llvm-6502/tools/llvm-bcanalyzer/llvm-bcanalyzer.cpp
2009-04-06 20:54:32 +00:00

522 lines
19 KiB
C++

//===-- llvm-bcanalyzer.cpp - Bitcode Analyzer --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tool may be invoked in the following manner:
// llvm-bcanalyzer [options] - Read LLVM bitcode from stdin
// llvm-bcanalyzer [options] x.bc - Read LLVM bitcode from the x.bc file
//
// Options:
// --help - Output information about command line switches
// --dump - Dump low-level bitcode structure in readable format
//
// This tool provides analytical information about a bitcode file. It is
// intended as an aid to developers of bitcode reading and writing software. It
// produces on std::out a summary of the bitcode file that shows various
// statistics about the contents of the file. By default this information is
// detailed and contains information about individual bitcode blocks and the
// functions in the module.
// The tool is also able to print a bitcode file in a straight forward text
// format that shows the containment and relationships of the information in
// the bitcode file (-dump option).
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Verifier.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/System/Signals.h"
#include <map>
#include <fstream>
#include <iostream>
#include <algorithm>
using namespace llvm;
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input bitcode>"), cl::init("-"));
static cl::opt<std::string>
OutputFilename("-o", cl::init("-"), cl::desc("<output file>"));
static cl::opt<bool> Dump("dump", cl::desc("Dump low level bitcode trace"));
//===----------------------------------------------------------------------===//
// Bitcode specific analysis.
//===----------------------------------------------------------------------===//
static cl::opt<bool> NoHistogram("disable-histogram",
cl::desc("Do not print per-code histogram"));
static cl::opt<bool>
NonSymbolic("non-symbolic",
cl::desc("Emit numberic info in dump even if"
" symbolic info is available"));
/// CurStreamType - If we can sniff the flavor of this stream, we can produce
/// better dump info.
static enum {
UnknownBitstream,
LLVMIRBitstream
} CurStreamType;
/// GetBlockName - Return a symbolic block name if known, otherwise return
/// null.
static const char *GetBlockName(unsigned BlockID) {
// Standard blocks for all bitcode files.
if (BlockID < bitc::FIRST_APPLICATION_BLOCKID) {
if (BlockID == bitc::BLOCKINFO_BLOCK_ID)
return "BLOCKINFO_BLOCK";
return 0;
}
if (CurStreamType != LLVMIRBitstream) return 0;
switch (BlockID) {
default: return 0;
case bitc::MODULE_BLOCK_ID: return "MODULE_BLOCK";
case bitc::PARAMATTR_BLOCK_ID: return "PARAMATTR_BLOCK";
case bitc::TYPE_BLOCK_ID: return "TYPE_BLOCK";
case bitc::CONSTANTS_BLOCK_ID: return "CONSTANTS_BLOCK";
case bitc::FUNCTION_BLOCK_ID: return "FUNCTION_BLOCK";
case bitc::TYPE_SYMTAB_BLOCK_ID: return "TYPE_SYMTAB";
case bitc::VALUE_SYMTAB_BLOCK_ID: return "VALUE_SYMTAB";
}
}
/// GetCodeName - Return a symbolic code name if known, otherwise return
/// null.
static const char *GetCodeName(unsigned CodeID, unsigned BlockID) {
// Standard blocks for all bitcode files.
if (BlockID < bitc::FIRST_APPLICATION_BLOCKID) {
if (BlockID == bitc::BLOCKINFO_BLOCK_ID) {
switch (CodeID) {
default: return 0;
case bitc::MODULE_CODE_VERSION: return "VERSION";
}
}
return 0;
}
if (CurStreamType != LLVMIRBitstream) return 0;
switch (BlockID) {
default: return 0;
case bitc::MODULE_BLOCK_ID:
switch (CodeID) {
default: return 0;
case bitc::MODULE_CODE_VERSION: return "VERSION";
case bitc::MODULE_CODE_TRIPLE: return "TRIPLE";
case bitc::MODULE_CODE_DATALAYOUT: return "DATALAYOUT";
case bitc::MODULE_CODE_ASM: return "ASM";
case bitc::MODULE_CODE_SECTIONNAME: return "SECTIONNAME";
case bitc::MODULE_CODE_DEPLIB: return "DEPLIB";
case bitc::MODULE_CODE_GLOBALVAR: return "GLOBALVAR";
case bitc::MODULE_CODE_FUNCTION: return "FUNCTION";
case bitc::MODULE_CODE_ALIAS: return "ALIAS";
case bitc::MODULE_CODE_PURGEVALS: return "PURGEVALS";
case bitc::MODULE_CODE_GCNAME: return "GCNAME";
}
case bitc::PARAMATTR_BLOCK_ID:
switch (CodeID) {
default: return 0;
case bitc::PARAMATTR_CODE_ENTRY: return "ENTRY";
}
case bitc::TYPE_BLOCK_ID:
switch (CodeID) {
default: return 0;
case bitc::TYPE_CODE_NUMENTRY: return "NUMENTRY";
case bitc::TYPE_CODE_VOID: return "VOID";
case bitc::TYPE_CODE_FLOAT: return "FLOAT";
case bitc::TYPE_CODE_DOUBLE: return "DOUBLE";
case bitc::TYPE_CODE_LABEL: return "LABEL";
case bitc::TYPE_CODE_OPAQUE: return "OPAQUE";
case bitc::TYPE_CODE_INTEGER: return "INTEGER";
case bitc::TYPE_CODE_POINTER: return "POINTER";
case bitc::TYPE_CODE_FUNCTION: return "FUNCTION";
case bitc::TYPE_CODE_STRUCT: return "STRUCT";
case bitc::TYPE_CODE_ARRAY: return "ARRAY";
case bitc::TYPE_CODE_VECTOR: return "VECTOR";
case bitc::TYPE_CODE_X86_FP80: return "X86_FP80";
case bitc::TYPE_CODE_FP128: return "FP128";
case bitc::TYPE_CODE_PPC_FP128: return "PPC_FP128";
}
case bitc::CONSTANTS_BLOCK_ID:
switch (CodeID) {
default: return 0;
case bitc::CST_CODE_SETTYPE: return "SETTYPE";
case bitc::CST_CODE_NULL: return "NULL";
case bitc::CST_CODE_UNDEF: return "UNDEF";
case bitc::CST_CODE_INTEGER: return "INTEGER";
case bitc::CST_CODE_WIDE_INTEGER: return "WIDE_INTEGER";
case bitc::CST_CODE_FLOAT: return "FLOAT";
case bitc::CST_CODE_AGGREGATE: return "AGGREGATE";
case bitc::CST_CODE_STRING: return "STRING";
case bitc::CST_CODE_CSTRING: return "CSTRING";
case bitc::CST_CODE_CE_BINOP: return "CE_BINOP";
case bitc::CST_CODE_CE_CAST: return "CE_CAST";
case bitc::CST_CODE_CE_GEP: return "CE_GEP";
case bitc::CST_CODE_CE_SELECT: return "CE_SELECT";
case bitc::CST_CODE_CE_EXTRACTELT: return "CE_EXTRACTELT";
case bitc::CST_CODE_CE_INSERTELT: return "CE_INSERTELT";
case bitc::CST_CODE_CE_SHUFFLEVEC: return "CE_SHUFFLEVEC";
case bitc::CST_CODE_CE_CMP: return "CE_CMP";
case bitc::CST_CODE_INLINEASM: return "INLINEASM";
}
case bitc::FUNCTION_BLOCK_ID:
switch (CodeID) {
default: return 0;
case bitc::FUNC_CODE_DECLAREBLOCKS: return "DECLAREBLOCKS";
case bitc::FUNC_CODE_INST_BINOP: return "INST_BINOP";
case bitc::FUNC_CODE_INST_CAST: return "INST_CAST";
case bitc::FUNC_CODE_INST_GEP: return "INST_GEP";
case bitc::FUNC_CODE_INST_SELECT: return "INST_SELECT";
case bitc::FUNC_CODE_INST_EXTRACTELT: return "INST_EXTRACTELT";
case bitc::FUNC_CODE_INST_INSERTELT: return "INST_INSERTELT";
case bitc::FUNC_CODE_INST_SHUFFLEVEC: return "INST_SHUFFLEVEC";
case bitc::FUNC_CODE_INST_CMP: return "INST_CMP";
case bitc::FUNC_CODE_INST_RET: return "INST_RET";
case bitc::FUNC_CODE_INST_BR: return "INST_BR";
case bitc::FUNC_CODE_INST_SWITCH: return "INST_SWITCH";
case bitc::FUNC_CODE_INST_INVOKE: return "INST_INVOKE";
case bitc::FUNC_CODE_INST_UNWIND: return "INST_UNWIND";
case bitc::FUNC_CODE_INST_UNREACHABLE: return "INST_UNREACHABLE";
case bitc::FUNC_CODE_INST_PHI: return "INST_PHI";
case bitc::FUNC_CODE_INST_MALLOC: return "INST_MALLOC";
case bitc::FUNC_CODE_INST_FREE: return "INST_FREE";
case bitc::FUNC_CODE_INST_ALLOCA: return "INST_ALLOCA";
case bitc::FUNC_CODE_INST_LOAD: return "INST_LOAD";
case bitc::FUNC_CODE_INST_STORE: return "INST_STORE";
case bitc::FUNC_CODE_INST_CALL: return "INST_CALL";
case bitc::FUNC_CODE_INST_VAARG: return "INST_VAARG";
case bitc::FUNC_CODE_INST_STORE2: return "INST_STORE2";
case bitc::FUNC_CODE_INST_GETRESULT: return "INST_GETRESULT";
case bitc::FUNC_CODE_INST_EXTRACTVAL: return "INST_EXTRACTVAL";
case bitc::FUNC_CODE_INST_INSERTVAL: return "INST_INSERTVAL";
case bitc::FUNC_CODE_INST_CMP2: return "INST_CMP2";
case bitc::FUNC_CODE_INST_VSELECT: return "INST_VSELECT";
}
case bitc::TYPE_SYMTAB_BLOCK_ID:
switch (CodeID) {
default: return 0;
case bitc::TST_CODE_ENTRY: return "ENTRY";
}
case bitc::VALUE_SYMTAB_BLOCK_ID:
switch (CodeID) {
default: return 0;
case bitc::VST_CODE_ENTRY: return "ENTRY";
case bitc::VST_CODE_BBENTRY: return "BBENTRY";
}
}
}
struct PerBlockIDStats {
/// NumInstances - This the number of times this block ID has been seen.
unsigned NumInstances;
/// NumBits - The total size in bits of all of these blocks.
uint64_t NumBits;
/// NumSubBlocks - The total number of blocks these blocks contain.
unsigned NumSubBlocks;
/// NumAbbrevs - The total number of abbreviations.
unsigned NumAbbrevs;
/// NumRecords - The total number of records these blocks contain, and the
/// number that are abbreviated.
unsigned NumRecords, NumAbbreviatedRecords;
/// CodeFreq - Keep track of the number of times we see each code.
std::vector<unsigned> CodeFreq;
PerBlockIDStats()
: NumInstances(0), NumBits(0),
NumSubBlocks(0), NumAbbrevs(0), NumRecords(0), NumAbbreviatedRecords(0) {}
};
static std::map<unsigned, PerBlockIDStats> BlockIDStats;
/// Error - All bitcode analysis errors go through this function, making this a
/// good place to breakpoint if debugging.
static bool Error(const std::string &Err) {
std::cerr << Err << "\n";
return true;
}
/// ParseBlock - Read a block, updating statistics, etc.
static bool ParseBlock(BitstreamReader &Stream, unsigned IndentLevel) {
std::string Indent(IndentLevel*2, ' ');
uint64_t BlockBitStart = Stream.GetCurrentBitNo();
unsigned BlockID = Stream.ReadSubBlockID();
// Get the statistics for this BlockID.
PerBlockIDStats &BlockStats = BlockIDStats[BlockID];
BlockStats.NumInstances++;
// BLOCKINFO is a special part of the stream.
if (BlockID == bitc::BLOCKINFO_BLOCK_ID) {
if (Dump) std::cerr << Indent << "<BLOCKINFO_BLOCK/>\n";
if (Stream.ReadBlockInfoBlock())
return Error("Malformed BlockInfoBlock");
uint64_t BlockBitEnd = Stream.GetCurrentBitNo();
BlockStats.NumBits += BlockBitEnd-BlockBitStart;
return false;
}
unsigned NumWords = 0;
if (Stream.EnterSubBlock(BlockID, &NumWords))
return Error("Malformed block record");
const char *BlockName = 0;
if (Dump) {
std::cerr << Indent << "<";
if ((BlockName = GetBlockName(BlockID)))
std::cerr << BlockName;
else
std::cerr << "UnknownBlock" << BlockID;
if (NonSymbolic && BlockName)
std::cerr << " BlockID=" << BlockID;
std::cerr << " NumWords=" << NumWords
<< " BlockCodeSize=" << Stream.GetAbbrevIDWidth() << ">\n";
}
SmallVector<uint64_t, 64> Record;
// Read all the records for this block.
while (1) {
if (Stream.AtEndOfStream())
return Error("Premature end of bitstream");
// Read the code for this record.
unsigned AbbrevID = Stream.ReadCode();
switch (AbbrevID) {
case bitc::END_BLOCK: {
if (Stream.ReadBlockEnd())
return Error("Error at end of block");
uint64_t BlockBitEnd = Stream.GetCurrentBitNo();
BlockStats.NumBits += BlockBitEnd-BlockBitStart;
if (Dump) {
std::cerr << Indent << "</";
if (BlockName)
std::cerr << BlockName << ">\n";
else
std::cerr << "UnknownBlock" << BlockID << ">\n";
}
return false;
}
case bitc::ENTER_SUBBLOCK: {
uint64_t SubBlockBitStart = Stream.GetCurrentBitNo();
if (ParseBlock(Stream, IndentLevel+1))
return true;
++BlockStats.NumSubBlocks;
uint64_t SubBlockBitEnd = Stream.GetCurrentBitNo();
// Don't include subblock sizes in the size of this block.
BlockBitStart += SubBlockBitEnd-SubBlockBitStart;
break;
}
case bitc::DEFINE_ABBREV:
Stream.ReadAbbrevRecord();
++BlockStats.NumAbbrevs;
break;
default:
++BlockStats.NumRecords;
if (AbbrevID != bitc::UNABBREV_RECORD)
++BlockStats.NumAbbreviatedRecords;
Record.clear();
unsigned Code = Stream.ReadRecord(AbbrevID, Record);
// Increment the # occurrences of this code.
if (BlockStats.CodeFreq.size() <= Code)
BlockStats.CodeFreq.resize(Code+1);
BlockStats.CodeFreq[Code]++;
if (Dump) {
std::cerr << Indent << " <";
if (const char *CodeName = GetCodeName(Code, BlockID))
std::cerr << CodeName;
else
std::cerr << "UnknownCode" << Code;
if (NonSymbolic && GetCodeName(Code, BlockID))
std::cerr << " codeid=" << Code;
if (AbbrevID != bitc::UNABBREV_RECORD)
std::cerr << " abbrevid=" << AbbrevID;
for (unsigned i = 0, e = Record.size(); i != e; ++i)
std::cerr << " op" << i << "=" << (int64_t)Record[i];
std::cerr << "/>\n";
}
break;
}
}
}
static void PrintSize(double Bits) {
std::cerr << Bits << "b/" << Bits/8 << "B/" << Bits/32 << "W";
}
/// AnalyzeBitcode - Analyze the bitcode file specified by InputFilename.
static int AnalyzeBitcode() {
// Read the input file.
MemoryBuffer *MemBuf = MemoryBuffer::getFileOrSTDIN(InputFilename.c_str());
if (MemBuf == 0)
return Error("Error reading '" + InputFilename + "'.");
if (MemBuf->getBufferSize() & 3)
return Error("Bitcode stream should be a multiple of 4 bytes in length");
unsigned char *BufPtr = (unsigned char *)MemBuf->getBufferStart();
unsigned char *EndBufPtr = BufPtr+MemBuf->getBufferSize();
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, EndBufPtr))
if (SkipBitcodeWrapperHeader(BufPtr, EndBufPtr))
return Error("Invalid bitcode wrapper header");
BitstreamReader Stream(BufPtr, EndBufPtr);
// Read the stream signature.
char Signature[6];
Signature[0] = Stream.Read(8);
Signature[1] = Stream.Read(8);
Signature[2] = Stream.Read(4);
Signature[3] = Stream.Read(4);
Signature[4] = Stream.Read(4);
Signature[5] = Stream.Read(4);
// Autodetect the file contents, if it is one we know.
CurStreamType = UnknownBitstream;
if (Signature[0] == 'B' && Signature[1] == 'C' &&
Signature[2] == 0x0 && Signature[3] == 0xC &&
Signature[4] == 0xE && Signature[5] == 0xD)
CurStreamType = LLVMIRBitstream;
unsigned NumTopBlocks = 0;
// Parse the top-level structure. We only allow blocks at the top-level.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code != bitc::ENTER_SUBBLOCK)
return Error("Invalid record at top-level");
if (ParseBlock(Stream, 0))
return true;
++NumTopBlocks;
}
if (Dump) std::cerr << "\n\n";
uint64_t BufferSizeBits = (EndBufPtr-BufPtr)*CHAR_BIT;
// Print a summary of the read file.
std::cerr << "Summary of " << InputFilename << ":\n";
std::cerr << " Total size: ";
PrintSize(BufferSizeBits);
std::cerr << "\n";
std::cerr << " Stream type: ";
switch (CurStreamType) {
default: assert(0 && "Unknown bitstream type");
case UnknownBitstream: std::cerr << "unknown\n"; break;
case LLVMIRBitstream: std::cerr << "LLVM IR\n"; break;
}
std::cerr << " # Toplevel Blocks: " << NumTopBlocks << "\n";
std::cerr << "\n";
// Emit per-block stats.
std::cerr << "Per-block Summary:\n";
for (std::map<unsigned, PerBlockIDStats>::iterator I = BlockIDStats.begin(),
E = BlockIDStats.end(); I != E; ++I) {
std::cerr << " Block ID #" << I->first;
if (const char *BlockName = GetBlockName(I->first))
std::cerr << " (" << BlockName << ")";
std::cerr << ":\n";
const PerBlockIDStats &Stats = I->second;
std::cerr << " Num Instances: " << Stats.NumInstances << "\n";
std::cerr << " Total Size: ";
PrintSize(Stats.NumBits);
std::cerr << "\n";
std::cerr << " % of file: "
<< Stats.NumBits/(double)BufferSizeBits*100 << "\n";
if (Stats.NumInstances > 1) {
std::cerr << " Average Size: ";
PrintSize(Stats.NumBits/(double)Stats.NumInstances);
std::cerr << "\n";
std::cerr << " Tot/Avg SubBlocks: " << Stats.NumSubBlocks << "/"
<< Stats.NumSubBlocks/(double)Stats.NumInstances << "\n";
std::cerr << " Tot/Avg Abbrevs: " << Stats.NumAbbrevs << "/"
<< Stats.NumAbbrevs/(double)Stats.NumInstances << "\n";
std::cerr << " Tot/Avg Records: " << Stats.NumRecords << "/"
<< Stats.NumRecords/(double)Stats.NumInstances << "\n";
} else {
std::cerr << " Num SubBlocks: " << Stats.NumSubBlocks << "\n";
std::cerr << " Num Abbrevs: " << Stats.NumAbbrevs << "\n";
std::cerr << " Num Records: " << Stats.NumRecords << "\n";
}
if (Stats.NumRecords)
std::cerr << " % Abbrev Recs: " << (Stats.NumAbbreviatedRecords/
(double)Stats.NumRecords)*100 << "\n";
std::cerr << "\n";
// Print a histogram of the codes we see.
if (!NoHistogram && !Stats.CodeFreq.empty()) {
std::vector<std::pair<unsigned, unsigned> > FreqPairs; // <freq,code>
for (unsigned i = 0, e = Stats.CodeFreq.size(); i != e; ++i)
if (unsigned Freq = Stats.CodeFreq[i])
FreqPairs.push_back(std::make_pair(Freq, i));
std::stable_sort(FreqPairs.begin(), FreqPairs.end());
std::reverse(FreqPairs.begin(), FreqPairs.end());
std::cerr << "\tCode Histogram:\n";
for (unsigned i = 0, e = FreqPairs.size(); i != e; ++i) {
std::cerr << "\t\t" << FreqPairs[i].first << "\t";
if (const char *CodeName = GetCodeName(FreqPairs[i].second, I->first))
std::cerr << CodeName << "\n";
else
std::cerr << "UnknownCode" << FreqPairs[i].second << "\n";
}
std::cerr << "\n";
}
}
return 0;
}
int main(int argc, char **argv) {
// Print a stack trace if we signal out.
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
cl::ParseCommandLineOptions(argc, argv, "llvm-bcanalyzer file analyzer\n");
return AnalyzeBitcode();
}