llvm-6502/lib/Target/X86/AsmParser/X86AsmParser.cpp
Chad Rosier 2cc97def74 [ms-inline asm] Asm operands can map to one or more MCOperands. Therefore, add
the NumMCOperands argument to the GetMCInstOperandNum() function that is set
to the number of MCOperands this asm operand mapped to.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163124 91177308-0d34-0410-b5e6-96231b3b80d8
2012-09-03 20:31:23 +00:00

1821 lines
60 KiB
C++

//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
struct X86Operand;
class X86AsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
MCAsmParser &Parser;
private:
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
bool Error(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = ArrayRef<SMRange>(),
bool matchingInlineAsm = false) {
if (matchingInlineAsm) return true;
return Parser.Error(L, Msg, Ranges);
}
X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) {
Error(Loc, Msg);
return 0;
}
X86Operand *ParseOperand();
X86Operand *ParseATTOperand();
X86Operand *ParseIntelOperand();
X86Operand *ParseIntelMemOperand();
X86Operand *ParseIntelBracExpression(unsigned SegReg, unsigned Size);
X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
bool processInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
bool MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out);
bool MatchInstruction(SMLoc IDLoc, unsigned &Kind,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
SmallVectorImpl<MCInst> &MCInsts,
unsigned &OrigErrorInfo,
bool matchingInlineAsm = false);
unsigned GetMCInstOperandNum(unsigned Kind, MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands,
unsigned OperandNum, unsigned &NumMCOperands) {
return GetMCInstOperandNumImpl(Kind, Inst, Operands, OperandNum,
NumMCOperands);
}
/// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi)
/// in 64bit mode or (%esi) or %es:(%esi) in 32bit mode.
bool isSrcOp(X86Operand &Op);
/// isDstOp - Returns true if operand is either (%rdi) or %es:(%rdi)
/// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode.
bool isDstOp(X86Operand &Op);
bool is64BitMode() const {
// FIXME: Can tablegen auto-generate this?
return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
}
void SwitchMode() {
unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit));
setAvailableFeatures(FB);
}
/// @name Auto-generated Matcher Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "X86GenAsmMatcher.inc"
/// }
public:
X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
: MCTargetAsmParser(), STI(sti), Parser(parser) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
bool isParsingIntelSyntax() {
return getParser().getAssemblerDialect();
}
};
} // end anonymous namespace
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
static bool isImmSExti16i8Value(uint64_t Value) {
return (( Value <= 0x000000000000007FULL)||
(0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
static bool isImmSExti32i8Value(uint64_t Value) {
return (( Value <= 0x000000000000007FULL)||
(0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
static bool isImmZExtu32u8Value(uint64_t Value) {
return (Value <= 0x00000000000000FFULL);
}
static bool isImmSExti64i8Value(uint64_t Value) {
return (( Value <= 0x000000000000007FULL)||
(0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
static bool isImmSExti64i32Value(uint64_t Value) {
return (( Value <= 0x000000007FFFFFFFULL)||
(0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
}
namespace {
/// X86Operand - Instances of this class represent a parsed X86 machine
/// instruction.
struct X86Operand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
Memory
} Kind;
SMLoc StartLoc, EndLoc;
union {
struct {
const char *Data;
unsigned Length;
} Tok;
struct {
unsigned RegNo;
} Reg;
struct {
const MCExpr *Val;
} Imm;
struct {
unsigned SegReg;
const MCExpr *Disp;
unsigned BaseReg;
unsigned IndexReg;
unsigned Scale;
unsigned Size;
} Mem;
};
X86Operand(KindTy K, SMLoc Start, SMLoc End)
: Kind(K), StartLoc(Start), EndLoc(End) {}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
virtual void print(raw_ostream &OS) const {}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
void setTokenValue(StringRef Value) {
assert(Kind == Token && "Invalid access!");
Tok.Data = Value.data();
Tok.Length = Value.size();
}
unsigned getReg() const {
assert(Kind == Register && "Invalid access!");
return Reg.RegNo;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
const MCExpr *getMemDisp() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Disp;
}
unsigned getMemSegReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.SegReg;
}
unsigned getMemBaseReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.BaseReg;
}
unsigned getMemIndexReg() const {
assert(Kind == Memory && "Invalid access!");
return Mem.IndexReg;
}
unsigned getMemScale() const {
assert(Kind == Memory && "Invalid access!");
return Mem.Scale;
}
bool isToken() const {return Kind == Token; }
bool isImm() const { return Kind == Immediate; }
bool isImmSExti16i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti16i8Value(CE->getValue());
}
bool isImmSExti32i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti32i8Value(CE->getValue());
}
bool isImmZExtu32u8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmZExtu32u8Value(CE->getValue());
}
bool isImmSExti64i8() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti64i8Value(CE->getValue());
}
bool isImmSExti64i32() const {
if (!isImm())
return false;
// If this isn't a constant expr, just assume it fits and let relaxation
// handle it.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return true;
// Otherwise, check the value is in a range that makes sense for this
// extension.
return isImmSExti64i32Value(CE->getValue());
}
bool isMem() const { return Kind == Memory; }
bool isMem8() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 8);
}
bool isMem16() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 16);
}
bool isMem32() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 32);
}
bool isMem64() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 64);
}
bool isMem80() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 80);
}
bool isMem128() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 128);
}
bool isMem256() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 256);
}
bool isMemVX32() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
}
bool isMemVY32() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
}
bool isMemVX64() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
}
bool isMemVY64() const {
return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
}
bool isAbsMem() const {
return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
!getMemIndexReg() && getMemScale() == 1;
}
bool isReg() const { return Kind == Register; }
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addMem8Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMem16Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMem32Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMem64Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMem80Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMem128Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMem256Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMemVX32Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMemVY32Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMemVX64Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMemVY64Operands(MCInst &Inst, unsigned N) const {
addMemOperands(Inst, N);
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 5) && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
Inst.addOperand(MCOperand::CreateImm(getMemScale()));
Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
addExpr(Inst, getMemDisp());
Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
}
void addAbsMemOperands(MCInst &Inst, unsigned N) const {
assert((N == 1) && "Invalid number of operands!");
// Add as immediates when possible.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
}
static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size() - 1);
X86Operand *Res = new X86Operand(Token, Loc, EndLoc);
Res->Tok.Data = Str.data();
Res->Tok.Length = Str.size();
return Res;
}
static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
Res->Reg.RegNo = RegNo;
return Res;
}
static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
Res->Imm.Val = Val;
return Res;
}
/// Create an absolute memory operand.
static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
SMLoc EndLoc, unsigned Size = 0) {
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = 0;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = 0;
Res->Mem.IndexReg = 0;
Res->Mem.Scale = 1;
Res->Mem.Size = Size;
return Res;
}
/// Create a generalized memory operand.
static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
unsigned Size = 0) {
// We should never just have a displacement, that should be parsed as an
// absolute memory operand.
assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
// The scale should always be one of {1,2,4,8}.
assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
"Invalid scale!");
X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
Res->Mem.SegReg = SegReg;
Res->Mem.Disp = Disp;
Res->Mem.BaseReg = BaseReg;
Res->Mem.IndexReg = IndexReg;
Res->Mem.Scale = Scale;
Res->Mem.Size = Size;
return Res;
}
};
} // end anonymous namespace.
bool X86AsmParser::isSrcOp(X86Operand &Op) {
unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI;
return (Op.isMem() &&
(Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0);
}
bool X86AsmParser::isDstOp(X86Operand &Op) {
unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI;
return Op.isMem() &&
(Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::ES) &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0;
}
bool X86AsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
RegNo = 0;
if (!isParsingIntelSyntax()) {
const AsmToken &TokPercent = Parser.getTok();
assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
StartLoc = TokPercent.getLoc();
Parser.Lex(); // Eat percent token.
}
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, Tok.getEndLoc()));
}
RegNo = MatchRegisterName(Tok.getString());
// If the match failed, try the register name as lowercase.
if (RegNo == 0)
RegNo = MatchRegisterName(Tok.getString().lower());
if (!is64BitMode()) {
// FIXME: This should be done using Requires<In32BitMode> and
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
// checked.
// FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
// REX prefix.
if (RegNo == X86::RIZ ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
X86II::isX86_64NonExtLowByteReg(RegNo) ||
X86II::isX86_64ExtendedReg(RegNo))
return Error(StartLoc, "register %"
+ Tok.getString() + " is only available in 64-bit mode",
SMRange(StartLoc, Tok.getEndLoc()));
}
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
RegNo = X86::ST0;
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat 'st'
// Check to see if we have '(4)' after %st.
if (getLexer().isNot(AsmToken::LParen))
return false;
// Lex the paren.
getParser().Lex();
const AsmToken &IntTok = Parser.getTok();
if (IntTok.isNot(AsmToken::Integer))
return Error(IntTok.getLoc(), "expected stack index");
switch (IntTok.getIntVal()) {
case 0: RegNo = X86::ST0; break;
case 1: RegNo = X86::ST1; break;
case 2: RegNo = X86::ST2; break;
case 3: RegNo = X86::ST3; break;
case 4: RegNo = X86::ST4; break;
case 5: RegNo = X86::ST5; break;
case 6: RegNo = X86::ST6; break;
case 7: RegNo = X86::ST7; break;
default: return Error(IntTok.getLoc(), "invalid stack index");
}
if (getParser().Lex().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "expected ')'");
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat ')'
return false;
}
// If this is "db[0-7]", match it as an alias
// for dr[0-7].
if (RegNo == 0 && Tok.getString().size() == 3 &&
Tok.getString().startswith("db")) {
switch (Tok.getString()[2]) {
case '0': RegNo = X86::DR0; break;
case '1': RegNo = X86::DR1; break;
case '2': RegNo = X86::DR2; break;
case '3': RegNo = X86::DR3; break;
case '4': RegNo = X86::DR4; break;
case '5': RegNo = X86::DR5; break;
case '6': RegNo = X86::DR6; break;
case '7': RegNo = X86::DR7; break;
}
if (RegNo != 0) {
EndLoc = Tok.getLoc();
Parser.Lex(); // Eat it.
return false;
}
}
if (RegNo == 0) {
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, Tok.getEndLoc()));
}
EndLoc = Tok.getEndLoc();
Parser.Lex(); // Eat identifier token.
return false;
}
X86Operand *X86AsmParser::ParseOperand() {
if (isParsingIntelSyntax())
return ParseIntelOperand();
return ParseATTOperand();
}
/// getIntelMemOperandSize - Return intel memory operand size.
static unsigned getIntelMemOperandSize(StringRef OpStr) {
unsigned Size = 0;
if (OpStr == "BYTE") Size = 8;
if (OpStr == "WORD") Size = 16;
if (OpStr == "DWORD") Size = 32;
if (OpStr == "QWORD") Size = 64;
if (OpStr == "XWORD") Size = 80;
if (OpStr == "XMMWORD") Size = 128;
if (OpStr == "YMMWORD") Size = 256;
return Size;
}
X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg,
unsigned Size) {
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
SMLoc Start = Parser.getTok().getLoc(), End;
const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
// Parse [ BaseReg + Scale*IndexReg + Disp ] or [ symbol ]
// Eat '['
if (getLexer().isNot(AsmToken::LBrac))
return ErrorOperand(Start, "Expected '[' token!");
Parser.Lex();
if (getLexer().is(AsmToken::Identifier)) {
// Parse BaseReg
if (ParseRegister(BaseReg, Start, End)) {
// Handle '[' 'symbol' ']'
if (getParser().ParseExpression(Disp, End)) return 0;
if (getLexer().isNot(AsmToken::RBrac))
return ErrorOperand(Start, "Expected ']' token!");
Parser.Lex();
return X86Operand::CreateMem(Disp, Start, End, Size);
}
} else if (getLexer().is(AsmToken::Integer)) {
int64_t Val = Parser.getTok().getIntVal();
Parser.Lex();
SMLoc Loc = Parser.getTok().getLoc();
if (getLexer().is(AsmToken::RBrac)) {
// Handle '[' number ']'
Parser.Lex();
const MCExpr *Disp = MCConstantExpr::Create(Val, getContext());
if (SegReg)
return X86Operand::CreateMem(SegReg, Disp, 0, 0, Scale,
Start, End, Size);
return X86Operand::CreateMem(Disp, Start, End, Size);
} else if (getLexer().is(AsmToken::Star)) {
// Handle '[' Scale*IndexReg ']'
Parser.Lex();
SMLoc IdxRegLoc = Parser.getTok().getLoc();
if (ParseRegister(IndexReg, IdxRegLoc, End))
return ErrorOperand(IdxRegLoc, "Expected register");
Scale = Val;
} else
return ErrorOperand(Loc, "Unexpected token");
}
if (getLexer().is(AsmToken::Plus) || getLexer().is(AsmToken::Minus)) {
bool isPlus = getLexer().is(AsmToken::Plus);
Parser.Lex();
SMLoc PlusLoc = Parser.getTok().getLoc();
if (getLexer().is(AsmToken::Integer)) {
int64_t Val = Parser.getTok().getIntVal();
Parser.Lex();
if (getLexer().is(AsmToken::Star)) {
Parser.Lex();
SMLoc IdxRegLoc = Parser.getTok().getLoc();
if (ParseRegister(IndexReg, IdxRegLoc, End))
return ErrorOperand(IdxRegLoc, "Expected register");
Scale = Val;
} else if (getLexer().is(AsmToken::RBrac)) {
const MCExpr *ValExpr = MCConstantExpr::Create(Val, getContext());
Disp = isPlus ? ValExpr : MCConstantExpr::Create(0-Val, getContext());
} else
return ErrorOperand(PlusLoc, "unexpected token after +");
} else if (getLexer().is(AsmToken::Identifier)) {
// This could be an index register or a displacement expression.
End = Parser.getTok().getLoc();
if (!IndexReg)
ParseRegister(IndexReg, Start, End);
else if (getParser().ParseExpression(Disp, End)) return 0;
}
}
if (getLexer().isNot(AsmToken::RBrac))
if (getParser().ParseExpression(Disp, End)) return 0;
End = Parser.getTok().getLoc();
if (getLexer().isNot(AsmToken::RBrac))
return ErrorOperand(End, "expected ']' token!");
Parser.Lex();
End = Parser.getTok().getLoc();
// handle [-42]
if (!BaseReg && !IndexReg)
return X86Operand::CreateMem(Disp, Start, End, Size);
return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
Start, End, Size);
}
/// ParseIntelMemOperand - Parse intel style memory operand.
X86Operand *X86AsmParser::ParseIntelMemOperand() {
const AsmToken &Tok = Parser.getTok();
SMLoc Start = Parser.getTok().getLoc(), End;
unsigned SegReg = 0;
unsigned Size = getIntelMemOperandSize(Tok.getString());
if (Size) {
Parser.Lex();
assert (Tok.getString() == "PTR" && "Unexpected token!");
Parser.Lex();
}
if (getLexer().is(AsmToken::LBrac))
return ParseIntelBracExpression(SegReg, Size);
if (!ParseRegister(SegReg, Start, End)) {
// Handel SegReg : [ ... ]
if (getLexer().isNot(AsmToken::Colon))
return ErrorOperand(Start, "Expected ':' token!");
Parser.Lex(); // Eat :
if (getLexer().isNot(AsmToken::LBrac))
return ErrorOperand(Start, "Expected '[' token!");
return ParseIntelBracExpression(SegReg, Size);
}
const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
if (getParser().ParseExpression(Disp, End)) return 0;
return X86Operand::CreateMem(Disp, Start, End, Size);
}
X86Operand *X86AsmParser::ParseIntelOperand() {
SMLoc Start = Parser.getTok().getLoc(), End;
// immediate.
if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Real) ||
getLexer().is(AsmToken::Minus)) {
const MCExpr *Val;
if (!getParser().ParseExpression(Val, End)) {
End = Parser.getTok().getLoc();
return X86Operand::CreateImm(Val, Start, End);
}
}
// register
unsigned RegNo = 0;
if (!ParseRegister(RegNo, Start, End)) {
End = Parser.getTok().getLoc();
return X86Operand::CreateReg(RegNo, Start, End);
}
// mem operand
return ParseIntelMemOperand();
}
X86Operand *X86AsmParser::ParseATTOperand() {
switch (getLexer().getKind()) {
default:
// Parse a memory operand with no segment register.
return ParseMemOperand(0, Parser.getTok().getLoc());
case AsmToken::Percent: {
// Read the register.
unsigned RegNo;
SMLoc Start, End;
if (ParseRegister(RegNo, Start, End)) return 0;
if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
Error(Start, "%eiz and %riz can only be used as index registers",
SMRange(Start, End));
return 0;
}
// If this is a segment register followed by a ':', then this is the start
// of a memory reference, otherwise this is a normal register reference.
if (getLexer().isNot(AsmToken::Colon))
return X86Operand::CreateReg(RegNo, Start, End);
getParser().Lex(); // Eat the colon.
return ParseMemOperand(RegNo, Start);
}
case AsmToken::Dollar: {
// $42 -> immediate.
SMLoc Start = Parser.getTok().getLoc(), End;
Parser.Lex();
const MCExpr *Val;
if (getParser().ParseExpression(Val, End))
return 0;
return X86Operand::CreateImm(Val, Start, End);
}
}
}
/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
/// has already been parsed if present.
X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
// We have to disambiguate a parenthesized expression "(4+5)" from the start
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
// only way to do this without lookahead is to eat the '(' and see what is
// after it.
const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
if (getLexer().isNot(AsmToken::LParen)) {
SMLoc ExprEnd;
if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
} else {
// Okay, we have a '('. We don't know if this is an expression or not, but
// so we have to eat the ( to see beyond it.
SMLoc LParenLoc = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '('.
if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
// Nothing to do here, fall into the code below with the '(' part of the
// memory operand consumed.
} else {
SMLoc ExprEnd;
// It must be an parenthesized expression, parse it now.
if (getParser().ParseParenExpression(Disp, ExprEnd))
return 0;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
}
}
// If we reached here, then we just ate the ( of the memory operand. Process
// the rest of the memory operand.
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
SMLoc IndexLoc;
if (getLexer().is(AsmToken::Percent)) {
SMLoc StartLoc, EndLoc;
if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0;
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
Error(StartLoc, "eiz and riz can only be used as index registers",
SMRange(StartLoc, EndLoc));
return 0;
}
}
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
IndexLoc = Parser.getTok().getLoc();
// Following the comma we should have either an index register, or a scale
// value. We don't support the later form, but we want to parse it
// correctly.
//
// Not that even though it would be completely consistent to support syntax
// like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
if (getLexer().is(AsmToken::Percent)) {
SMLoc L;
if (ParseRegister(IndexReg, L, L)) return 0;
if (getLexer().isNot(AsmToken::RParen)) {
// Parse the scale amount:
// ::= ',' [scale-expression]
if (getLexer().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(),
"expected comma in scale expression");
return 0;
}
Parser.Lex(); // Eat the comma.
if (getLexer().isNot(AsmToken::RParen)) {
SMLoc Loc = Parser.getTok().getLoc();
int64_t ScaleVal;
if (getParser().ParseAbsoluteExpression(ScaleVal)){
Error(Loc, "expected scale expression");
return 0;
}
// Validate the scale amount.
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
return 0;
}
Scale = (unsigned)ScaleVal;
}
}
} else if (getLexer().isNot(AsmToken::RParen)) {
// A scale amount without an index is ignored.
// index.
SMLoc Loc = Parser.getTok().getLoc();
int64_t Value;
if (getParser().ParseAbsoluteExpression(Value))
return 0;
if (Value != 1)
Warning(Loc, "scale factor without index register is ignored");
Scale = 1;
}
}
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
if (getLexer().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
return 0;
}
SMLoc MemEnd = Parser.getTok().getLoc();
Parser.Lex(); // Eat the ')'.
// If we have both a base register and an index register make sure they are
// both 64-bit or 32-bit registers.
// To support VSIB, IndexReg can be 128-bit or 256-bit registers.
if (BaseReg != 0 && IndexReg != 0) {
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
IndexReg != X86::RIZ) {
Error(IndexLoc, "index register is 32-bit, but base register is 64-bit");
return 0;
}
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
IndexReg != X86::EIZ){
Error(IndexLoc, "index register is 64-bit, but base register is 32-bit");
return 0;
}
}
return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
MemStart, MemEnd);
}
bool X86AsmParser::
ParseInstruction(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
StringRef PatchedName = Name;
// FIXME: Hack to recognize setneb as setne.
if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
PatchedName != "setb" && PatchedName != "setnb")
PatchedName = PatchedName.substr(0, Name.size()-1);
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
const MCExpr *ExtraImmOp = 0;
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
bool IsVCMP = PatchedName[0] == 'v';
unsigned SSECCIdx = IsVCMP ? 4 : 3;
unsigned SSEComparisonCode = StringSwitch<unsigned>(
PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
.Case("eq", 0x00)
.Case("lt", 0x01)
.Case("le", 0x02)
.Case("unord", 0x03)
.Case("neq", 0x04)
.Case("nlt", 0x05)
.Case("nle", 0x06)
.Case("ord", 0x07)
/* AVX only from here */
.Case("eq_uq", 0x08)
.Case("nge", 0x09)
.Case("ngt", 0x0A)
.Case("false", 0x0B)
.Case("neq_oq", 0x0C)
.Case("ge", 0x0D)
.Case("gt", 0x0E)
.Case("true", 0x0F)
.Case("eq_os", 0x10)
.Case("lt_oq", 0x11)
.Case("le_oq", 0x12)
.Case("unord_s", 0x13)
.Case("neq_us", 0x14)
.Case("nlt_uq", 0x15)
.Case("nle_uq", 0x16)
.Case("ord_s", 0x17)
.Case("eq_us", 0x18)
.Case("nge_uq", 0x19)
.Case("ngt_uq", 0x1A)
.Case("false_os", 0x1B)
.Case("neq_os", 0x1C)
.Case("ge_oq", 0x1D)
.Case("gt_oq", 0x1E)
.Case("true_us", 0x1F)
.Default(~0U);
if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
getParser().getContext());
if (PatchedName.endswith("ss")) {
PatchedName = IsVCMP ? "vcmpss" : "cmpss";
} else if (PatchedName.endswith("sd")) {
PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
} else if (PatchedName.endswith("ps")) {
PatchedName = IsVCMP ? "vcmpps" : "cmpps";
} else {
assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
PatchedName = IsVCMP ? "vcmppd" : "cmppd";
}
}
}
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
if (ExtraImmOp && !isParsingIntelSyntax())
Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
// Determine whether this is an instruction prefix.
bool isPrefix =
Name == "lock" || Name == "rep" ||
Name == "repe" || Name == "repz" ||
Name == "repne" || Name == "repnz" ||
Name == "rex64" || Name == "data16";
// This does the actual operand parsing. Don't parse any more if we have a
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
// just want to parse the "lock" as the first instruction and the "incl" as
// the next one.
if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
// Parse '*' modifier.
if (getLexer().is(AsmToken::Star)) {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(X86Operand::CreateToken("*", Loc));
Parser.Lex(); // Eat the star.
}
// Read the first operand.
if (X86Operand *Op = ParseOperand())
Operands.push_back(Op);
else {
Parser.EatToEndOfStatement();
return true;
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (X86Operand *Op = ParseOperand())
Operands.push_back(Op);
else {
Parser.EatToEndOfStatement();
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.EatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
if (getLexer().is(AsmToken::EndOfStatement))
Parser.Lex(); // Consume the EndOfStatement
else if (isPrefix && getLexer().is(AsmToken::Slash))
Parser.Lex(); // Consume the prefix separator Slash
if (ExtraImmOp && isParsingIntelSyntax())
Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
// This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
// "outb %al, %dx". Out doesn't take a memory form, but this is a widely
// documented form in various unofficial manuals, so a lot of code uses it.
if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
Operands.size() == 3) {
X86Operand &Op = *(X86Operand*)Operands.back();
if (Op.isMem() && Op.Mem.SegReg == 0 &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
SMLoc Loc = Op.getEndLoc();
Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
delete &Op;
}
}
// Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
Operands.size() == 3) {
X86Operand &Op = *(X86Operand*)Operands.begin()[1];
if (Op.isMem() && Op.Mem.SegReg == 0 &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
SMLoc Loc = Op.getEndLoc();
Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
delete &Op;
}
}
// Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]"
if (Name.startswith("ins") && Operands.size() == 3 &&
(Name == "insb" || Name == "insw" || Name == "insl")) {
X86Operand &Op = *(X86Operand*)Operands.begin()[1];
X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) {
Operands.pop_back();
Operands.pop_back();
delete &Op;
delete &Op2;
}
}
// Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]"
if (Name.startswith("outs") && Operands.size() == 3 &&
(Name == "outsb" || Name == "outsw" || Name == "outsl")) {
X86Operand &Op = *(X86Operand*)Operands.begin()[1];
X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) {
Operands.pop_back();
Operands.pop_back();
delete &Op;
delete &Op2;
}
}
// Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]"
if (Name.startswith("movs") && Operands.size() == 3 &&
(Name == "movsb" || Name == "movsw" || Name == "movsl" ||
(is64BitMode() && Name == "movsq"))) {
X86Operand &Op = *(X86Operand*)Operands.begin()[1];
X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
if (isSrcOp(Op) && isDstOp(Op2)) {
Operands.pop_back();
Operands.pop_back();
delete &Op;
delete &Op2;
}
}
// Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]"
if (Name.startswith("lods") && Operands.size() == 3 &&
(Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) {
X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
if (isSrcOp(*Op1) && Op2->isReg()) {
const char *ins;
unsigned reg = Op2->getReg();
bool isLods = Name == "lods";
if (reg == X86::AL && (isLods || Name == "lodsb"))
ins = "lodsb";
else if (reg == X86::AX && (isLods || Name == "lodsw"))
ins = "lodsw";
else if (reg == X86::EAX && (isLods || Name == "lodsl"))
ins = "lodsl";
else if (reg == X86::RAX && (isLods || Name == "lodsq"))
ins = "lodsq";
else
ins = NULL;
if (ins != NULL) {
Operands.pop_back();
Operands.pop_back();
delete Op1;
delete Op2;
if (Name != ins)
static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
}
}
}
// Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]"
if (Name.startswith("stos") && Operands.size() == 3 &&
(Name == "stos" || Name == "stosb" || Name == "stosw" ||
Name == "stosl" || (is64BitMode() && Name == "stosq"))) {
X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
if (isDstOp(*Op2) && Op1->isReg()) {
const char *ins;
unsigned reg = Op1->getReg();
bool isStos = Name == "stos";
if (reg == X86::AL && (isStos || Name == "stosb"))
ins = "stosb";
else if (reg == X86::AX && (isStos || Name == "stosw"))
ins = "stosw";
else if (reg == X86::EAX && (isStos || Name == "stosl"))
ins = "stosl";
else if (reg == X86::RAX && (isStos || Name == "stosq"))
ins = "stosq";
else
ins = NULL;
if (ins != NULL) {
Operands.pop_back();
Operands.pop_back();
delete Op1;
delete Op2;
if (Name != ins)
static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
}
}
}
// FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
// "shift <op>".
if ((Name.startswith("shr") || Name.startswith("sar") ||
Name.startswith("shl") || Name.startswith("sal") ||
Name.startswith("rcl") || Name.startswith("rcr") ||
Name.startswith("rol") || Name.startswith("ror")) &&
Operands.size() == 3) {
if (isParsingIntelSyntax()) {
// Intel syntax
X86Operand *Op1 = static_cast<X86Operand*>(Operands[2]);
if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
delete Operands[2];
Operands.pop_back();
}
} else {
X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
delete Operands[1];
Operands.erase(Operands.begin() + 1);
}
}
}
// Transforms "int $3" into "int3" as a size optimization. We can't write an
// instalias with an immediate operand yet.
if (Name == "int" && Operands.size() == 2) {
X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
delete Operands[1];
Operands.erase(Operands.begin() + 1);
static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
}
}
return false;
}
bool X86AsmParser::
processInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Ops) {
switch (Inst.getOpcode()) {
default: return false;
case X86::AND16i16: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::AND16ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::AND32i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::AND32ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::AND64i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::AND64ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::XOR16i16: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::XOR16ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::XOR32i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::XOR32ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::XOR64i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::XOR64ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::OR16i16: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::OR16ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::OR32i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::OR32ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::OR64i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::OR64ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::CMP16i16: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::CMP16ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::CMP32i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::CMP32ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::CMP64i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::CMP64ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::ADD16i16: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::ADD16ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::ADD32i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::ADD32ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::ADD64i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::ADD64ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::SUB16i16: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::SUB16ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(MCOperand::CreateReg(X86::AX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::SUB32i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::SUB32ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::EAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
case X86::SUB64i32: {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::SUB64ri8);
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(MCOperand::CreateReg(X86::RAX));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
}
}
bool X86AsmParser::
MatchAndEmitInstruction(SMLoc IDLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out) {
unsigned Kind;
unsigned ErrorInfo;
SmallVector<MCInst, 2> Insts;
bool Error = MatchInstruction(IDLoc, Kind, Operands, Insts,
ErrorInfo);
if (!Error)
for (unsigned i = 0, e = Insts.size(); i != e; ++i)
Out.EmitInstruction(Insts[i]);
return Error;
}
bool X86AsmParser::
MatchInstruction(SMLoc IDLoc, unsigned &Kind,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
SmallVectorImpl<MCInst> &MCInsts, unsigned &OrigErrorInfo,
bool matchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
assert(Op->isToken() && "Leading operand should always be a mnemonic!");
ArrayRef<SMRange> EmptyRanges = ArrayRef<SMRange>();
// First, handle aliases that expand to multiple instructions.
// FIXME: This should be replaced with a real .td file alias mechanism.
// Also, MatchInstructionImpl should actually *do* the EmitInstruction
// call.
if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
Op->getToken() == "finit" || Op->getToken() == "fsave" ||
Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
MCInst Inst;
Inst.setOpcode(X86::WAIT);
Inst.setLoc(IDLoc);
MCInsts.push_back(Inst);
const char *Repl =
StringSwitch<const char*>(Op->getToken())
.Case("finit", "fninit")
.Case("fsave", "fnsave")
.Case("fstcw", "fnstcw")
.Case("fstcww", "fnstcw")
.Case("fstenv", "fnstenv")
.Case("fstsw", "fnstsw")
.Case("fstsww", "fnstsw")
.Case("fclex", "fnclex")
.Default(0);
assert(Repl && "Unknown wait-prefixed instruction");
delete Operands[0];
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
}
bool WasOriginallyInvalidOperand = false;
MCInst Inst;
// First, try a direct match.
switch (MatchInstructionImpl(Operands, Kind, Inst, OrigErrorInfo,
isParsingIntelSyntax())) {
default: break;
case Match_Success:
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the
// individual transformations can chain off each other.
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
MCInsts.push_back(Inst);
return false;
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled",
EmptyRanges, matchingInlineAsm);
return true;
case Match_InvalidOperand:
WasOriginallyInvalidOperand = true;
break;
case Match_MnemonicFail:
break;
}
// FIXME: Ideally, we would only attempt suffix matches for things which are
// valid prefixes, and we could just infer the right unambiguous
// type. However, that requires substantially more matcher support than the
// following hack.
// Change the operand to point to a temporary token.
StringRef Base = Op->getToken();
SmallString<16> Tmp;
Tmp += Base;
Tmp += ' ';
Op->setTokenValue(Tmp.str());
// If this instruction starts with an 'f', then it is a floating point stack
// instruction. These come in up to three forms for 32-bit, 64-bit, and
// 80-bit floating point, which use the suffixes s,l,t respectively.
//
// Otherwise, we assume that this may be an integer instruction, which comes
// in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
// Check for the various suffix matches.
Tmp[Base.size()] = Suffixes[0];
unsigned ErrorInfoIgnore;
unsigned Match1, Match2, Match3, Match4;
unsigned tKind;
Match1 = MatchInstructionImpl(Operands, tKind, Inst, ErrorInfoIgnore);
if (Match1 == Match_Success) Kind = tKind;
Tmp[Base.size()] = Suffixes[1];
Match2 = MatchInstructionImpl(Operands, tKind, Inst, ErrorInfoIgnore);
if (Match2 == Match_Success) Kind = tKind;
Tmp[Base.size()] = Suffixes[2];
Match3 = MatchInstructionImpl(Operands, tKind, Inst, ErrorInfoIgnore);
if (Match3 == Match_Success) Kind = tKind;
Tmp[Base.size()] = Suffixes[3];
Match4 = MatchInstructionImpl(Operands, tKind, Inst, ErrorInfoIgnore);
if (Match4 == Match_Success) Kind = tKind;
// Restore the old token.
Op->setTokenValue(Base);
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
(Match1 == Match_Success) + (Match2 == Match_Success) +
(Match3 == Match_Success) + (Match4 == Match_Success);
if (NumSuccessfulMatches == 1) {
Inst.setLoc(IDLoc);
MCInsts.push_back(Inst);
return false;
}
// Otherwise, the match failed, try to produce a decent error message.
// If we had multiple suffix matches, then identify this as an ambiguous
// match.
if (NumSuccessfulMatches > 1) {
char MatchChars[4];
unsigned NumMatches = 0;
if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "ambiguous instructions require an explicit suffix (could be ";
for (unsigned i = 0; i != NumMatches; ++i) {
if (i != 0)
OS << ", ";
if (i + 1 == NumMatches)
OS << "or ";
OS << "'" << Base << MatchChars[i] << "'";
}
OS << ")";
Error(IDLoc, OS.str(), EmptyRanges, matchingInlineAsm);
return true;
}
// Okay, we know that none of the variants matched successfully.
// If all of the instructions reported an invalid mnemonic, then the original
// mnemonic was invalid.
if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
(Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
if (!WasOriginallyInvalidOperand) {
ArrayRef<SMRange> Ranges = matchingInlineAsm ? EmptyRanges :
Op->getLocRange();
return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
Ranges, matchingInlineAsm);
}
// Recover location info for the operand if we know which was the problem.
if (OrigErrorInfo != ~0U) {
if (OrigErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction",
EmptyRanges, matchingInlineAsm);
X86Operand *Operand = (X86Operand*)Operands[OrigErrorInfo];
if (Operand->getStartLoc().isValid()) {
SMRange OperandRange = Operand->getLocRange();
return Error(Operand->getStartLoc(), "invalid operand for instruction",
OperandRange, matchingInlineAsm);
}
}
return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
matchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
(Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
Error(IDLoc, "instruction requires a CPU feature not currently enabled",
EmptyRanges, matchingInlineAsm);
return true;
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
(Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
Error(IDLoc, "invalid operand for instruction", EmptyRanges,
matchingInlineAsm);
return true;
}
// If all of these were an outright failure, report it in a useless way.
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
EmptyRanges, matchingInlineAsm);
return true;
}
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(2, DirectiveID.getLoc());
else if (IDVal.startswith(".code"))
return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
else if (IDVal.startswith(".intel_syntax")) {
getParser().setAssemblerDialect(1);
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if(Parser.getTok().getString() == "noprefix") {
// FIXME : Handle noprefix
Parser.Lex();
} else
return true;
}
return false;
}
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().ParseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// ParseDirectiveCode
/// ::= .code32 | .code64
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
if (IDVal == ".code32") {
Parser.Lex();
if (is64BitMode()) {
SwitchMode();
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
}
} else if (IDVal == ".code64") {
Parser.Lex();
if (!is64BitMode()) {
SwitchMode();
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
}
} else {
return Error(L, "unexpected directive " + IDVal);
}
return false;
}
extern "C" void LLVMInitializeX86AsmLexer();
// Force static initialization.
extern "C" void LLVMInitializeX86AsmParser() {
RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
LLVMInitializeX86AsmLexer();
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "X86GenAsmMatcher.inc"