value to write - may not be equal to the type id.
int NextAction;
struct ActionEntry *Previous;
};
/// PadRange - Structure holding a try-range and the associated landing pad.
struct PadRange {
// The index of the landing pad.
unsigned PadIndex;
// The index of the begin and end labels in the landing pad's label lists.
unsigned RangeIndex;
};
typedef DenseMap<unsigned, PadRange, KeyInfo> RangeMapType;
/// CallSiteEntry - Structure describing an entry in the call-site table.
struct CallSiteEntry {
// The 'try-range' is BeginLabel .. EndLabel.
unsigned BeginLabel; // zero indicates the start of the function.
unsigned EndLabel; // zero indicates the end of the function.
// The landing pad starts at PadLabel.
unsigned PadLabel; // zero indicates that there is no landing pad.
unsigned Action;
};
void EmitExceptionTable() {
const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
if (PadInfos.empty()) return;
// Sort the landing pads in order of their type ids. This is used to fold
// duplicate actions.
SmallVector<const LandingPadInfo *, 64> LandingPads;
LandingPads.reserve(PadInfos.size());
for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
LandingPads.push_back(&PadInfos[i]);
std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
// Negative type ids index into FilterIds, positive type ids index into
// TypeInfos. The value written for a positive type id is just the type
// id itself. For a negative type id, however, the value written is the
// (negative) byte offset of the corresponding FilterIds entry. The byte
// offset is usually equal to the type id, because the FilterIds entries
// are written using a variable width encoding which outputs one byte per
// entry as long as the value written is not too large, but can differ.
// This kind of complication does not occur for positive type ids because
// type infos are output using a fixed width encoding.
// FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
SmallVector<int, 16> FilterOffsets;
FilterOffsets.reserve(FilterIds.size());
int Offset = -1;
for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
E = FilterIds.end(); I != E; ++I) {
FilterOffsets.push_back(Offset);
Offset -= TargetAsmInfo::getULEB128Size(*I);
}
// Compute the actions table and gather the first action index for each
// landing pad site.
SmallVector<ActionEntry, 32> Actions;
SmallVector<unsigned, 64> FirstActions;
FirstActions.reserve(LandingPads.size());
int FirstAction = 0;
unsigned SizeActions = 0;
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LP = LandingPads[i];
const std::vector<int> &TypeIds = LP->TypeIds;
const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
unsigned SizeSiteActions = 0;
if (NumShared < TypeIds.size()) {
unsigned SizeAction = 0;
ActionEntry *PrevAction = 0;
if (NumShared) {
const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
assert(Actions.size());
PrevAction = &Actions.back();
SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
SizeAction -=
TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
SizeAction += -PrevAction->NextAction;
PrevAction = PrevAction->Previous;
}
}
// Compute the actions.
for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
int TypeID = TypeIds[I];
assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
SizeSiteActions += SizeAction;
ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
Actions.push_back(Action);
PrevAction = &Actions.back();
}
// Record the first action of the landing pad site.
FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
} // else identical - re-use previous FirstAction
FirstActions.push_back(FirstAction);
// Compute this sites contribution to size.
SizeActions += SizeSiteActions;
}
// Compute the call-site table. The entry for an invoke has a try-range
// containing the call, a non-zero landing pad and an appropriate action.
// The entry for an ordinary call has a try-range containing the call and
// zero for the landing pad and the action. Calls marked 'nounwind' have
// no entry and must not be contained in the try-range of any entry - they
// form gaps in the table. Entries must be ordered by try-range address.
SmallVector<CallSiteEntry, 64> CallSites;
RangeMapType PadMap;
// Invokes and nounwind calls have entries in PadMap (due to being bracketed
// by try-range labels when lowered). Ordinary calls do not, so appropriate
// try-ranges for them need be deduced.
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LandingPad = LandingPads[i];
for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
unsigned BeginLabel = LandingPad->BeginLabels[j];
assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
PadRange P = { i, j };
PadMap[BeginLabel] = P;
}
}
// The end label of the previous invoke or nounwind try-range.
unsigned LastLabel = 0;
// Whether there is a potentially throwing instruction (currently this means
// an ordinary call) between the end of the previous try-range and now.
bool SawPotentiallyThrowing = false;
// Whether the last callsite entry was for an invoke.
bool PreviousIsInvoke = false;
// Visit all instructions in order of address.
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I) {
for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
MI != E; ++MI) {
if (!MI->isLabel()) {
SawPotentiallyThrowing |= MI->getDesc().isCall();
continue;
}
unsigned BeginLabel = MI->getOperand(0).getImm();
assert(BeginLabel && "Invalid label!");
// End of the previous try-range?
if (BeginLabel == LastLabel)
SawPotentiallyThrowing = false;
// Beginning of a new try-range?
RangeMapType::iterator L = PadMap.find(BeginLabel);
if (L == PadMap.end())
// Nope, it was just some random label.
continue;
PadRange P = L->second;
const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
"Inconsistent landing pad map!");
// If some instruction between the previous try-range and this one may
// throw, create a call-site entry with no landing pad for the region
// between the try-ranges.
if (SawPotentiallyThrowing) {
CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
CallSites.push_back(Site);
PreviousIsInvoke = false;
}
LastLabel = LandingPad->EndLabels[P.RangeIndex];
assert(BeginLabel && LastLabel && "Invalid landing pad!");
if (LandingPad->LandingPadLabel) {
// This try-range is for an invoke.
CallSiteEntry Site = {BeginLabel, LastLabel,
LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
// Try to merge with the previous call-site.
if (PreviousIsInvoke) {
CallSiteEntry &Prev = CallSites.back();
if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
// Extend the range of the previous entry.
Prev.EndLabel = Site.EndLabel;
continue;
}
}
// Otherwise, create a new call-site.
CallSites.push_back(Site);
PreviousIsInvoke = true;
} else {
// Create a gap.
PreviousIsInvoke = false;
}
}
}
// If some instruction between the previous try-range and the end of the
// function may throw, create a call-site entry with no landing pad for the
// region following the try-range.
if (SawPotentiallyThrowing) {
CallSiteEntry Site = {LastLabel, 0, 0, 0};
CallSites.push_back(Site);
}
// Final tallies.
// Call sites.
const unsigned SiteStartSize = sizeof(int32_t); // DW_EH_PE_udata4
const unsigned SiteLengthSize = sizeof(int32_t); // DW_EH_PE_udata4
const unsigned LandingPadSize = sizeof(int32_t); // DW_EH_PE_udata4
unsigned SizeSites = CallSites.size() * (SiteStartSize +
SiteLengthSize +
LandingPadSize);
for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
// Type infos.
const unsigned TypeInfoSize = TD->getPointerSize(); // DW_EH_PE_absptr
unsigned SizeTypes = TypeInfos.size() * TypeInfoSize;
unsigned TypeOffset = sizeof(int8_t) + // Call site format
TargetAsmInfo::getULEB128Size(SizeSites) + // Call-site table length
SizeSites + SizeActions + SizeTypes;
unsigned TotalSize = sizeof(int8_t) + // LPStart format
sizeof(int8_t) + // TType format
TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
TypeOffset;
unsigned SizeAlign = (4 - TotalSize) & 3;
// Begin the exception table.
Asm->SwitchToDataSection(TAI->getDwarfExceptionSection());
Asm->EmitAlignment(2, 0, 0, false);
O << "GCC_except_table" << SubprogramCount << ":\n";
for (unsigned i = 0; i != SizeAlign; ++i) {
Asm->EmitInt8(0);
Asm->EOL("Padding");
}
EmitLabel("exception", SubprogramCount);
// Emit the header.
Asm->EmitInt8(DW_EH_PE_omit);
Asm->EOL("LPStart format (DW_EH_PE_omit)");
Asm->EmitInt8(DW_EH_PE_absptr);
Asm->EOL("TType format (DW_EH_PE_absptr)");
Asm->EmitULEB128Bytes(TypeOffset);
Asm->EOL("TType base offset");
Asm->EmitInt8(DW_EH_PE_udata4);
Asm->EOL("Call site format (DW_EH_PE_udata4)");
Asm->EmitULEB128Bytes(SizeSites);
Asm->EOL("Call-site table length");
// Emit the landing pad site information.
for (unsigned i = 0; i < CallSites.size(); ++i) {
CallSiteEntry &S = CallSites[i];
const char *BeginTag;
unsigned BeginNumber;
if (!S.BeginLabel) {
BeginTag = "eh_func_begin";
BeginNumber = SubprogramCount;
} else {
BeginTag = "label";
BeginNumber = S.BeginLabel;
}
EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
true, true);
Asm->EOL("Region start");
if (!S.EndLabel) {
EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
true);
} else {
EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
}
Asm->EOL("Region length");
if (!S.PadLabel)
Asm->EmitInt32(0);
else
EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
true, true);
Asm->EOL("Landing pad");
Asm->EmitULEB128Bytes(S.Action);
Asm->EOL("Action");
}
// Emit the actions.
for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
ActionEntry &Action = Actions[I];
Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
Asm->EOL("TypeInfo index");
Asm->EmitSLEB128Bytes(Action.NextAction);
Asm->EOL("Next action");
}
// Emit the type ids.
for (unsigned M = TypeInfos.size(); M; --M) {
GlobalVariable *GV = TypeInfos[M - 1];
PrintRelDirective();
if (GV) {
std::string GLN;
O << Asm->getGlobalLinkName(GV, GLN);
} else {
O << "0";
}
Asm->EOL("TypeInfo");
}
// Emit the filter typeids.
for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
unsigned TypeID = FilterIds[j];
Asm->EmitULEB128Bytes(TypeID);
Asm->EOL("Filter TypeInfo index");
}
Asm->EmitAlignment(2, 0, 0, false);
}
public:
//===--------------------------------------------------------------------===//
// Main entry points.
//
DwarfException(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T)
: Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
shouldEmitTableModule(false), shouldEmitMovesModule(false),
ExceptionTimer(0) {
if (TimePassesIsEnabled)
ExceptionTimer = new Timer("Dwarf Exception Writer",
getDwarfTimerGroup());
}
virtual ~DwarfException() {
delete ExceptionTimer;
}
/// SetModuleInfo - Set machine module information when it's known that pass
/// manager has created it. Set by the target AsmPrinter.
void SetModuleInfo(MachineModuleInfo *mmi) {
MMI = mmi;
}
/// BeginModule - Emit all exception information that should come prior to the
/// content.
void BeginModule(Module *M) {
this->M = M;
}
/// EndModule - Emit all exception information that should come after the
/// content.
void EndModule() {
if (TimePassesIsEnabled)
ExceptionTimer->startTimer();
if (shouldEmitMovesModule || shouldEmitTableModule) {
const std::vector<Function *> Personalities = MMI->getPersonalities();
for (unsigned i = 0; i < Personalities.size(); ++i)
EmitCommonEHFrame(Personalities[i], i);
for (std::vector<FunctionEHFrameInfo>::iterator I = EHFrames.begin(),
E = EHFrames.end(); I != E; ++I)
EmitEHFrame(*I);
}
if (TimePassesIsEnabled)
ExceptionTimer->stopTimer();
}
/// BeginFunction - Gather pre-function exception information. Assumes being
/// emitted immediately after the function entry point.
void BeginFunction(MachineFunction *MF) {
if (TimePassesIsEnabled)
ExceptionTimer->startTimer();
this->MF = MF;
shouldEmitTable = shouldEmitMoves = false;
if (MMI && TAI->doesSupportExceptionHandling()) {
// Map all labels and get rid of any dead landing pads.
MMI->TidyLandingPads();
// If any landing pads survive, we need an EH table.
if (MMI->getLandingPads().size())
shouldEmitTable = true;
// See if we need frame move info.
if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
shouldEmitMoves = true;
if (shouldEmitMoves || shouldEmitTable)
// Assumes in correct section after the entry point.
EmitLabel("eh_func_begin", ++SubprogramCount);
}
shouldEmitTableModule |= shouldEmitTable;
shouldEmitMovesModule |= shouldEmitMoves;
if (TimePassesIsEnabled)
ExceptionTimer->stopTimer();
}
/// EndFunction - Gather and emit post-function exception information.
///
void EndFunction() {
if (TimePassesIsEnabled)
ExceptionTimer->startTimer();
if (shouldEmitMoves || shouldEmitTable) {
EmitLabel("eh_func_end", SubprogramCount);
EmitExceptionTable();
// Save EH frame information
std::string Name;
EHFrames.push_back(
FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF, Name),
SubprogramCount,
MMI->getPersonalityIndex(),
MF->getFrameInfo()->hasCalls(),
!MMI->getLandingPads().empty(),
MMI->getFrameMoves(),
MF->getFunction()));
}
if (TimePassesIsEnabled)
ExceptionTimer->stopTimer();
}
};
} // End of namespace llvm
//===----------------------------------------------------------------------===//
/// Emit - Print the abbreviation using the specified Dwarf writer.
///
void DIEAbbrev::Emit(const DwarfDebug &DD) const {
// Emit its Dwarf tag type.
DD.getAsm()->EmitULEB128Bytes(Tag);
DD.getAsm()->EOL(TagString(Tag));
// Emit whether it has children DIEs.
DD.getAsm()->EmitULEB128Bytes(ChildrenFlag);
DD.getAsm()->EOL(ChildrenString(ChildrenFlag));
// For each attribute description.
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
const DIEAbbrevData &AttrData = Data[i];
// Emit attribute type.
DD.getAsm()->EmitULEB128Bytes(AttrData.getAttribute());
DD.getAsm()->EOL(AttributeString(AttrData.getAttribute()));
// Emit form type.
DD.getAsm()->EmitULEB128Bytes(AttrData.getForm());
DD.getAsm()->EOL(FormEncodingString(AttrData.getForm()));
}
// Mark end of abbreviation.
DD.getAsm()->EmitULEB128Bytes(0); DD.getAsm()->EOL("EOM(1)");
DD.getAsm()->EmitULEB128Bytes(0); DD.getAsm()->EOL("EOM(2)");
}
#ifndef NDEBUG
void DIEAbbrev::print(std::ostream &O) {
O << "Abbreviation @"
<< std::hex << (intptr_t)this << std::dec
<< " "
<< TagString(Tag)
<< " "
<< ChildrenString(ChildrenFlag)
<< "\n";
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
O << " "
<< AttributeString(Data[i].getAttribute())
<< " "
<< FormEncodingString(Data[i].getForm())
<< "\n";
}
}
void DIEAbbrev::dump() { print(cerr); }
#endif
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
void DIEValue::dump() {
print(cerr);
}
#endif
//===----------------------------------------------------------------------===//
/// EmitValue - Emit integer of appropriate size.
///
void DIEInteger::EmitValue(DwarfDebug &DD, unsigned Form) {
switch (Form) {
case DW_FORM_flag: // Fall thru
case DW_FORM_ref1: // Fall thru
case DW_FORM_data1: DD.getAsm()->EmitInt8(Integer); break;
case DW_FORM_ref2: // Fall thru
case DW_FORM_data2: DD.getAsm()->EmitInt16(Integer); break;
case DW_FORM_ref4: // Fall thru
case DW_FORM_data4: DD.getAsm()->EmitInt32(Integer); break;
case DW_FORM_ref8: // Fall thru
case DW_FORM_data8: DD.getAsm()->EmitInt64(Integer); break;
case DW_FORM_udata: DD.getAsm()->EmitULEB128Bytes(Integer); break;
case DW_FORM_sdata: DD.getAsm()->EmitSLEB128Bytes(Integer); break;
default: assert(0 && "DIE Value form not supported yet"); break;
}
}
/// SizeOf - Determine size of integer value in bytes.
///
unsigned DIEInteger::SizeOf(const DwarfDebug &DD, unsigned Form) const {
switch (Form) {
case DW_FORM_flag: // Fall thru
case DW_FORM_ref1: // Fall thru
case DW_FORM_data1: return sizeof(int8_t);
case DW_FORM_ref2: // Fall thru
case DW_FORM_data2: return sizeof(int16_t);
case DW_FORM_ref4: // Fall thru
case DW_FORM_data4: return sizeof(int32_t);
case DW_FORM_ref8: // Fall thru
case DW_FORM_data8: return sizeof(int64_t);
case DW_FORM_udata: return TargetAsmInfo::getULEB128Size(Integer);
case DW_FORM_sdata: return TargetAsmInfo::getSLEB128Size(Integer);
default: assert(0 && "DIE Value form not supported yet"); break;
}
return 0;
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit string value.
///
void DIEString::EmitValue(DwarfDebug &DD, unsigned Form) {
DD.getAsm()->EmitString(Str);
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit label value.
///
void DIEDwarfLabel::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitReference(Label, false, IsSmall);
}
/// SizeOf - Determine size of label value in bytes.
///
unsigned DIEDwarfLabel::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetData()->getPointerSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit label value.
///
void DIEObjectLabel::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitReference(Label, false, IsSmall);
}
/// SizeOf - Determine size of label value in bytes.
///
unsigned DIEObjectLabel::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetData()->getPointerSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit delta value.
///
void DIESectionOffset::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitSectionOffset(Label.Tag, Section.Tag,
Label.Number, Section.Number, IsSmall, IsEH, UseSet);
}
/// SizeOf - Determine size of delta value in bytes.
///
unsigned DIESectionOffset::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetData()->getPointerSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit delta value.
///
void DIEDelta::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitDifference(LabelHi, LabelLo, IsSmall);
}
/// SizeOf - Determine size of delta value in bytes.
///
unsigned DIEDelta::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetData()->getPointerSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit debug information entry offset.
///
void DIEntry::EmitValue(DwarfDebug &DD, unsigned Form) {
DD.getAsm()->EmitInt32(Entry->getOffset());
}
//===----------------------------------------------------------------------===//
/// ComputeSize - calculate the size of the block.
///
unsigned DIEBlock::ComputeSize(DwarfDebug &DD) {
if (!Size) {
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev.getData();
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
Size += Values[i]->SizeOf(DD, AbbrevData[i].getForm());
}
}
return Size;
}
/// EmitValue - Emit block data.
///
void DIEBlock::EmitValue(DwarfDebug &DD, unsigned Form) {
switch (Form) {
case DW_FORM_block1: DD.getAsm()->EmitInt8(Size); break;
case DW_FORM_block2: DD.getAsm()->EmitInt16(Size); break;
case DW_FORM_block4: DD.getAsm()->EmitInt32(Size); break;
case DW_FORM_block: DD.getAsm()->EmitULEB128Bytes(Size); break;
default: assert(0 && "Improper form for block"); break;
}
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev.getData();
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
DD.getAsm()->EOL();
Values[i]->EmitValue(DD, AbbrevData[i].getForm());
}
}
/// SizeOf - Determine size of block data in bytes.
///
unsigned DIEBlock::SizeOf(const DwarfDebug &DD, unsigned Form) const {
switch (Form) {
case DW_FORM_block1: return Size + sizeof(int8_t);
case DW_FORM_block2: return Size + sizeof(int16_t);
case DW_FORM_block4: return Size + sizeof(int32_t);
case DW_FORM_block: return Size + TargetAsmInfo::getULEB128Size(Size);
default: assert(0 && "Improper form for block"); break;
}
return 0;
}
//===----------------------------------------------------------------------===//
/// DIE Implementation
DIE::~DIE() {
for (unsigned i = 0, N = Children.size(); i < N; ++i)
delete Children[i];
}
/// AddSiblingOffset - Add a sibling offset field to the front of the DIE.
///
void DIE::AddSiblingOffset() {
DIEInteger *DI = new DIEInteger(0);
Values.insert(Values.begin(), DI);
Abbrev.AddFirstAttribute(DW_AT_sibling, DW_FORM_ref4);
}
/// Profile - Used to gather unique data for the value folding set.
///
void DIE::Profile(FoldingSetNodeID &ID) {
Abbrev.Profile(ID);
for (unsigned i = 0, N = Children.size(); i < N; ++i)
ID.AddPointer(Children[i]);
for (unsigned j = 0, M = Values.size(); j < M; ++j)
ID.AddPointer(Values[j]);
}
#ifndef NDEBUG
void DIE::print(std::ostream &O, unsigned IncIndent) {
static unsigned IndentCount = 0;
IndentCount += IncIndent;
const std::string Indent(IndentCount, ' ');
bool isBlock = Abbrev.getTag() == 0;
if (!isBlock) {
O << Indent
<< "Die: "
<< "0x" << std::hex << (intptr_t)this << std::dec
<< ", Offset: " << Offset
<< ", Size: " << Size
<< "\n";
O << Indent
<< TagString(Abbrev.getTag())
<< " "
<< ChildrenString(Abbrev.getChildrenFlag());
} else {
O << "Size: " << Size;
}
O << "\n";
const SmallVector<DIEAbbrevData, 8> &Data = Abbrev.getData();
IndentCount += 2;
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
O << Indent;
if (!isBlock)
O << AttributeString(Data[i].getAttribute());
else
O << "Blk[" << i << "]";
O << " "
<< FormEncodingString(Data[i].getForm())
<< " ";
Values[i]->print(O);
O << "\n";
}
IndentCount -= 2;
for (unsigned j = 0, M = Children.size(); j < M; ++j) {
Children[j]->print(O, 4);
}
if (!isBlock) O << "\n";
IndentCount -= IncIndent;
}
void DIE::dump() {
print(cerr);
}
#endif
//===----------------------------------------------------------------------===//
/// DwarfWriter Implementation
///
DwarfWriter::DwarfWriter()
: ImmutablePass(&ID), DD(0), DE(0) {}
DwarfWriter::~DwarfWriter() {
delete DE;
delete DD;
}
/// BeginModule - Emit all Dwarf sections that should come prior to the
/// content.
void DwarfWriter::BeginModule(Module *M,
MachineModuleInfo *MMI,
raw_ostream &OS, AsmPrinter *A,
const TargetAsmInfo *T) {
DE = new DwarfException(OS, A, T);
DD = new DwarfDebug(OS, A, T);
DE->BeginModule(M);
DD->BeginModule(M);
DD->SetDebugInfo(MMI);
DE->SetModuleInfo(MMI);
}
/// EndModule - Emit all Dwarf sections that should come after the content.
///
void DwarfWriter::EndModule() {
DE->EndModule();
DD->EndModule();
}
/// BeginFunction - Gather pre-function debug information. Assumes being
/// emitted immediately after the function entry point.
void DwarfWriter::BeginFunction(MachineFunction *MF) {
DE->BeginFunction(MF);
DD->BeginFunction(MF);
}
/// EndFunction - Gather and emit post-function debug information.
///
void DwarfWriter::EndFunction(MachineFunction *MF) {
DD->EndFunction(MF);
DE->EndFunction();
if (MachineModuleInfo *MMI = DD->getMMI() ? DD->getMMI() : DE->getMMI())
// Clear function debug information.
MMI->EndFunction();
}
/// RecordSourceLine - Records location information and associates it with a
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
unsigned DwarfWriter::RecordSourceLine(unsigned Line, unsigned Col,
DICompileUnit CU) {
return DD->RecordSourceLine(Line, Col, CU);
}
/// RecordRegionStart - Indicate the start of a region.
unsigned DwarfWriter::RecordRegionStart(GlobalVariable *V) {
return DD->RecordRegionStart(V);
}
/// RecordRegionEnd - Indicate the end of a region.
unsigned DwarfWriter::RecordRegionEnd(GlobalVariable *V) {
return DD->RecordRegionEnd(V);
}
/// getRecordSourceLineCount - Count source lines.
unsigned DwarfWriter::getRecordSourceLineCount() {
return DD->getRecordSourceLineCount();
}
/// RecordVariable - Indicate the declaration of a local variable.
///
void DwarfWriter::RecordVariable(GlobalVariable *GV, unsigned FrameIndex,
const MachineInstr *MI) {
DD->RecordVariable(GV, FrameIndex, MI);
}
/// ShouldEmitDwarfDebug - Returns true if Dwarf debugging declarations should
/// be emitted.
bool DwarfWriter::ShouldEmitDwarfDebug() const {
return DD && DD->ShouldEmitDwarfDebug();
}
//// RecordInlinedFnStart - Global variable GV is inlined at the location marked
//// by LabelID label.
unsigned DwarfWriter::RecordInlinedFnStart(DISubprogram SP, DICompileUnit CU,
unsigned Line, unsigned Col) {
return DD->RecordInlinedFnStart(SP, CU, Line, Col);
}
/// RecordInlinedFnEnd - Indicate the end of inlined subroutine.
unsigned DwarfWriter::RecordInlinedFnEnd(DISubprogram SP) {
return DD->RecordInlinedFnEnd(SP);
}
/// RecordVariableScope - Record scope for the variable declared by
/// DeclareMI. DeclareMI must describe TargetInstrInfo::DECLARE.
void DwarfWriter::RecordVariableScope(DIVariable &DV,
const MachineInstr *DeclareMI) {
DD->RecordVariableScope(DV, DeclareMI);
}