Lang Hames da62155c11 [MCJIT][Orc] Refactor RTDyldMemoryManager, weave RuntimeDyld::SymbolInfo through
MCJIT.

This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.

The symbol resolution interface is modified slightly, from:

  uint64_t getSymbolAddress(const std::string &Name);

to:

  RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);

The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.


The memory management interface removes the following method:

  void notifyObjectLoaded(ExecutionEngine *EE,
                          const object::ObjectFile &) {}

as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).


The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).

The EngineBuilder class retains the existing method:

  EngineBuilder&
  setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);

and includes two new methods:

  EngineBuilder&
  setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);

  EngineBuilder&
  setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);

Clients should use EITHER:

A single call to setMCJITMemoryManager with an RTDyldMemoryManager.

OR (exclusive)

One call each to each of setMemoryManager and setSymbolResolver.

This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.

If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233509 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-30 03:37:06 +00:00

1442 lines
44 KiB
C++

#include "llvm/Analysis/Passes.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/Orc/OrcTargetSupport.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <iomanip>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <vector>
using namespace llvm;
using namespace llvm::orc;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2, tok_extern = -3,
// primary
tok_identifier = -4, tok_number = -5,
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10,
// operators
tok_binary = -11, tok_unary = -12,
// var definition
tok_var = -13
};
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;
if (IdentifierStr == "def") return tok_def;
if (IdentifierStr == "extern") return tok_extern;
if (IdentifierStr == "if") return tok_if;
if (IdentifierStr == "then") return tok_then;
if (IdentifierStr == "else") return tok_else;
if (IdentifierStr == "for") return tok_for;
if (IdentifierStr == "in") return tok_in;
if (IdentifierStr == "binary") return tok_binary;
if (IdentifierStr == "unary") return tok_unary;
if (IdentifierStr == "var") return tok_var;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), 0);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
class IRGenContext;
/// ExprAST - Base class for all expression nodes.
struct ExprAST {
virtual ~ExprAST() {}
virtual Value *IRGen(IRGenContext &C) const = 0;
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
struct NumberExprAST : public ExprAST {
NumberExprAST(double Val) : Val(Val) {}
Value *IRGen(IRGenContext &C) const override;
double Val;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
struct VariableExprAST : public ExprAST {
VariableExprAST(std::string Name) : Name(std::move(Name)) {}
Value *IRGen(IRGenContext &C) const override;
std::string Name;
};
/// UnaryExprAST - Expression class for a unary operator.
struct UnaryExprAST : public ExprAST {
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
Value *IRGen(IRGenContext &C) const override;
char Opcode;
std::unique_ptr<ExprAST> Operand;
};
/// BinaryExprAST - Expression class for a binary operator.
struct BinaryExprAST : public ExprAST {
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *IRGen(IRGenContext &C) const override;
char Op;
std::unique_ptr<ExprAST> LHS, RHS;
};
/// CallExprAST - Expression class for function calls.
struct CallExprAST : public ExprAST {
CallExprAST(std::string CalleeName,
std::vector<std::unique_ptr<ExprAST>> Args)
: CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
Value *IRGen(IRGenContext &C) const override;
std::string CalleeName;
std::vector<std::unique_ptr<ExprAST>> Args;
};
/// IfExprAST - Expression class for if/then/else.
struct IfExprAST : public ExprAST {
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *IRGen(IRGenContext &C) const override;
std::unique_ptr<ExprAST> Cond, Then, Else;
};
/// ForExprAST - Expression class for for/in.
struct ForExprAST : public ExprAST {
ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)
: VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}
Value *IRGen(IRGenContext &C) const override;
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;
};
/// VarExprAST - Expression class for var/in
struct VarExprAST : public ExprAST {
typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
typedef std::vector<Binding> BindingList;
VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
: VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
Value *IRGen(IRGenContext &C) const override;
BindingList VarBindings;
std::unique_ptr<ExprAST> Body;
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its argument names as well as if it is an operator.
struct PrototypeAST {
PrototypeAST(std::string Name, std::vector<std::string> Args,
bool IsOperator = false, unsigned Precedence = 0)
: Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
Precedence(Precedence) {}
Function *IRGen(IRGenContext &C) const;
void CreateArgumentAllocas(Function *F, IRGenContext &C);
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size()-1];
}
std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
};
/// FunctionAST - This class represents a function definition itself.
struct FunctionAST {
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *IRGen(IRGenContext &C) const;
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
};
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
return CurTok = gettok();
}
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0) return -1;
return TokPrec;
}
template <typename T>
std::unique_ptr<T> ErrorU(const std::string &Str) {
std::cerr << "Error: " << Str << "\n";
return nullptr;
}
template <typename T>
T* ErrorP(const std::string &Str) {
std::cerr << "Error: " << Str << "\n";
return nullptr;
}
static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
auto Arg = ParseExpression();
if (!Arg) return nullptr;
Args.push_back(std::move(Arg));
if (CurTok == ')') break;
if (CurTok != ',')
return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// numberexpr ::= number
static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return Result;
}
/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;
if (CurTok != ')')
return ErrorU<ExprAST>("expected ')'");
getNextToken(); // eat ).
return V;
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
if (CurTok != tok_then)
return ErrorU<ExprAST>("expected then");
getNextToken(); // eat the then
auto Then = ParseExpression();
if (!Then)
return nullptr;
if (CurTok != tok_else)
return ErrorU<ExprAST>("expected else");
getNextToken();
auto Else = ParseExpression();
if (!Else)
return nullptr;
return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ForExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return ErrorU<ForExprAST>("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return ErrorU<ForExprAST>("expected '=' after for");
getNextToken(); // eat '='.
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return ErrorU<ForExprAST>("expected ',' after for start value");
getNextToken();
auto End = ParseExpression();
if (!End)
return nullptr;
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)
return nullptr;
}
if (CurTok != tok_in)
return ErrorU<ForExprAST>("expected 'in' after for");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (Body)
return nullptr;
return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));
}
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<VarExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
VarExprAST::BindingList VarBindings;
// At least one variable name is required.
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier after var");
while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
// Read the optional initializer.
std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
if (!Init)
return nullptr;
}
VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
// End of var list, exit loop.
if (CurTok != ',') break;
getNextToken(); // eat the ','.
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier list after var");
}
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default: return ErrorU<ExprAST>("unknown token when expecting an expression");
case tok_identifier: return ParseIdentifierExpr();
case tok_number: return ParseNumberExpr();
case '(': return ParseParenExpr();
case tok_if: return ParseIfExpr();
case tok_for: return ParseForExpr();
case tok_var: return ParseVarExpr();
}
}
/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
return nullptr;
}
/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
if (!RHS)
return nullptr;
}
// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}
/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
switch (CurTok) {
default:
return ErrorU<PrototypeAST>("Expected function name in prototype");
case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;
case tok_unary:
getNextToken();
if (!isascii(CurTok))
return ErrorU<PrototypeAST>("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;
case tok_binary:
getNextToken();
if (!isascii(CurTok))
return ErrorU<PrototypeAST>("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
BinaryPrecedence = (unsigned)NumVal;
getNextToken();
}
break;
}
if (CurTok != '(')
return ErrorU<PrototypeAST>("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorU<PrototypeAST>("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return ErrorU<PrototypeAST>("Invalid number of operands for operator");
return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;
if (auto Body = ParseExpression())
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
return nullptr;
}
/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto =
llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
return nullptr;
}
/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
// FIXME: Obviously we can do better than this
std::string GenerateUniqueName(const std::string &Root) {
static int i = 0;
std::ostringstream NameStream;
NameStream << Root << ++i;
return NameStream.str();
}
std::string MakeLegalFunctionName(std::string Name)
{
std::string NewName;
assert(!Name.empty() && "Base name must not be empty");
// Start with what we have
NewName = Name;
// Look for a numberic first character
if (NewName.find_first_of("0123456789") == 0) {
NewName.insert(0, 1, 'n');
}
// Replace illegal characters with their ASCII equivalent
std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
size_t pos;
while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
std::ostringstream NumStream;
NumStream << (int)NewName.at(pos);
NewName = NewName.replace(pos, 1, NumStream.str());
}
return NewName;
}
class SessionContext {
public:
SessionContext(LLVMContext &C)
: Context(C), TM(EngineBuilder().selectTarget()) {}
LLVMContext& getLLVMContext() const { return Context; }
TargetMachine& getTarget() { return *TM; }
void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
PrototypeAST* getPrototypeAST(const std::string &Name);
private:
typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
LLVMContext &Context;
std::unique_ptr<TargetMachine> TM;
PrototypeMap Prototypes;
};
void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
Prototypes[P->Name] = std::move(P);
}
PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
PrototypeMap::iterator I = Prototypes.find(Name);
if (I != Prototypes.end())
return I->second.get();
return nullptr;
}
class IRGenContext {
public:
IRGenContext(SessionContext &S)
: Session(S),
M(new Module(GenerateUniqueName("jit_module_"),
Session.getLLVMContext())),
Builder(Session.getLLVMContext()) {
M->setDataLayout(*Session.getTarget().getDataLayout());
}
SessionContext& getSession() { return Session; }
Module& getM() const { return *M; }
std::unique_ptr<Module> takeM() { return std::move(M); }
IRBuilder<>& getBuilder() { return Builder; }
LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
Function* getPrototype(const std::string &Name);
std::map<std::string, AllocaInst*> NamedValues;
private:
SessionContext &Session;
std::unique_ptr<Module> M;
IRBuilder<> Builder;
};
Function* IRGenContext::getPrototype(const std::string &Name) {
if (Function *ExistingProto = M->getFunction(Name))
return ExistingProto;
if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
return ProtoAST->IRGen(*this);
return nullptr;
}
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
const std::string &VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
VarName.c_str());
}
Value *NumberExprAST::IRGen(IRGenContext &C) const {
return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
}
Value *VariableExprAST::IRGen(IRGenContext &C) const {
// Look this variable up in the function.
Value *V = C.NamedValues[Name];
if (V == 0)
return ErrorP<Value>("Unknown variable name '" + Name + "'");
// Load the value.
return C.getBuilder().CreateLoad(V, Name.c_str());
}
Value *UnaryExprAST::IRGen(IRGenContext &C) const {
if (Value *OperandV = Operand->IRGen(C)) {
std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
if (Function *F = C.getPrototype(FnName))
return C.getBuilder().CreateCall(F, OperandV, "unop");
return ErrorP<Value>("Unknown unary operator");
}
// Could not codegen operand - return null.
return nullptr;
}
Value *BinaryExprAST::IRGen(IRGenContext &C) const {
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
auto LHSVar = static_cast<VariableExprAST&>(*LHS);
// Codegen the RHS.
Value *Val = RHS->IRGen(C);
if (!Val) return nullptr;
// Look up the name.
if (auto Variable = C.NamedValues[LHSVar.Name]) {
C.getBuilder().CreateStore(Val, Variable);
return Val;
}
return ErrorP<Value>("Unknown variable name");
}
Value *L = LHS->IRGen(C);
Value *R = RHS->IRGen(C);
if (!L || !R) return nullptr;
switch (Op) {
case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
case '<':
L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
"booltmp");
default: break;
}
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
if (Function *F = C.getPrototype(FnName)) {
Value *Ops[] = { L, R };
return C.getBuilder().CreateCall(F, Ops, "binop");
}
return ErrorP<Value>("Unknown binary operator");
}
Value *CallExprAST::IRGen(IRGenContext &C) const {
// Look up the name in the global module table.
if (auto CalleeF = C.getPrototype(CalleeName)) {
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return ErrorP<Value>("Incorrect # arguments passed");
std::vector<Value*> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->IRGen(C));
if (!ArgsV.back()) return nullptr;
}
return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
}
return ErrorP<Value>("Unknown function referenced");
}
Value *IfExprAST::IRGen(IRGenContext &C) const {
Value *CondV = Cond->IRGen(C);
if (!CondV) return nullptr;
// Convert condition to a bool by comparing equal to 0.0.
ConstantFP *FPZero =
ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
// Emit then value.
C.getBuilder().SetInsertPoint(ThenBB);
Value *ThenV = Then->IRGen(C);
if (!ThenV) return nullptr;
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = C.getBuilder().GetInsertBlock();
// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
C.getBuilder().SetInsertPoint(ElseBB);
Value *ElseV = Else->IRGen(C);
if (!ElseV) return nullptr;
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = C.getBuilder().GetInsertBlock();
// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
C.getBuilder().SetInsertPoint(MergeBB);
PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
"iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
Value *ForExprAST::IRGen(IRGenContext &C) const {
// Output this as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->IRGen(C);
if (!StartVal) return nullptr;
// Store the value into the alloca.
C.getBuilder().CreateStore(StartVal, Alloca);
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
C.getBuilder().CreateBr(LoopBB);
// Start insertion in LoopBB.
C.getBuilder().SetInsertPoint(LoopBB);
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = C.NamedValues[VarName];
C.NamedValues[VarName] = Alloca;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->IRGen(C))
return nullptr;
// Emit the step value.
Value *StepVal;
if (Step) {
StepVal = Step->IRGen(C);
if (!StepVal) return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
}
// Compute the end condition.
Value *EndCond = End->IRGen(C);
if (EndCond == 0) return EndCond;
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
C.getBuilder().CreateStore(NextVar, Alloca);
// Convert condition to a bool by comparing equal to 0.0.
EndCond = C.getBuilder().CreateFCmpONE(EndCond,
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
"loopcond");
// Create the "after loop" block and insert it.
BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
C.getBuilder().SetInsertPoint(AfterBB);
// Restore the unshadowed variable.
if (OldVal)
C.NamedValues[VarName] = OldVal;
else
C.NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}
Value *VarExprAST::IRGen(IRGenContext &C) const {
std::vector<AllocaInst *> OldBindings;
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
auto &VarName = VarBindings[i].first;
auto &Init = VarBindings[i].second;
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {
InitVal = Init->IRGen(C);
if (!InitVal) return nullptr;
} else // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
C.getBuilder().CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(C.NamedValues[VarName]);
// Remember this binding.
C.NamedValues[VarName] = Alloca;
}
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->IRGen(C);
if (!BodyVal) return nullptr;
// Pop all our variables from scope.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
C.NamedValues[VarBindings[i].first] = OldBindings[i];
// Return the body computation.
return BodyVal;
}
Function *PrototypeAST::IRGen(IRGenContext &C) const {
std::string FnName = MakeLegalFunctionName(Name);
// Make the function type: double(double,double) etc.
std::vector<Type*> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
Doubles, false);
Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
&C.getM());
// If F conflicted, there was already something named 'FnName'. If it has a
// body, don't allow redefinition or reextern.
if (F->getName() != FnName) {
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = C.getM().getFunction(Name);
// If F already has a body, reject this.
if (!F->empty()) {
ErrorP<Function>("redefinition of function");
return nullptr;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorP<Function>("redefinition of function with different # args");
return nullptr;
}
}
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx)
AI->setName(Args[Idx]);
return F;
}
/// CreateArgumentAllocas - Create an alloca for each argument and register the
/// argument in the symbol table so that references to it will succeed.
void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
Function::arg_iterator AI = F->arg_begin();
for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
// Store the initial value into the alloca.
C.getBuilder().CreateStore(AI, Alloca);
// Add arguments to variable symbol table.
C.NamedValues[Args[Idx]] = Alloca;
}
}
Function *FunctionAST::IRGen(IRGenContext &C) const {
C.NamedValues.clear();
Function *TheFunction = Proto->IRGen(C);
if (!TheFunction)
return nullptr;
// If this is an operator, install it.
if (Proto->isBinaryOp())
BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
C.getBuilder().SetInsertPoint(BB);
// Add all arguments to the symbol table and create their allocas.
Proto->CreateArgumentAllocas(TheFunction, C);
if (Value *RetVal = Body->IRGen(C)) {
// Finish off the function.
C.getBuilder().CreateRet(RetVal);
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
if (Proto->isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());
return nullptr;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
const FunctionAST &F) {
IRGenContext C(S);
auto LF = F.IRGen(C);
if (!LF)
return nullptr;
#ifndef MINIMAL_STDERR_OUTPUT
fprintf(stderr, "Read function definition:");
LF->dump();
#endif
return C.takeM();
}
template <typename T>
static std::vector<T> singletonSet(T t) {
std::vector<T> Vec;
Vec.push_back(std::move(t));
return Vec;
}
static void EarthShatteringKaboom() {
fprintf(stderr, "Earth shattering kaboom.");
exit(1);
}
class KaleidoscopeJIT {
public:
typedef ObjectLinkingLayer<> ObjLayerT;
typedef IRCompileLayer<ObjLayerT> CompileLayerT;
typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
KaleidoscopeJIT(SessionContext &Session)
: Session(Session),
Mang(Session.getTarget().getDataLayout()),
CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
LazyEmitLayer(CompileLayer),
CompileCallbacks(LazyEmitLayer, CCMgrMemMgr, Session.getLLVMContext(),
reinterpret_cast<uintptr_t>(EarthShatteringKaboom),
64) {}
std::string mangle(const std::string &Name) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mang.getNameWithPrefix(MangledNameStream, Name);
}
return MangledName;
}
void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n";
FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST);
}
ModuleHandleT addModule(std::unique_ptr<Module> M) {
// We need a memory manager to allocate memory and resolve symbols for this
// new module. Create one that resolves symbols by looking back into the
// JIT.
auto Resolver = createLambdaResolver(
[&](const std::string &Name) {
// First try to find 'Name' within the JIT.
if (auto Symbol = findSymbol(Name))
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
Symbol.getFlags());
// If we don't already have a definition of 'Name' then search
// the ASTs.
return searchFunctionASTs(Name);
},
[](const std::string &S) { return nullptr; } );
return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
make_unique<SectionMemoryManager>(),
std::move(Resolver));
}
void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
JITSymbol findSymbol(const std::string &Name) {
return LazyEmitLayer.findSymbol(Name, true);
}
JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
return LazyEmitLayer.findSymbolIn(H, Name, true);
}
JITSymbol findUnmangledSymbol(const std::string &Name) {
return findSymbol(mangle(Name));
}
JITSymbol findUnmangledSymbolIn(ModuleHandleT H, const std::string &Name) {
return findSymbolIn(H, mangle(Name));
}
private:
// This method searches the FunctionDefs map for a definition of 'Name'. If it
// finds one it generates a stub for it and returns the address of the stub.
RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) {
auto DefI = FunctionDefs.find(Name);
if (DefI == FunctionDefs.end())
return 0;
// Return the address of the stub.
// Take the FunctionAST out of the map.
auto FnAST = std::move(DefI->second);
FunctionDefs.erase(DefI);
// IRGen the AST, add it to the JIT, and return the address for it.
auto H = irGenStub(std::move(FnAST));
auto Sym = findSymbolIn(H, Name);
return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
}
// This method will take the AST for a function definition and IR-gen a stub
// for that function that will, on first call, IR-gen the actual body of the
// function.
ModuleHandleT irGenStub(std::unique_ptr<FunctionAST> FnAST) {
// Step 1) IRGen a prototype for the stub. This will have the same type as
// the function.
IRGenContext C(Session);
Function *F = FnAST->Proto->IRGen(C);
// Step 2) Get a compile callback that can be used to compile the body of
// the function. The resulting CallbackInfo type will let us set the
// compile and update actions for the callback, and get a pointer to
// the jit trampoline that we need to call to trigger those actions.
auto CallbackInfo =
CompileCallbacks.getCompileCallback(F->getContext());
// Step 3) Create a stub that will indirectly call the body of this
// function once it is compiled. Initially, set the function
// pointer for the indirection to point at the trampoline.
std::string BodyPtrName = (F->getName() + "$address").str();
GlobalVariable *FunctionBodyPointer =
createImplPointer(*F, BodyPtrName,
createIRTypedAddress(*F->getFunctionType(),
CallbackInfo.getAddress()));
makeStub(*F, *FunctionBodyPointer);
// Step 4) Add the module containing the stub to the JIT.
auto H = addModule(C.takeM());
// Step 5) Set the compile and update actions.
//
// The compile action will IRGen the function and add it to the JIT, then
// request its address, which will trigger codegen. Since we don't need the
// AST after this, we pass ownership of the AST into the compile action:
// compile actions (and update actions) are deleted after they're run, so
// this will free the AST for us.
//
// The update action will update FunctionBodyPointer to point at the newly
// compiled function.
std::shared_ptr<FunctionAST> Fn = std::move(FnAST);
CallbackInfo.setCompileAction([this, Fn]() {
auto H = addModule(IRGen(Session, *Fn));
return findUnmangledSymbolIn(H, Fn->Proto->Name).getAddress();
});
CallbackInfo.setUpdateAction(
getLocalFPUpdater(LazyEmitLayer, H, mangle(BodyPtrName)));
return H;
}
SessionContext &Session;
Mangler Mang;
SectionMemoryManager CCMgrMemMgr;
ObjLayerT ObjectLayer;
CompileLayerT CompileLayer;
LazyEmitLayerT LazyEmitLayer;
std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;
JITCompileCallbackManager<LazyEmitLayerT, OrcX86_64> CompileCallbacks;
};
static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
if (auto F = ParseDefinition()) {
S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
J.addFunctionAST(std::move(F));
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern(SessionContext &S) {
if (auto P = ParseExtern())
S.addPrototypeAST(std::move(P));
else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
// Evaluate a top-level expression into an anonymous function.
if (auto F = ParseTopLevelExpr()) {
IRGenContext C(S);
if (auto ExprFunc = F->IRGen(C)) {
#ifndef MINIMAL_STDERR_OUTPUT
std::cerr << "Expression function:\n";
ExprFunc->dump();
#endif
// Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
// this module as soon as we've executed Function ExprFunc.
auto H = J.addModule(C.takeM());
// Get the address of the JIT'd function in memory.
auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
#ifdef MINIMAL_STDERR_OUTPUT
FP();
#else
std::cerr << "Evaluated to " << FP() << "\n";
#endif
// Remove the function.
J.removeModule(H);
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
SessionContext S(getGlobalContext());
KaleidoscopeJIT J(S);
while (1) {
switch (CurTok) {
case tok_eof: return;
case ';': getNextToken(); continue; // ignore top-level semicolons.
case tok_def: HandleDefinition(S, J); break;
case tok_extern: HandleExtern(S); break;
default: HandleTopLevelExpression(S, J); break;
}
#ifndef MINIMAL_STDERR_OUTPUT
std::cerr << "ready> ";
#endif
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
extern "C"
double putchard(double X) {
putchar((char)X);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C"
double printd(double X) {
printf("%f", X);
return 0;
}
extern "C"
double printlf() {
printf("\n");
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['/'] = 40;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
#ifndef MINIMAL_STDERR_OUTPUT
std::cerr << "ready> ";
#endif
getNextToken();
std::cerr << std::fixed;
// Run the main "interpreter loop" now.
MainLoop();
return 0;
}