llvm-6502/include/llvm/CodeGen/LiveInterval.h
Evan Cheng 752195e3c6 Add early coalescing to liveintervals. This is work in progress and is known to miscompute some tests. Read it at your own rish, I have aged 10 year while writing this.
The gist of this is if source of some of the copies that feed into a phi join is defined by the phi join, we'd like to eliminate them. However, if any of the non-identity source overlaps the live interval of the phi join then the coalescer won't be able to coalesce them. The early coalescer's job is to eliminate the identity copies by partially-coalescing the two live intervals.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81796 91177308-0d34-0410-b5e6-96231b3b80d8
2009-09-14 21:33:42 +00:00

801 lines
28 KiB
C++

//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live interval for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation intervals can have holes,
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
// individual range is represented as an instance of LiveRange, and the whole
// interval is represented as an instance of LiveInterval.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
#define LLVM_CODEGEN_LIVEINTERVAL_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/AlignOf.h"
#include <cassert>
#include <climits>
namespace llvm {
class MachineInstr;
class MachineRegisterInfo;
class TargetRegisterInfo;
class raw_ostream;
/// MachineInstrIndex - An opaque wrapper around machine indexes.
class MachineInstrIndex {
friend class VNInfo;
friend class LiveInterval;
friend class LiveIntervals;
friend struct DenseMapInfo<MachineInstrIndex>;
public:
enum Slot { LOAD, USE, DEF, STORE, NUM };
private:
unsigned index;
static const unsigned PHI_BIT = 1 << 31;
public:
/// Construct a default MachineInstrIndex pointing to a reserved index.
MachineInstrIndex() : index(0) {}
/// Construct an index from the given index, pointing to the given slot.
MachineInstrIndex(MachineInstrIndex m, Slot s)
: index((m.index / NUM) * NUM + s) {}
/// Print this index to the given raw_ostream.
void print(raw_ostream &os) const;
/// Compare two MachineInstrIndex objects for equality.
bool operator==(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) == (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects for inequality.
bool operator!=(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) != (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects. Return true if the first index
/// is strictly lower than the second.
bool operator<(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) < (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects. Return true if the first index
/// is lower than, or equal to, the second.
bool operator<=(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) <= (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects. Return true if the first index
/// is greater than the second.
bool operator>(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) > (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects. Return true if the first index
/// is greater than, or equal to, the second.
bool operator>=(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) >= (other.index & ~PHI_BIT));
}
/// Returns true if this index represents a load.
bool isLoad() const {
return ((index % NUM) == LOAD);
}
/// Returns true if this index represents a use.
bool isUse() const {
return ((index % NUM) == USE);
}
/// Returns true if this index represents a def.
bool isDef() const {
return ((index % NUM) == DEF);
}
/// Returns true if this index represents a store.
bool isStore() const {
return ((index % NUM) == STORE);
}
/// Returns the slot for this MachineInstrIndex.
Slot getSlot() const {
return static_cast<Slot>(index % NUM);
}
/// Returns true if this index represents a non-PHI use/def.
bool isNonPHIIndex() const {
return ((index & PHI_BIT) == 0);
}
/// Returns true if this index represents a PHI use/def.
bool isPHIIndex() const {
return ((index & PHI_BIT) == PHI_BIT);
}
private:
/// Construct an index from the given index, with its PHI kill marker set.
MachineInstrIndex(bool phi, MachineInstrIndex o) : index(o.index) {
if (phi)
index |= PHI_BIT;
else
index &= ~PHI_BIT;
}
explicit MachineInstrIndex(unsigned idx)
: index(idx & ~PHI_BIT) {}
MachineInstrIndex(bool phi, unsigned idx)
: index(idx & ~PHI_BIT) {
if (phi)
index |= PHI_BIT;
}
MachineInstrIndex(bool phi, unsigned idx, Slot slot)
: index(((idx / NUM) * NUM + slot) & ~PHI_BIT) {
if (phi)
index |= PHI_BIT;
}
MachineInstrIndex nextSlot_() const {
assert((index & PHI_BIT) == ((index + 1) & PHI_BIT) &&
"Index out of bounds.");
return MachineInstrIndex(index + 1);
}
MachineInstrIndex nextIndex_() const {
assert((index & PHI_BIT) == ((index + NUM) & PHI_BIT) &&
"Index out of bounds.");
return MachineInstrIndex(index + NUM);
}
MachineInstrIndex prevSlot_() const {
assert((index & PHI_BIT) == ((index - 1) & PHI_BIT) &&
"Index out of bounds.");
return MachineInstrIndex(index - 1);
}
MachineInstrIndex prevIndex_() const {
assert((index & PHI_BIT) == ((index - NUM) & PHI_BIT) &&
"Index out of bounds.");
return MachineInstrIndex(index - NUM);
}
int distance(MachineInstrIndex other) const {
return (other.index & ~PHI_BIT) - (index & ~PHI_BIT);
}
/// Returns an unsigned number suitable as an index into a
/// vector over all instructions.
unsigned getVecIndex() const {
return (index & ~PHI_BIT) / NUM;
}
/// Scale this index by the given factor.
MachineInstrIndex scale(unsigned factor) const {
unsigned i = (index & ~PHI_BIT) / NUM,
o = (index % ~PHI_BIT) % NUM;
assert(index <= (~0U & ~PHI_BIT) / (factor * NUM) &&
"Rescaled interval would overflow");
return MachineInstrIndex(i * NUM * factor, o);
}
static MachineInstrIndex emptyKey() {
return MachineInstrIndex(true, 0x7fffffff);
}
static MachineInstrIndex tombstoneKey() {
return MachineInstrIndex(true, 0x7ffffffe);
}
static unsigned getHashValue(const MachineInstrIndex &v) {
return v.index * 37;
}
};
inline raw_ostream& operator<<(raw_ostream &os, MachineInstrIndex mi) {
mi.print(os);
return os;
}
/// Densemap specialization for MachineInstrIndex.
template <>
struct DenseMapInfo<MachineInstrIndex> {
static inline MachineInstrIndex getEmptyKey() {
return MachineInstrIndex::emptyKey();
}
static inline MachineInstrIndex getTombstoneKey() {
return MachineInstrIndex::tombstoneKey();
}
static inline unsigned getHashValue(const MachineInstrIndex &v) {
return MachineInstrIndex::getHashValue(v);
}
static inline bool isEqual(const MachineInstrIndex &LHS,
const MachineInstrIndex &RHS) {
return (LHS == RHS);
}
static inline bool isPod() { return true; }
};
/// VNInfo - Value Number Information.
/// This class holds information about a machine level values, including
/// definition and use points.
///
/// Care must be taken in interpreting the def index of the value. The
/// following rules apply:
///
/// If the isDefAccurate() method returns false then def does not contain the
/// index of the defining MachineInstr, or even (necessarily) to a
/// MachineInstr at all. In general such a def index is not meaningful
/// and should not be used. The exception is that, for values originally
/// defined by PHI instructions, after PHI elimination def will contain the
/// index of the MBB in which the PHI originally existed. This can be used
/// to insert code (spills or copies) which deals with the value, which will
/// be live in to the block.
class VNInfo {
private:
enum {
HAS_PHI_KILL = 1,
REDEF_BY_EC = 1 << 1,
IS_PHI_DEF = 1 << 2,
IS_UNUSED = 1 << 3,
IS_DEF_ACCURATE = 1 << 4
};
unsigned char flags;
union {
MachineInstr *copy;
unsigned reg;
} cr;
public:
typedef SmallVector<MachineInstrIndex, 4> KillSet;
/// The ID number of this value.
unsigned id;
/// The index of the defining instruction (if isDefAccurate() returns true).
MachineInstrIndex def;
KillSet kills;
VNInfo()
: flags(IS_UNUSED), id(~1U) { cr.copy = 0; }
/// VNInfo constructor.
/// d is presumed to point to the actual defining instr. If it doesn't
/// setIsDefAccurate(false) should be called after construction.
VNInfo(unsigned i, MachineInstrIndex d, MachineInstr *c)
: flags(IS_DEF_ACCURATE), id(i), def(d) { cr.copy = c; }
/// VNInfo construtor, copies values from orig, except for the value number.
VNInfo(unsigned i, const VNInfo &orig)
: flags(orig.flags), cr(orig.cr), id(i), def(orig.def), kills(orig.kills)
{ }
/// Copy from the parameter into this VNInfo.
void copyFrom(VNInfo &src) {
flags = src.flags;
cr = src.cr;
def = src.def;
kills = src.kills;
}
/// Used for copying value number info.
unsigned getFlags() const { return flags; }
void setFlags(unsigned flags) { this->flags = flags; }
/// For a register interval, if this VN was definied by a copy instr
/// getCopy() returns a pointer to it, otherwise returns 0.
/// For a stack interval the behaviour of this method is undefined.
MachineInstr* getCopy() const { return cr.copy; }
/// For a register interval, set the copy member.
/// This method should not be called on stack intervals as it may lead to
/// undefined behavior.
void setCopy(MachineInstr *c) { cr.copy = c; }
/// For a stack interval, returns the reg which this stack interval was
/// defined from.
/// For a register interval the behaviour of this method is undefined.
unsigned getReg() const { return cr.reg; }
/// For a stack interval, set the defining register.
/// This method should not be called on register intervals as it may lead
/// to undefined behaviour.
void setReg(unsigned reg) { cr.reg = reg; }
/// Returns true if one or more kills are PHI nodes.
bool hasPHIKill() const { return flags & HAS_PHI_KILL; }
/// Set the PHI kill flag on this value.
void setHasPHIKill(bool hasKill) {
if (hasKill)
flags |= HAS_PHI_KILL;
else
flags &= ~HAS_PHI_KILL;
}
/// Returns true if this value is re-defined by an early clobber somewhere
/// during the live range.
bool hasRedefByEC() const { return flags & REDEF_BY_EC; }
/// Set the "redef by early clobber" flag on this value.
void setHasRedefByEC(bool hasRedef) {
if (hasRedef)
flags |= REDEF_BY_EC;
else
flags &= ~REDEF_BY_EC;
}
/// Returns true if this value is defined by a PHI instruction (or was,
/// PHI instrucions may have been eliminated).
bool isPHIDef() const { return flags & IS_PHI_DEF; }
/// Set the "phi def" flag on this value.
void setIsPHIDef(bool phiDef) {
if (phiDef)
flags |= IS_PHI_DEF;
else
flags &= ~IS_PHI_DEF;
}
/// Returns true if this value is unused.
bool isUnused() const { return flags & IS_UNUSED; }
/// Set the "is unused" flag on this value.
void setIsUnused(bool unused) {
if (unused)
flags |= IS_UNUSED;
else
flags &= ~IS_UNUSED;
}
/// Returns true if the def is accurate.
bool isDefAccurate() const { return flags & IS_DEF_ACCURATE; }
/// Set the "is def accurate" flag on this value.
void setIsDefAccurate(bool defAccurate) {
if (defAccurate)
flags |= IS_DEF_ACCURATE;
else
flags &= ~IS_DEF_ACCURATE;
}
/// Returns true if the given index is a kill of this value.
bool isKill(MachineInstrIndex k) const {
KillSet::const_iterator
i = std::lower_bound(kills.begin(), kills.end(), k);
return (i != kills.end() && *i == k);
}
/// addKill - Add a kill instruction index to the specified value
/// number.
void addKill(MachineInstrIndex k) {
if (kills.empty()) {
kills.push_back(k);
} else {
KillSet::iterator
i = std::lower_bound(kills.begin(), kills.end(), k);
kills.insert(i, k);
}
}
/// Remove the specified kill index from this value's kills list.
/// Returns true if the value was present, otherwise returns false.
bool removeKill(MachineInstrIndex k) {
KillSet::iterator i = std::lower_bound(kills.begin(), kills.end(), k);
if (i != kills.end() && *i == k) {
kills.erase(i);
return true;
}
return false;
}
/// Remove all kills in the range [s, e).
void removeKills(MachineInstrIndex s, MachineInstrIndex e) {
KillSet::iterator
si = std::lower_bound(kills.begin(), kills.end(), s),
se = std::upper_bound(kills.begin(), kills.end(), e);
kills.erase(si, se);
}
};
/// LiveRange structure - This represents a simple register range in the
/// program, with an inclusive start point and an exclusive end point.
/// These ranges are rendered as [start,end).
struct LiveRange {
MachineInstrIndex start; // Start point of the interval (inclusive)
MachineInstrIndex end; // End point of the interval (exclusive)
VNInfo *valno; // identifier for the value contained in this interval.
LiveRange(MachineInstrIndex S, MachineInstrIndex E, VNInfo *V)
: start(S), end(E), valno(V) {
assert(S < E && "Cannot create empty or backwards range");
}
/// contains - Return true if the index is covered by this range.
///
bool contains(MachineInstrIndex I) const {
return start <= I && I < end;
}
/// containsRange - Return true if the given range, [S, E), is covered by
/// this range.
bool containsRange(MachineInstrIndex S, MachineInstrIndex E) const {
assert((S < E) && "Backwards interval?");
return (start <= S && S < end) && (start < E && E <= end);
}
bool operator<(const LiveRange &LR) const {
return start < LR.start || (start == LR.start && end < LR.end);
}
bool operator==(const LiveRange &LR) const {
return start == LR.start && end == LR.end;
}
void dump() const;
void print(raw_ostream &os) const;
private:
LiveRange(); // DO NOT IMPLEMENT
};
raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR);
inline bool operator<(MachineInstrIndex V, const LiveRange &LR) {
return V < LR.start;
}
inline bool operator<(const LiveRange &LR, MachineInstrIndex V) {
return LR.start < V;
}
/// LiveInterval - This class represents some number of live ranges for a
/// register or value. This class also contains a bit of register allocator
/// state.
class LiveInterval {
public:
typedef SmallVector<LiveRange,4> Ranges;
typedef SmallVector<VNInfo*,4> VNInfoList;
unsigned reg; // the register or stack slot of this interval
// if the top bits is set, it represents a stack slot.
float weight; // weight of this interval
Ranges ranges; // the ranges in which this register is live
VNInfoList valnos; // value#'s
struct InstrSlots {
enum {
LOAD = 0,
USE = 1,
DEF = 2,
STORE = 3,
NUM = 4
};
};
LiveInterval(unsigned Reg, float Weight, bool IsSS = false)
: reg(Reg), weight(Weight) {
if (IsSS)
reg = reg | (1U << (sizeof(unsigned)*CHAR_BIT-1));
}
typedef Ranges::iterator iterator;
iterator begin() { return ranges.begin(); }
iterator end() { return ranges.end(); }
typedef Ranges::const_iterator const_iterator;
const_iterator begin() const { return ranges.begin(); }
const_iterator end() const { return ranges.end(); }
typedef VNInfoList::iterator vni_iterator;
vni_iterator vni_begin() { return valnos.begin(); }
vni_iterator vni_end() { return valnos.end(); }
typedef VNInfoList::const_iterator const_vni_iterator;
const_vni_iterator vni_begin() const { return valnos.begin(); }
const_vni_iterator vni_end() const { return valnos.end(); }
/// advanceTo - Advance the specified iterator to point to the LiveRange
/// containing the specified position, or end() if the position is past the
/// end of the interval. If no LiveRange contains this position, but the
/// position is in a hole, this method returns an iterator pointing the the
/// LiveRange immediately after the hole.
iterator advanceTo(iterator I, MachineInstrIndex Pos) {
if (Pos >= endIndex())
return end();
while (I->end <= Pos) ++I;
return I;
}
void clear() {
while (!valnos.empty()) {
VNInfo *VNI = valnos.back();
valnos.pop_back();
VNI->~VNInfo();
}
ranges.clear();
}
/// isStackSlot - Return true if this is a stack slot interval.
///
bool isStackSlot() const {
return reg & (1U << (sizeof(unsigned)*CHAR_BIT-1));
}
/// getStackSlotIndex - Return stack slot index if this is a stack slot
/// interval.
int getStackSlotIndex() const {
assert(isStackSlot() && "Interval is not a stack slot interval!");
return reg & ~(1U << (sizeof(unsigned)*CHAR_BIT-1));
}
bool hasAtLeastOneValue() const { return !valnos.empty(); }
bool containsOneValue() const { return valnos.size() == 1; }
unsigned getNumValNums() const { return (unsigned)valnos.size(); }
/// getValNumInfo - Returns pointer to the specified val#.
///
inline VNInfo *getValNumInfo(unsigned ValNo) {
return valnos[ValNo];
}
inline const VNInfo *getValNumInfo(unsigned ValNo) const {
return valnos[ValNo];
}
/// getNextValue - Create a new value number and return it. MIIdx specifies
/// the instruction that defines the value number.
VNInfo *getNextValue(MachineInstrIndex def, MachineInstr *CopyMI,
bool isDefAccurate, BumpPtrAllocator &VNInfoAllocator){
VNInfo *VNI =
static_cast<VNInfo*>(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo),
alignof<VNInfo>()));
new (VNI) VNInfo((unsigned)valnos.size(), def, CopyMI);
VNI->setIsDefAccurate(isDefAccurate);
valnos.push_back(VNI);
return VNI;
}
/// Create a copy of the given value. The new value will be identical except
/// for the Value number.
VNInfo *createValueCopy(const VNInfo *orig,
BumpPtrAllocator &VNInfoAllocator) {
VNInfo *VNI =
static_cast<VNInfo*>(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo),
alignof<VNInfo>()));
new (VNI) VNInfo((unsigned)valnos.size(), *orig);
valnos.push_back(VNI);
return VNI;
}
/// addKills - Add a number of kills into the VNInfo kill vector. If this
/// interval is live at a kill point, then the kill is not added.
void addKills(VNInfo *VNI, const VNInfo::KillSet &kills) {
for (unsigned i = 0, e = static_cast<unsigned>(kills.size());
i != e; ++i) {
if (!liveBeforeAndAt(kills[i])) {
VNI->addKill(kills[i]);
}
}
}
/// isOnlyLROfValNo - Return true if the specified live range is the only
/// one defined by the its val#.
bool isOnlyLROfValNo(const LiveRange *LR) {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
const LiveRange *Tmp = I;
if (Tmp != LR && Tmp->valno == LR->valno)
return false;
}
return true;
}
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
/// LiveRanges with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
/// MergeInClobberRanges - For any live ranges that are not defined in the
/// current interval, but are defined in the Clobbers interval, mark them
/// used with an unknown definition value. Caller must pass in reference to
/// VNInfoAllocator since it will create a new val#.
void MergeInClobberRanges(const LiveInterval &Clobbers,
BumpPtrAllocator &VNInfoAllocator);
/// MergeInClobberRange - Same as MergeInClobberRanges except it merge in a
/// single LiveRange only.
void MergeInClobberRange(MachineInstrIndex Start,
MachineInstrIndex End,
BumpPtrAllocator &VNInfoAllocator);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, it will replace the value numbers of the overlaped
/// live ranges with the specified value number.
void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, but only if the overlapping LiveRanges have the
/// specified value number.
void MergeValueInAsValue(const LiveInterval &RHS,
const VNInfo *RHSValNo, VNInfo *LHSValNo);
/// Copy - Copy the specified live interval. This copies all the fields
/// except for the register of the interval.
void Copy(const LiveInterval &RHS, MachineRegisterInfo *MRI,
BumpPtrAllocator &VNInfoAllocator);
bool empty() const { return ranges.empty(); }
/// beginIndex - Return the lowest numbered slot covered by interval.
MachineInstrIndex beginIndex() const {
if (empty())
return MachineInstrIndex();
return ranges.front().start;
}
/// endNumber - return the maximum point of the interval of the whole,
/// exclusive.
MachineInstrIndex endIndex() const {
if (empty())
return MachineInstrIndex();
return ranges.back().end;
}
bool expiredAt(MachineInstrIndex index) const {
return index >= endIndex();
}
bool liveAt(MachineInstrIndex index) const;
// liveBeforeAndAt - Check if the interval is live at the index and the
// index just before it. If index is liveAt, check if it starts a new live
// range.If it does, then check if the previous live range ends at index-1.
bool liveBeforeAndAt(MachineInstrIndex index) const;
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
const LiveRange *getLiveRangeContaining(MachineInstrIndex Idx) const {
const_iterator I = FindLiveRangeContaining(Idx);
return I == end() ? 0 : &*I;
}
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
LiveRange *getLiveRangeContaining(MachineInstrIndex Idx) {
iterator I = FindLiveRangeContaining(Idx);
return I == end() ? 0 : &*I;
}
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
const_iterator FindLiveRangeContaining(MachineInstrIndex Idx) const;
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
iterator FindLiveRangeContaining(MachineInstrIndex Idx);
/// findDefinedVNInfo - Find the by the specified
/// index (register interval) or defined
VNInfo *findDefinedVNInfoForRegInt(MachineInstrIndex Idx) const;
/// findDefinedVNInfo - Find the VNInfo that's defined by the specified
/// register (stack inteval only).
VNInfo *findDefinedVNInfoForStackInt(unsigned Reg) const;
/// overlaps - Return true if the intersection of the two live intervals is
/// not empty.
bool overlaps(const LiveInterval& other) const {
return overlapsFrom(other, other.begin());
}
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
bool overlaps(MachineInstrIndex Start, MachineInstrIndex End) const;
/// overlapsFrom - Return true if the intersection of the two live intervals
/// is not empty. The specified iterator is a hint that we can begin
/// scanning the Other interval starting at I.
bool overlapsFrom(const LiveInterval& other, const_iterator I) const;
/// addRange - Add the specified LiveRange to this interval, merging
/// intervals as appropriate. This returns an iterator to the inserted live
/// range (which may have grown since it was inserted.
void addRange(LiveRange LR) {
addRangeFrom(LR, ranges.begin());
}
/// join - Join two live intervals (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS intervals as specified. If
/// the intervals are not joinable, this aborts.
void join(LiveInterval &Other, const int *ValNoAssignments,
const int *RHSValNoAssignments,
SmallVector<VNInfo*, 16> &NewVNInfo,
MachineRegisterInfo *MRI);
/// isInOneLiveRange - Return true if the range specified is entirely in the
/// a single LiveRange of the live interval.
bool isInOneLiveRange(MachineInstrIndex Start, MachineInstrIndex End);
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be a single LiveRange in its entirety.
void removeRange(MachineInstrIndex Start, MachineInstrIndex End,
bool RemoveDeadValNo = false);
void removeRange(LiveRange LR, bool RemoveDeadValNo = false) {
removeRange(LR.start, LR.end, RemoveDeadValNo);
}
/// removeValNo - Remove all the ranges defined by the specified value#.
/// Also remove the value# from value# list.
void removeValNo(VNInfo *ValNo);
/// scaleNumbering - Renumber VNI and ranges to provide gaps for new
/// instructions.
void scaleNumbering(unsigned factor);
/// getSize - Returns the sum of sizes of all the LiveRange's.
///
unsigned getSize() const;
/// ComputeJoinedWeight - Set the weight of a live interval after
/// Other has been merged into it.
void ComputeJoinedWeight(const LiveInterval &Other);
bool operator<(const LiveInterval& other) const {
const MachineInstrIndex &thisIndex = beginIndex();
const MachineInstrIndex &otherIndex = other.beginIndex();
return (thisIndex < otherIndex ||
(thisIndex == otherIndex && reg < other.reg));
}
void print(raw_ostream &OS, const TargetRegisterInfo *TRI = 0) const;
void dump() const;
private:
Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From);
void extendIntervalEndTo(Ranges::iterator I, MachineInstrIndex NewEnd);
Ranges::iterator extendIntervalStartTo(Ranges::iterator I, MachineInstrIndex NewStr);
LiveInterval& operator=(const LiveInterval& rhs); // DO NOT IMPLEMENT
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
LI.print(OS);
return OS;
}
}
#endif