mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-13 09:33:50 +00:00
831e0374a7
speeds up the isel pass from 2.5570s to 2.4722s on kc++ (3.4%). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33879 91177308-0d34-0410-b5e6-96231b3b80d8
1157 lines
36 KiB
C++
1157 lines
36 KiB
C++
//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by James M. Laskey and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a simple two pass scheduler. The first pass attempts to push
|
|
// backward any lengthy instructions and critical paths. The second pass packs
|
|
// instructions into semi-optimal time slots.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sched"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
static RegisterScheduler
|
|
bfsDAGScheduler("none", " No scheduling: breadth first sequencing",
|
|
createBFS_DAGScheduler);
|
|
static RegisterScheduler
|
|
simpleDAGScheduler("simple",
|
|
" Simple two pass scheduling: minimize critical path "
|
|
"and maximize processor utilization",
|
|
createSimpleDAGScheduler);
|
|
static RegisterScheduler
|
|
noitinDAGScheduler("simple-noitin",
|
|
" Simple two pass scheduling: Same as simple "
|
|
"except using generic latency",
|
|
createNoItinsDAGScheduler);
|
|
|
|
class NodeInfo;
|
|
typedef NodeInfo *NodeInfoPtr;
|
|
typedef std::vector<NodeInfoPtr> NIVector;
|
|
typedef std::vector<NodeInfoPtr>::iterator NIIterator;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
///
|
|
/// Node group - This struct is used to manage flagged node groups.
|
|
///
|
|
class NodeGroup {
|
|
public:
|
|
NodeGroup *Next;
|
|
private:
|
|
NIVector Members; // Group member nodes
|
|
NodeInfo *Dominator; // Node with highest latency
|
|
unsigned Latency; // Total latency of the group
|
|
int Pending; // Number of visits pending before
|
|
// adding to order
|
|
|
|
public:
|
|
// Ctor.
|
|
NodeGroup() : Next(NULL), Dominator(NULL), Pending(0) {}
|
|
|
|
// Accessors
|
|
inline void setDominator(NodeInfo *D) { Dominator = D; }
|
|
inline NodeInfo *getTop() { return Members.front(); }
|
|
inline NodeInfo *getBottom() { return Members.back(); }
|
|
inline NodeInfo *getDominator() { return Dominator; }
|
|
inline void setLatency(unsigned L) { Latency = L; }
|
|
inline unsigned getLatency() { return Latency; }
|
|
inline int getPending() const { return Pending; }
|
|
inline void setPending(int P) { Pending = P; }
|
|
inline int addPending(int I) { return Pending += I; }
|
|
|
|
// Pass thru
|
|
inline bool group_empty() { return Members.empty(); }
|
|
inline NIIterator group_begin() { return Members.begin(); }
|
|
inline NIIterator group_end() { return Members.end(); }
|
|
inline void group_push_back(const NodeInfoPtr &NI) {
|
|
Members.push_back(NI);
|
|
}
|
|
inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
|
|
return Members.insert(Pos, NI);
|
|
}
|
|
inline void group_insert(NIIterator Pos, NIIterator First,
|
|
NIIterator Last) {
|
|
Members.insert(Pos, First, Last);
|
|
}
|
|
|
|
static void Add(NodeInfo *D, NodeInfo *U);
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
///
|
|
/// NodeInfo - This struct tracks information used to schedule the a node.
|
|
///
|
|
class NodeInfo {
|
|
private:
|
|
int Pending; // Number of visits pending before
|
|
// adding to order
|
|
public:
|
|
SDNode *Node; // DAG node
|
|
InstrStage *StageBegin; // First stage in itinerary
|
|
InstrStage *StageEnd; // Last+1 stage in itinerary
|
|
unsigned Latency; // Total cycles to complete instr
|
|
bool IsCall : 1; // Is function call
|
|
bool IsLoad : 1; // Is memory load
|
|
bool IsStore : 1; // Is memory store
|
|
unsigned Slot; // Node's time slot
|
|
NodeGroup *Group; // Grouping information
|
|
#ifndef NDEBUG
|
|
unsigned Preorder; // Index before scheduling
|
|
#endif
|
|
|
|
// Ctor.
|
|
NodeInfo(SDNode *N = NULL)
|
|
: Pending(0)
|
|
, Node(N)
|
|
, StageBegin(NULL)
|
|
, StageEnd(NULL)
|
|
, Latency(0)
|
|
, IsCall(false)
|
|
, Slot(0)
|
|
, Group(NULL)
|
|
#ifndef NDEBUG
|
|
, Preorder(0)
|
|
#endif
|
|
{}
|
|
|
|
// Accessors
|
|
inline bool isInGroup() const {
|
|
assert(!Group || !Group->group_empty() && "Group with no members");
|
|
return Group != NULL;
|
|
}
|
|
inline bool isGroupDominator() const {
|
|
return isInGroup() && Group->getDominator() == this;
|
|
}
|
|
inline int getPending() const {
|
|
return Group ? Group->getPending() : Pending;
|
|
}
|
|
inline void setPending(int P) {
|
|
if (Group) Group->setPending(P);
|
|
else Pending = P;
|
|
}
|
|
inline int addPending(int I) {
|
|
if (Group) return Group->addPending(I);
|
|
else return Pending += I;
|
|
}
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
///
|
|
/// NodeGroupIterator - Iterates over all the nodes indicated by the node
|
|
/// info. If the node is in a group then iterate over the members of the
|
|
/// group, otherwise just the node info.
|
|
///
|
|
class NodeGroupIterator {
|
|
private:
|
|
NodeInfo *NI; // Node info
|
|
NIIterator NGI; // Node group iterator
|
|
NIIterator NGE; // Node group iterator end
|
|
|
|
public:
|
|
// Ctor.
|
|
NodeGroupIterator(NodeInfo *N) : NI(N) {
|
|
// If the node is in a group then set up the group iterator. Otherwise
|
|
// the group iterators will trip first time out.
|
|
if (N->isInGroup()) {
|
|
// get Group
|
|
NodeGroup *Group = NI->Group;
|
|
NGI = Group->group_begin();
|
|
NGE = Group->group_end();
|
|
// Prevent this node from being used (will be in members list
|
|
NI = NULL;
|
|
}
|
|
}
|
|
|
|
/// next - Return the next node info, otherwise NULL.
|
|
///
|
|
NodeInfo *next() {
|
|
// If members list
|
|
if (NGI != NGE) return *NGI++;
|
|
// Use node as the result (may be NULL)
|
|
NodeInfo *Result = NI;
|
|
// Only use once
|
|
NI = NULL;
|
|
// Return node or NULL
|
|
return Result;
|
|
}
|
|
};
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
///
|
|
/// NodeGroupOpIterator - Iterates over all the operands of a node. If the
|
|
/// node is a member of a group, this iterates over all the operands of all
|
|
/// the members of the group.
|
|
///
|
|
class NodeGroupOpIterator {
|
|
private:
|
|
NodeInfo *NI; // Node containing operands
|
|
NodeGroupIterator GI; // Node group iterator
|
|
SDNode::op_iterator OI; // Operand iterator
|
|
SDNode::op_iterator OE; // Operand iterator end
|
|
|
|
/// CheckNode - Test if node has more operands. If not get the next node
|
|
/// skipping over nodes that have no operands.
|
|
void CheckNode() {
|
|
// Only if operands are exhausted first
|
|
while (OI == OE) {
|
|
// Get next node info
|
|
NodeInfo *NI = GI.next();
|
|
// Exit if nodes are exhausted
|
|
if (!NI) return;
|
|
// Get node itself
|
|
SDNode *Node = NI->Node;
|
|
// Set up the operand iterators
|
|
OI = Node->op_begin();
|
|
OE = Node->op_end();
|
|
}
|
|
}
|
|
|
|
public:
|
|
// Ctor.
|
|
NodeGroupOpIterator(NodeInfo *N)
|
|
: NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
|
|
|
|
/// isEnd - Returns true when not more operands are available.
|
|
///
|
|
inline bool isEnd() { CheckNode(); return OI == OE; }
|
|
|
|
/// next - Returns the next available operand.
|
|
///
|
|
inline SDOperand next() {
|
|
assert(OI != OE &&
|
|
"Not checking for end of NodeGroupOpIterator correctly");
|
|
return *OI++;
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// BitsIterator - Provides iteration through individual bits in a bit vector.
|
|
///
|
|
template<class T>
|
|
class BitsIterator {
|
|
private:
|
|
T Bits; // Bits left to iterate through
|
|
|
|
public:
|
|
/// Ctor.
|
|
BitsIterator(T Initial) : Bits(Initial) {}
|
|
|
|
/// Next - Returns the next bit set or zero if exhausted.
|
|
inline T Next() {
|
|
// Get the rightmost bit set
|
|
T Result = Bits & -Bits;
|
|
// Remove from rest
|
|
Bits &= ~Result;
|
|
// Return single bit or zero
|
|
return Result;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// ResourceTally - Manages the use of resources over time intervals. Each
|
|
/// item (slot) in the tally vector represents the resources used at a given
|
|
/// moment. A bit set to 1 indicates that a resource is in use, otherwise
|
|
/// available. An assumption is made that the tally is large enough to schedule
|
|
/// all current instructions (asserts otherwise.)
|
|
///
|
|
template<class T>
|
|
class ResourceTally {
|
|
private:
|
|
std::vector<T> Tally; // Resources used per slot
|
|
typedef typename std::vector<T>::iterator Iter;
|
|
// Tally iterator
|
|
|
|
/// SlotsAvailable - Returns true if all units are available.
|
|
///
|
|
bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
|
|
unsigned &Resource) {
|
|
assert(N && "Must check availability with N != 0");
|
|
// Determine end of interval
|
|
Iter End = Begin + N;
|
|
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
|
|
|
// Iterate thru each resource
|
|
BitsIterator<T> Resources(ResourceSet & ~*Begin);
|
|
while (unsigned Res = Resources.Next()) {
|
|
// Check if resource is available for next N slots
|
|
Iter Interval = End;
|
|
do {
|
|
Interval--;
|
|
if (*Interval & Res) break;
|
|
} while (Interval != Begin);
|
|
|
|
// If available for N
|
|
if (Interval == Begin) {
|
|
// Success
|
|
Resource = Res;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// No luck
|
|
Resource = 0;
|
|
return false;
|
|
}
|
|
|
|
/// RetrySlot - Finds a good candidate slot to retry search.
|
|
Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
|
|
assert(N && "Must check availability with N != 0");
|
|
// Determine end of interval
|
|
Iter End = Begin + N;
|
|
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
|
|
|
while (Begin != End--) {
|
|
// Clear units in use
|
|
ResourceSet &= ~*End;
|
|
// If no units left then we should go no further
|
|
if (!ResourceSet) return End + 1;
|
|
}
|
|
// Made it all the way through
|
|
return Begin;
|
|
}
|
|
|
|
/// FindAndReserveStages - Return true if the stages can be completed. If
|
|
/// so mark as busy.
|
|
bool FindAndReserveStages(Iter Begin,
|
|
InstrStage *Stage, InstrStage *StageEnd) {
|
|
// If at last stage then we're done
|
|
if (Stage == StageEnd) return true;
|
|
// Get number of cycles for current stage
|
|
unsigned N = Stage->Cycles;
|
|
// Check to see if N slots are available, if not fail
|
|
unsigned Resource;
|
|
if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
|
|
// Check to see if remaining stages are available, if not fail
|
|
if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
|
|
// Reserve resource
|
|
Reserve(Begin, N, Resource);
|
|
// Success
|
|
return true;
|
|
}
|
|
|
|
/// Reserve - Mark busy (set) the specified N slots.
|
|
void Reserve(Iter Begin, unsigned N, unsigned Resource) {
|
|
// Determine end of interval
|
|
Iter End = Begin + N;
|
|
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
|
|
|
// Set resource bit in each slot
|
|
for (; Begin < End; Begin++)
|
|
*Begin |= Resource;
|
|
}
|
|
|
|
/// FindSlots - Starting from Begin, locate consecutive slots where all stages
|
|
/// can be completed. Returns the address of first slot.
|
|
Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
|
|
// Track position
|
|
Iter Cursor = Begin;
|
|
|
|
// Try all possible slots forward
|
|
while (true) {
|
|
// Try at cursor, if successful return position.
|
|
if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
|
|
// Locate a better position
|
|
Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
|
|
}
|
|
}
|
|
|
|
public:
|
|
/// Initialize - Resize and zero the tally to the specified number of time
|
|
/// slots.
|
|
inline void Initialize(unsigned N) {
|
|
Tally.assign(N, 0); // Initialize tally to all zeros.
|
|
}
|
|
|
|
// FindAndReserve - Locate an ideal slot for the specified stages and mark
|
|
// as busy.
|
|
unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
|
|
InstrStage *StageEnd) {
|
|
// Where to begin
|
|
Iter Begin = Tally.begin() + Slot;
|
|
// Find a free slot
|
|
Iter Where = FindSlots(Begin, StageBegin, StageEnd);
|
|
// Distance is slot number
|
|
unsigned Final = Where - Tally.begin();
|
|
return Final;
|
|
}
|
|
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// ScheduleDAGSimple - Simple two pass scheduler.
|
|
///
|
|
class VISIBILITY_HIDDEN ScheduleDAGSimple : public ScheduleDAG {
|
|
private:
|
|
bool NoSched; // Just do a BFS schedule, nothing fancy
|
|
bool NoItins; // Don't use itineraries?
|
|
ResourceTally<unsigned> Tally; // Resource usage tally
|
|
unsigned NSlots; // Total latency
|
|
static const unsigned NotFound = ~0U; // Search marker
|
|
|
|
unsigned NodeCount; // Number of nodes in DAG
|
|
std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
|
|
bool HasGroups; // True if there are any groups
|
|
NodeInfo *Info; // Info for nodes being scheduled
|
|
NIVector Ordering; // Emit ordering of nodes
|
|
NodeGroup *HeadNG, *TailNG; // Keep track of allocated NodeGroups
|
|
|
|
public:
|
|
|
|
// Ctor.
|
|
ScheduleDAGSimple(bool noSched, bool noItins, SelectionDAG &dag,
|
|
MachineBasicBlock *bb, const TargetMachine &tm)
|
|
: ScheduleDAG(dag, bb, tm), NoSched(noSched), NoItins(noItins), NSlots(0),
|
|
NodeCount(0), HasGroups(false), Info(NULL), HeadNG(NULL), TailNG(NULL) {
|
|
assert(&TII && "Target doesn't provide instr info?");
|
|
assert(&MRI && "Target doesn't provide register info?");
|
|
}
|
|
|
|
virtual ~ScheduleDAGSimple() {
|
|
if (Info)
|
|
delete[] Info;
|
|
|
|
NodeGroup *NG = HeadNG;
|
|
while (NG) {
|
|
NodeGroup *NextSU = NG->Next;
|
|
delete NG;
|
|
NG = NextSU;
|
|
}
|
|
}
|
|
|
|
void Schedule();
|
|
|
|
/// getNI - Returns the node info for the specified node.
|
|
///
|
|
NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
|
|
|
|
private:
|
|
static bool isDefiner(NodeInfo *A, NodeInfo *B);
|
|
void IncludeNode(NodeInfo *NI);
|
|
void VisitAll();
|
|
void GatherSchedulingInfo();
|
|
void FakeGroupDominators();
|
|
bool isStrongDependency(NodeInfo *A, NodeInfo *B);
|
|
bool isWeakDependency(NodeInfo *A, NodeInfo *B);
|
|
void ScheduleBackward();
|
|
void ScheduleForward();
|
|
|
|
void AddToGroup(NodeInfo *D, NodeInfo *U);
|
|
/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
|
|
///
|
|
void PrepareNodeInfo();
|
|
|
|
/// IdentifyGroups - Put flagged nodes into groups.
|
|
///
|
|
void IdentifyGroups();
|
|
|
|
/// print - Print ordering to specified output stream.
|
|
///
|
|
void print(std::ostream &O) const;
|
|
void print(std::ostream *O) const { if (O) print(*O); }
|
|
|
|
void dump(const char *tag) const;
|
|
|
|
virtual void dump() const;
|
|
|
|
/// EmitAll - Emit all nodes in schedule sorted order.
|
|
///
|
|
void EmitAll();
|
|
|
|
/// printNI - Print node info.
|
|
///
|
|
void printNI(std::ostream &O, NodeInfo *NI) const;
|
|
void printNI(std::ostream *O, NodeInfo *NI) const { if (O) printNI(*O, NI); }
|
|
|
|
/// printChanges - Hilight changes in order caused by scheduling.
|
|
///
|
|
void printChanges(unsigned Index) const;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Special case itineraries.
|
|
///
|
|
enum {
|
|
CallLatency = 40, // To push calls back in time
|
|
|
|
RSInteger = 0xC0000000, // Two integer units
|
|
RSFloat = 0x30000000, // Two float units
|
|
RSLoadStore = 0x0C000000, // Two load store units
|
|
RSBranch = 0x02000000 // One branch unit
|
|
};
|
|
static InstrStage LoadStage = { 5, RSLoadStore };
|
|
static InstrStage StoreStage = { 2, RSLoadStore };
|
|
static InstrStage IntStage = { 2, RSInteger };
|
|
static InstrStage FloatStage = { 3, RSFloat };
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
|
|
///
|
|
void ScheduleDAGSimple::PrepareNodeInfo() {
|
|
// Allocate node information
|
|
Info = new NodeInfo[NodeCount];
|
|
|
|
unsigned i = 0;
|
|
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
|
|
E = DAG.allnodes_end(); I != E; ++I, ++i) {
|
|
// Fast reference to node schedule info
|
|
NodeInfo* NI = &Info[i];
|
|
// Set up map
|
|
Map[I] = NI;
|
|
// Set node
|
|
NI->Node = I;
|
|
// Set pending visit count
|
|
NI->setPending(I->use_size());
|
|
}
|
|
}
|
|
|
|
/// IdentifyGroups - Put flagged nodes into groups.
|
|
///
|
|
void ScheduleDAGSimple::IdentifyGroups() {
|
|
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
|
NodeInfo* NI = &Info[i];
|
|
SDNode *Node = NI->Node;
|
|
|
|
// For each operand (in reverse to only look at flags)
|
|
for (unsigned N = Node->getNumOperands(); 0 < N--;) {
|
|
// Get operand
|
|
SDOperand Op = Node->getOperand(N);
|
|
// No more flags to walk
|
|
if (Op.getValueType() != MVT::Flag) break;
|
|
// Add to node group
|
|
AddToGroup(getNI(Op.Val), NI);
|
|
// Let everyone else know
|
|
HasGroups = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CountInternalUses - Returns the number of edges between the two nodes.
|
|
///
|
|
static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) {
|
|
unsigned N = 0;
|
|
for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
|
|
SDOperand Op = U->Node->getOperand(M);
|
|
if (Op.Val == D->Node) N++;
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Add - Adds a definer and user pair to a node group.
|
|
///
|
|
void ScheduleDAGSimple::AddToGroup(NodeInfo *D, NodeInfo *U) {
|
|
// Get current groups
|
|
NodeGroup *DGroup = D->Group;
|
|
NodeGroup *UGroup = U->Group;
|
|
// If both are members of groups
|
|
if (DGroup && UGroup) {
|
|
// There may have been another edge connecting
|
|
if (DGroup == UGroup) return;
|
|
// Add the pending users count
|
|
DGroup->addPending(UGroup->getPending());
|
|
// For each member of the users group
|
|
NodeGroupIterator UNGI(U);
|
|
while (NodeInfo *UNI = UNGI.next() ) {
|
|
// Change the group
|
|
UNI->Group = DGroup;
|
|
// For each member of the definers group
|
|
NodeGroupIterator DNGI(D);
|
|
while (NodeInfo *DNI = DNGI.next() ) {
|
|
// Remove internal edges
|
|
DGroup->addPending(-CountInternalUses(DNI, UNI));
|
|
}
|
|
}
|
|
// Merge the two lists
|
|
DGroup->group_insert(DGroup->group_end(),
|
|
UGroup->group_begin(), UGroup->group_end());
|
|
} else if (DGroup) {
|
|
// Make user member of definers group
|
|
U->Group = DGroup;
|
|
// Add users uses to definers group pending
|
|
DGroup->addPending(U->Node->use_size());
|
|
// For each member of the definers group
|
|
NodeGroupIterator DNGI(D);
|
|
while (NodeInfo *DNI = DNGI.next() ) {
|
|
// Remove internal edges
|
|
DGroup->addPending(-CountInternalUses(DNI, U));
|
|
}
|
|
DGroup->group_push_back(U);
|
|
} else if (UGroup) {
|
|
// Make definer member of users group
|
|
D->Group = UGroup;
|
|
// Add definers uses to users group pending
|
|
UGroup->addPending(D->Node->use_size());
|
|
// For each member of the users group
|
|
NodeGroupIterator UNGI(U);
|
|
while (NodeInfo *UNI = UNGI.next() ) {
|
|
// Remove internal edges
|
|
UGroup->addPending(-CountInternalUses(D, UNI));
|
|
}
|
|
UGroup->group_insert(UGroup->group_begin(), D);
|
|
} else {
|
|
D->Group = U->Group = DGroup = new NodeGroup();
|
|
DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
|
|
CountInternalUses(D, U));
|
|
DGroup->group_push_back(D);
|
|
DGroup->group_push_back(U);
|
|
|
|
if (HeadNG == NULL)
|
|
HeadNG = DGroup;
|
|
if (TailNG != NULL)
|
|
TailNG->Next = DGroup;
|
|
TailNG = DGroup;
|
|
}
|
|
}
|
|
|
|
|
|
/// print - Print ordering to specified output stream.
|
|
///
|
|
void ScheduleDAGSimple::print(std::ostream &O) const {
|
|
#ifndef NDEBUG
|
|
O << "Ordering\n";
|
|
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
|
|
NodeInfo *NI = Ordering[i];
|
|
printNI(O, NI);
|
|
O << "\n";
|
|
if (NI->isGroupDominator()) {
|
|
NodeGroup *Group = NI->Group;
|
|
for (NIIterator NII = Group->group_begin(), E = Group->group_end();
|
|
NII != E; NII++) {
|
|
O << " ";
|
|
printNI(O, *NII);
|
|
O << "\n";
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ScheduleDAGSimple::dump(const char *tag) const {
|
|
cerr << tag; dump();
|
|
}
|
|
|
|
void ScheduleDAGSimple::dump() const {
|
|
print(cerr);
|
|
}
|
|
|
|
|
|
/// EmitAll - Emit all nodes in schedule sorted order.
|
|
///
|
|
void ScheduleDAGSimple::EmitAll() {
|
|
// If this is the first basic block in the function, and if it has live ins
|
|
// that need to be copied into vregs, emit the copies into the top of the
|
|
// block before emitting the code for the block.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) {
|
|
for (MachineFunction::livein_iterator LI = MF.livein_begin(),
|
|
E = MF.livein_end(); LI != E; ++LI)
|
|
if (LI->second)
|
|
MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
|
|
LI->first, RegMap->getRegClass(LI->second));
|
|
}
|
|
|
|
DenseMap<SDNode*, unsigned> VRBaseMap;
|
|
|
|
// For each node in the ordering
|
|
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
|
|
// Get the scheduling info
|
|
NodeInfo *NI = Ordering[i];
|
|
if (NI->isInGroup()) {
|
|
NodeGroupIterator NGI(Ordering[i]);
|
|
while (NodeInfo *NI = NGI.next()) EmitNode(NI->Node, VRBaseMap);
|
|
} else {
|
|
EmitNode(NI->Node, VRBaseMap);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isFlagDefiner - Returns true if the node defines a flag result.
|
|
static bool isFlagDefiner(SDNode *A) {
|
|
unsigned N = A->getNumValues();
|
|
return N && A->getValueType(N - 1) == MVT::Flag;
|
|
}
|
|
|
|
/// isFlagUser - Returns true if the node uses a flag result.
|
|
///
|
|
static bool isFlagUser(SDNode *A) {
|
|
unsigned N = A->getNumOperands();
|
|
return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
|
|
}
|
|
|
|
/// printNI - Print node info.
|
|
///
|
|
void ScheduleDAGSimple::printNI(std::ostream &O, NodeInfo *NI) const {
|
|
#ifndef NDEBUG
|
|
SDNode *Node = NI->Node;
|
|
O << " "
|
|
<< std::hex << Node << std::dec
|
|
<< ", Lat=" << NI->Latency
|
|
<< ", Slot=" << NI->Slot
|
|
<< ", ARITY=(" << Node->getNumOperands() << ","
|
|
<< Node->getNumValues() << ")"
|
|
<< " " << Node->getOperationName(&DAG);
|
|
if (isFlagDefiner(Node)) O << "<#";
|
|
if (isFlagUser(Node)) O << ">#";
|
|
#endif
|
|
}
|
|
|
|
/// printChanges - Hilight changes in order caused by scheduling.
|
|
///
|
|
void ScheduleDAGSimple::printChanges(unsigned Index) const {
|
|
#ifndef NDEBUG
|
|
// Get the ordered node count
|
|
unsigned N = Ordering.size();
|
|
// Determine if any changes
|
|
unsigned i = 0;
|
|
for (; i < N; i++) {
|
|
NodeInfo *NI = Ordering[i];
|
|
if (NI->Preorder != i) break;
|
|
}
|
|
|
|
if (i < N) {
|
|
cerr << Index << ". New Ordering\n";
|
|
|
|
for (i = 0; i < N; i++) {
|
|
NodeInfo *NI = Ordering[i];
|
|
cerr << " " << NI->Preorder << ". ";
|
|
printNI(cerr, NI);
|
|
cerr << "\n";
|
|
if (NI->isGroupDominator()) {
|
|
NodeGroup *Group = NI->Group;
|
|
for (NIIterator NII = Group->group_begin(), E = Group->group_end();
|
|
NII != E; NII++) {
|
|
cerr << " ";
|
|
printNI(cerr, *NII);
|
|
cerr << "\n";
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
cerr << Index << ". No Changes\n";
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// isDefiner - Return true if node A is a definer for B.
|
|
///
|
|
bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
|
|
// While there are A nodes
|
|
NodeGroupIterator NII(A);
|
|
while (NodeInfo *NI = NII.next()) {
|
|
// Extract node
|
|
SDNode *Node = NI->Node;
|
|
// While there operands in nodes of B
|
|
NodeGroupOpIterator NGOI(B);
|
|
while (!NGOI.isEnd()) {
|
|
SDOperand Op = NGOI.next();
|
|
// If node from A defines a node in B
|
|
if (Node == Op.Val) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// IncludeNode - Add node to NodeInfo vector.
|
|
///
|
|
void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
|
|
// Get node
|
|
SDNode *Node = NI->Node;
|
|
// Ignore entry node
|
|
if (Node->getOpcode() == ISD::EntryToken) return;
|
|
// Check current count for node
|
|
int Count = NI->getPending();
|
|
// If the node is already in list
|
|
if (Count < 0) return;
|
|
// Decrement count to indicate a visit
|
|
Count--;
|
|
// If count has gone to zero then add node to list
|
|
if (!Count) {
|
|
// Add node
|
|
if (NI->isInGroup()) {
|
|
Ordering.push_back(NI->Group->getDominator());
|
|
} else {
|
|
Ordering.push_back(NI);
|
|
}
|
|
// indicate node has been added
|
|
Count--;
|
|
}
|
|
// Mark as visited with new count
|
|
NI->setPending(Count);
|
|
}
|
|
|
|
/// GatherSchedulingInfo - Get latency and resource information about each node.
|
|
///
|
|
void ScheduleDAGSimple::GatherSchedulingInfo() {
|
|
// Get instruction itineraries for the target
|
|
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
|
|
|
|
// For each node
|
|
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
|
// Get node info
|
|
NodeInfo* NI = &Info[i];
|
|
SDNode *Node = NI->Node;
|
|
|
|
// If there are itineraries and it is a machine instruction
|
|
if (InstrItins.isEmpty() || NoItins) {
|
|
// If machine opcode
|
|
if (Node->isTargetOpcode()) {
|
|
// Get return type to guess which processing unit
|
|
MVT::ValueType VT = Node->getValueType(0);
|
|
// Get machine opcode
|
|
MachineOpCode TOpc = Node->getTargetOpcode();
|
|
NI->IsCall = TII->isCall(TOpc);
|
|
NI->IsLoad = TII->isLoad(TOpc);
|
|
NI->IsStore = TII->isStore(TOpc);
|
|
|
|
if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage;
|
|
else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage;
|
|
else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
|
|
else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
|
|
if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
|
|
}
|
|
} else if (Node->isTargetOpcode()) {
|
|
// get machine opcode
|
|
MachineOpCode TOpc = Node->getTargetOpcode();
|
|
// Check to see if it is a call
|
|
NI->IsCall = TII->isCall(TOpc);
|
|
// Get itinerary stages for instruction
|
|
unsigned II = TII->getSchedClass(TOpc);
|
|
NI->StageBegin = InstrItins.begin(II);
|
|
NI->StageEnd = InstrItins.end(II);
|
|
}
|
|
|
|
// One slot for the instruction itself
|
|
NI->Latency = 1;
|
|
|
|
// Add long latency for a call to push it back in time
|
|
if (NI->IsCall) NI->Latency += CallLatency;
|
|
|
|
// Sum up all the latencies
|
|
for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
|
|
Stage != E; Stage++) {
|
|
NI->Latency += Stage->Cycles;
|
|
}
|
|
|
|
// Sum up all the latencies for max tally size
|
|
NSlots += NI->Latency;
|
|
}
|
|
|
|
// Unify metrics if in a group
|
|
if (HasGroups) {
|
|
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
|
NodeInfo* NI = &Info[i];
|
|
|
|
if (NI->isInGroup()) {
|
|
NodeGroup *Group = NI->Group;
|
|
|
|
if (!Group->getDominator()) {
|
|
NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
|
|
NodeInfo *Dominator = *NGI;
|
|
unsigned Latency = 0;
|
|
|
|
for (NGI++; NGI != NGE; NGI++) {
|
|
NodeInfo* NGNI = *NGI;
|
|
Latency += NGNI->Latency;
|
|
if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
|
|
}
|
|
|
|
Dominator->Latency = Latency;
|
|
Group->setDominator(Dominator);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
|
|
/// Note that the ordering in the Nodes vector is reversed.
|
|
void ScheduleDAGSimple::VisitAll() {
|
|
// Add first element to list
|
|
NodeInfo *NI = getNI(DAG.getRoot().Val);
|
|
if (NI->isInGroup()) {
|
|
Ordering.push_back(NI->Group->getDominator());
|
|
} else {
|
|
Ordering.push_back(NI);
|
|
}
|
|
|
|
// Iterate through all nodes that have been added
|
|
for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
|
|
// Visit all operands
|
|
NodeGroupOpIterator NGI(Ordering[i]);
|
|
while (!NGI.isEnd()) {
|
|
// Get next operand
|
|
SDOperand Op = NGI.next();
|
|
// Get node
|
|
SDNode *Node = Op.Val;
|
|
// Ignore passive nodes
|
|
if (isPassiveNode(Node)) continue;
|
|
// Check out node
|
|
IncludeNode(getNI(Node));
|
|
}
|
|
}
|
|
|
|
// Add entry node last (IncludeNode filters entry nodes)
|
|
if (DAG.getEntryNode().Val != DAG.getRoot().Val)
|
|
Ordering.push_back(getNI(DAG.getEntryNode().Val));
|
|
|
|
// Reverse the order
|
|
std::reverse(Ordering.begin(), Ordering.end());
|
|
}
|
|
|
|
/// FakeGroupDominators - Set dominators for non-scheduling.
|
|
///
|
|
void ScheduleDAGSimple::FakeGroupDominators() {
|
|
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
|
NodeInfo* NI = &Info[i];
|
|
|
|
if (NI->isInGroup()) {
|
|
NodeGroup *Group = NI->Group;
|
|
|
|
if (!Group->getDominator()) {
|
|
Group->setDominator(NI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isStrongDependency - Return true if node A has results used by node B.
|
|
/// I.E., B must wait for latency of A.
|
|
bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
|
|
// If A defines for B then it's a strong dependency or
|
|
// if a load follows a store (may be dependent but why take a chance.)
|
|
return isDefiner(A, B) || (A->IsStore && B->IsLoad);
|
|
}
|
|
|
|
/// isWeakDependency Return true if node A produces a result that will
|
|
/// conflict with operands of B. It is assumed that we have called
|
|
/// isStrongDependency prior.
|
|
bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
|
|
// TODO check for conflicting real registers and aliases
|
|
#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
|
|
return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
|
|
#else
|
|
return A->Node->getOpcode() == ISD::EntryToken;
|
|
#endif
|
|
}
|
|
|
|
/// ScheduleBackward - Schedule instructions so that any long latency
|
|
/// instructions and the critical path get pushed back in time. Time is run in
|
|
/// reverse to allow code reuse of the Tally and eliminate the overhead of
|
|
/// biasing every slot indices against NSlots.
|
|
void ScheduleDAGSimple::ScheduleBackward() {
|
|
// Size and clear the resource tally
|
|
Tally.Initialize(NSlots);
|
|
// Get number of nodes to schedule
|
|
unsigned N = Ordering.size();
|
|
|
|
// For each node being scheduled
|
|
for (unsigned i = N; 0 < i--;) {
|
|
NodeInfo *NI = Ordering[i];
|
|
// Track insertion
|
|
unsigned Slot = NotFound;
|
|
|
|
// Compare against those previously scheduled nodes
|
|
unsigned j = i + 1;
|
|
for (; j < N; j++) {
|
|
// Get following instruction
|
|
NodeInfo *Other = Ordering[j];
|
|
|
|
// Check dependency against previously inserted nodes
|
|
if (isStrongDependency(NI, Other)) {
|
|
Slot = Other->Slot + Other->Latency;
|
|
break;
|
|
} else if (isWeakDependency(NI, Other)) {
|
|
Slot = Other->Slot;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If independent of others (or first entry)
|
|
if (Slot == NotFound) Slot = 0;
|
|
|
|
#if 0 // FIXME - measure later
|
|
// Find a slot where the needed resources are available
|
|
if (NI->StageBegin != NI->StageEnd)
|
|
Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
|
|
#endif
|
|
|
|
// Set node slot
|
|
NI->Slot = Slot;
|
|
|
|
// Insert sort based on slot
|
|
j = i + 1;
|
|
for (; j < N; j++) {
|
|
// Get following instruction
|
|
NodeInfo *Other = Ordering[j];
|
|
// Should we look further (remember slots are in reverse time)
|
|
if (Slot >= Other->Slot) break;
|
|
// Shuffle other into ordering
|
|
Ordering[j - 1] = Other;
|
|
}
|
|
// Insert node in proper slot
|
|
if (j != i + 1) Ordering[j - 1] = NI;
|
|
}
|
|
}
|
|
|
|
/// ScheduleForward - Schedule instructions to maximize packing.
|
|
///
|
|
void ScheduleDAGSimple::ScheduleForward() {
|
|
// Size and clear the resource tally
|
|
Tally.Initialize(NSlots);
|
|
// Get number of nodes to schedule
|
|
unsigned N = Ordering.size();
|
|
|
|
// For each node being scheduled
|
|
for (unsigned i = 0; i < N; i++) {
|
|
NodeInfo *NI = Ordering[i];
|
|
// Track insertion
|
|
unsigned Slot = NotFound;
|
|
|
|
// Compare against those previously scheduled nodes
|
|
unsigned j = i;
|
|
for (; 0 < j--;) {
|
|
// Get following instruction
|
|
NodeInfo *Other = Ordering[j];
|
|
|
|
// Check dependency against previously inserted nodes
|
|
if (isStrongDependency(Other, NI)) {
|
|
Slot = Other->Slot + Other->Latency;
|
|
break;
|
|
} else if (Other->IsCall || isWeakDependency(Other, NI)) {
|
|
Slot = Other->Slot;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If independent of others (or first entry)
|
|
if (Slot == NotFound) Slot = 0;
|
|
|
|
// Find a slot where the needed resources are available
|
|
if (NI->StageBegin != NI->StageEnd)
|
|
Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
|
|
|
|
// Set node slot
|
|
NI->Slot = Slot;
|
|
|
|
// Insert sort based on slot
|
|
j = i;
|
|
for (; 0 < j--;) {
|
|
// Get prior instruction
|
|
NodeInfo *Other = Ordering[j];
|
|
// Should we look further
|
|
if (Slot >= Other->Slot) break;
|
|
// Shuffle other into ordering
|
|
Ordering[j + 1] = Other;
|
|
}
|
|
// Insert node in proper slot
|
|
if (j != i) Ordering[j + 1] = NI;
|
|
}
|
|
}
|
|
|
|
/// Schedule - Order nodes according to selected style.
|
|
///
|
|
void ScheduleDAGSimple::Schedule() {
|
|
// Number the nodes
|
|
NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
|
|
|
|
// Set up minimum info for scheduling
|
|
PrepareNodeInfo();
|
|
// Construct node groups for flagged nodes
|
|
IdentifyGroups();
|
|
|
|
// Test to see if scheduling should occur
|
|
bool ShouldSchedule = NodeCount > 3 && !NoSched;
|
|
// Don't waste time if is only entry and return
|
|
if (ShouldSchedule) {
|
|
// Get latency and resource requirements
|
|
GatherSchedulingInfo();
|
|
} else if (HasGroups) {
|
|
// Make sure all the groups have dominators
|
|
FakeGroupDominators();
|
|
}
|
|
|
|
// Breadth first walk of DAG
|
|
VisitAll();
|
|
|
|
#ifndef NDEBUG
|
|
static unsigned Count = 0;
|
|
Count++;
|
|
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
|
|
NodeInfo *NI = Ordering[i];
|
|
NI->Preorder = i;
|
|
}
|
|
#endif
|
|
|
|
// Don't waste time if is only entry and return
|
|
if (ShouldSchedule) {
|
|
// Push back long instructions and critical path
|
|
ScheduleBackward();
|
|
|
|
// Pack instructions to maximize resource utilization
|
|
ScheduleForward();
|
|
}
|
|
|
|
DEBUG(printChanges(Count));
|
|
|
|
// Emit in scheduled order
|
|
EmitAll();
|
|
}
|
|
|
|
|
|
/// createSimpleDAGScheduler - This creates a simple two pass instruction
|
|
/// scheduler using instruction itinerary.
|
|
llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB) {
|
|
return new ScheduleDAGSimple(false, false, *DAG, BB, DAG->getTarget());
|
|
}
|
|
|
|
/// createNoItinsDAGScheduler - This creates a simple two pass instruction
|
|
/// scheduler without using instruction itinerary.
|
|
llvm::ScheduleDAG* llvm::createNoItinsDAGScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB) {
|
|
return new ScheduleDAGSimple(false, true, *DAG, BB, DAG->getTarget());
|
|
}
|
|
|
|
/// createBFS_DAGScheduler - This creates a simple breadth first instruction
|
|
/// scheduler.
|
|
llvm::ScheduleDAG* llvm::createBFS_DAGScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB) {
|
|
return new ScheduleDAGSimple(true, false, *DAG, BB, DAG->getTarget());
|
|
}
|