llvm-6502/lib/Target/ARM/NEONPreAllocPass.cpp
Evan Cheng b990a2f249 Teach two-address pass to do some coalescing while eliminating REG_SEQUENCE
instructions.

e.g.
%reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
%reg1027<def> = EXTRACT_SUBREG %reg1026, 6
%reg1028<def> = EXTRACT_SUBREG %reg1026<kill>, 5
...
%reg1029<def> = REG_SEQUENCE %reg1028<kill>, 5, %reg1027<kill>, 6, %reg1028, 7, %reg1027, 8, %reg1028, 9, %reg1027, 10, %reg1030<kill>, 11, %reg1032<kill>, 12

After REG_SEQUENCE is eliminated, we are left with:

%reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
%reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
%reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5

The regular coalescer will not be able to coalesce reg1026 and reg1029 because it doesn't
know how to combine sub-register indices 5 and 6. Now 2-address pass will consult the
target whether sub-registers 5 and 6 of reg1026 can be combined to into a larger
sub-register (or combined to be reg1026 itself as is the case here). If it is possible, 
it will be able to replace references of reg1026 with reg1029 + the larger sub-register
index.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103835 91177308-0d34-0410-b5e6-96231b3b80d8
2010-05-14 23:21:14 +00:00

531 lines
13 KiB
C++

//===-- NEONPreAllocPass.cpp - Allocate adjacent NEON registers--*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "neon-prealloc"
#include "ARM.h"
#include "ARMInstrInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
using namespace llvm;
namespace {
class NEONPreAllocPass : public MachineFunctionPass {
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
public:
static char ID;
NEONPreAllocPass() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "NEON register pre-allocation pass";
}
private:
bool FormsRegSequence(MachineInstr *MI,
unsigned FirstOpnd, unsigned NumRegs,
unsigned Offset, unsigned Stride) const;
bool PreAllocNEONRegisters(MachineBasicBlock &MBB);
};
char NEONPreAllocPass::ID = 0;
}
static bool isNEONMultiRegOp(int Opcode, unsigned &FirstOpnd, unsigned &NumRegs,
unsigned &Offset, unsigned &Stride) {
// Default to unit stride with no offset.
Stride = 1;
Offset = 0;
switch (Opcode) {
default:
break;
case ARM::VLD1q8:
case ARM::VLD1q16:
case ARM::VLD1q32:
case ARM::VLD1q64:
case ARM::VLD2d8:
case ARM::VLD2d16:
case ARM::VLD2d32:
case ARM::VLD2LNd8:
case ARM::VLD2LNd16:
case ARM::VLD2LNd32:
FirstOpnd = 0;
NumRegs = 2;
return true;
case ARM::VLD2q8:
case ARM::VLD2q16:
case ARM::VLD2q32:
FirstOpnd = 0;
NumRegs = 4;
return true;
case ARM::VLD2LNq16:
case ARM::VLD2LNq32:
FirstOpnd = 0;
NumRegs = 2;
Offset = 0;
Stride = 2;
return true;
case ARM::VLD2LNq16odd:
case ARM::VLD2LNq32odd:
FirstOpnd = 0;
NumRegs = 2;
Offset = 1;
Stride = 2;
return true;
case ARM::VLD3d8:
case ARM::VLD3d16:
case ARM::VLD3d32:
case ARM::VLD1d64T:
case ARM::VLD3LNd8:
case ARM::VLD3LNd16:
case ARM::VLD3LNd32:
FirstOpnd = 0;
NumRegs = 3;
return true;
case ARM::VLD3q8_UPD:
case ARM::VLD3q16_UPD:
case ARM::VLD3q32_UPD:
FirstOpnd = 0;
NumRegs = 3;
Offset = 0;
Stride = 2;
return true;
case ARM::VLD3q8odd_UPD:
case ARM::VLD3q16odd_UPD:
case ARM::VLD3q32odd_UPD:
FirstOpnd = 0;
NumRegs = 3;
Offset = 1;
Stride = 2;
return true;
case ARM::VLD3LNq16:
case ARM::VLD3LNq32:
FirstOpnd = 0;
NumRegs = 3;
Offset = 0;
Stride = 2;
return true;
case ARM::VLD3LNq16odd:
case ARM::VLD3LNq32odd:
FirstOpnd = 0;
NumRegs = 3;
Offset = 1;
Stride = 2;
return true;
case ARM::VLD4d8:
case ARM::VLD4d16:
case ARM::VLD4d32:
case ARM::VLD1d64Q:
case ARM::VLD4LNd8:
case ARM::VLD4LNd16:
case ARM::VLD4LNd32:
FirstOpnd = 0;
NumRegs = 4;
return true;
case ARM::VLD4q8_UPD:
case ARM::VLD4q16_UPD:
case ARM::VLD4q32_UPD:
FirstOpnd = 0;
NumRegs = 4;
Offset = 0;
Stride = 2;
return true;
case ARM::VLD4q8odd_UPD:
case ARM::VLD4q16odd_UPD:
case ARM::VLD4q32odd_UPD:
FirstOpnd = 0;
NumRegs = 4;
Offset = 1;
Stride = 2;
return true;
case ARM::VLD4LNq16:
case ARM::VLD4LNq32:
FirstOpnd = 0;
NumRegs = 4;
Offset = 0;
Stride = 2;
return true;
case ARM::VLD4LNq16odd:
case ARM::VLD4LNq32odd:
FirstOpnd = 0;
NumRegs = 4;
Offset = 1;
Stride = 2;
return true;
case ARM::VST1q8:
case ARM::VST1q16:
case ARM::VST1q32:
case ARM::VST1q64:
case ARM::VST2d8:
case ARM::VST2d16:
case ARM::VST2d32:
case ARM::VST2LNd8:
case ARM::VST2LNd16:
case ARM::VST2LNd32:
FirstOpnd = 2;
NumRegs = 2;
return true;
case ARM::VST2q8:
case ARM::VST2q16:
case ARM::VST2q32:
FirstOpnd = 2;
NumRegs = 4;
return true;
case ARM::VST2LNq16:
case ARM::VST2LNq32:
FirstOpnd = 2;
NumRegs = 2;
Offset = 0;
Stride = 2;
return true;
case ARM::VST2LNq16odd:
case ARM::VST2LNq32odd:
FirstOpnd = 2;
NumRegs = 2;
Offset = 1;
Stride = 2;
return true;
case ARM::VST3d8:
case ARM::VST3d16:
case ARM::VST3d32:
case ARM::VST1d64T:
case ARM::VST3LNd8:
case ARM::VST3LNd16:
case ARM::VST3LNd32:
FirstOpnd = 2;
NumRegs = 3;
return true;
case ARM::VST3q8_UPD:
case ARM::VST3q16_UPD:
case ARM::VST3q32_UPD:
FirstOpnd = 4;
NumRegs = 3;
Offset = 0;
Stride = 2;
return true;
case ARM::VST3q8odd_UPD:
case ARM::VST3q16odd_UPD:
case ARM::VST3q32odd_UPD:
FirstOpnd = 4;
NumRegs = 3;
Offset = 1;
Stride = 2;
return true;
case ARM::VST3LNq16:
case ARM::VST3LNq32:
FirstOpnd = 2;
NumRegs = 3;
Offset = 0;
Stride = 2;
return true;
case ARM::VST3LNq16odd:
case ARM::VST3LNq32odd:
FirstOpnd = 2;
NumRegs = 3;
Offset = 1;
Stride = 2;
return true;
case ARM::VST4d8:
case ARM::VST4d16:
case ARM::VST4d32:
case ARM::VST1d64Q:
case ARM::VST4LNd8:
case ARM::VST4LNd16:
case ARM::VST4LNd32:
FirstOpnd = 2;
NumRegs = 4;
return true;
case ARM::VST4q8_UPD:
case ARM::VST4q16_UPD:
case ARM::VST4q32_UPD:
FirstOpnd = 4;
NumRegs = 4;
Offset = 0;
Stride = 2;
return true;
case ARM::VST4q8odd_UPD:
case ARM::VST4q16odd_UPD:
case ARM::VST4q32odd_UPD:
FirstOpnd = 4;
NumRegs = 4;
Offset = 1;
Stride = 2;
return true;
case ARM::VST4LNq16:
case ARM::VST4LNq32:
FirstOpnd = 2;
NumRegs = 4;
Offset = 0;
Stride = 2;
return true;
case ARM::VST4LNq16odd:
case ARM::VST4LNq32odd:
FirstOpnd = 2;
NumRegs = 4;
Offset = 1;
Stride = 2;
return true;
case ARM::VTBL2:
FirstOpnd = 1;
NumRegs = 2;
return true;
case ARM::VTBL3:
FirstOpnd = 1;
NumRegs = 3;
return true;
case ARM::VTBL4:
FirstOpnd = 1;
NumRegs = 4;
return true;
case ARM::VTBX2:
FirstOpnd = 2;
NumRegs = 2;
return true;
case ARM::VTBX3:
FirstOpnd = 2;
NumRegs = 3;
return true;
case ARM::VTBX4:
FirstOpnd = 2;
NumRegs = 4;
return true;
}
return false;
}
bool
NEONPreAllocPass::FormsRegSequence(MachineInstr *MI,
unsigned FirstOpnd, unsigned NumRegs,
unsigned Offset, unsigned Stride) const {
MachineOperand &FMO = MI->getOperand(FirstOpnd);
assert(FMO.isReg() && FMO.getSubReg() == 0 && "unexpected operand");
unsigned VirtReg = FMO.getReg();
(void)VirtReg;
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"expected a virtual register");
unsigned LastSubIdx = 0;
if (FMO.isDef()) {
MachineInstr *RegSeq = 0;
for (unsigned R = 0; R < NumRegs; ++R) {
const MachineOperand &MO = MI->getOperand(FirstOpnd + R);
assert(MO.isReg() && MO.getSubReg() == 0 && "unexpected operand");
unsigned VirtReg = MO.getReg();
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"expected a virtual register");
// Feeding into a REG_SEQUENCE.
if (!MRI->hasOneNonDBGUse(VirtReg))
return false;
MachineInstr *UseMI = &*MRI->use_nodbg_begin(VirtReg);
if (!UseMI->isRegSequence())
return false;
if (RegSeq && RegSeq != UseMI)
return false;
unsigned OpIdx = 1 + (Offset + R * Stride) * 2;
if (UseMI->getOperand(OpIdx).getReg() != VirtReg)
llvm_unreachable("Malformed REG_SEQUENCE instruction!");
unsigned SubIdx = UseMI->getOperand(OpIdx + 1).getImm();
if (LastSubIdx) {
if (LastSubIdx != SubIdx-Stride)
return false;
} else {
// Must start from arm_dsubreg_0 or arm_qsubreg_0.
if (SubIdx != (ARM::DSUBREG_0+Offset) &&
SubIdx != (ARM::QSUBREG_0+Offset))
return false;
}
RegSeq = UseMI;
LastSubIdx = SubIdx;
}
// In the case of vld3, etc., make sure the trailing operand of
// REG_SEQUENCE is an undef.
if (NumRegs == 3) {
unsigned OpIdx = 1 + (Offset + 3 * Stride) * 2;
const MachineOperand &MO = RegSeq->getOperand(OpIdx);
unsigned VirtReg = MO.getReg();
MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
if (!DefMI || !DefMI->isImplicitDef())
return false;
}
return true;
}
unsigned LastSrcReg = 0;
SmallVector<unsigned, 4> SubIds;
for (unsigned R = 0; R < NumRegs; ++R) {
const MachineOperand &MO = MI->getOperand(FirstOpnd + R);
assert(MO.isReg() && MO.getSubReg() == 0 && "unexpected operand");
unsigned VirtReg = MO.getReg();
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"expected a virtual register");
// Extracting from a Q or QQ register.
MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
if (!DefMI || !DefMI->isExtractSubreg())
return false;
VirtReg = DefMI->getOperand(1).getReg();
if (LastSrcReg && LastSrcReg != VirtReg)
return false;
LastSrcReg = VirtReg;
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
if (RC != ARM::QPRRegisterClass &&
RC != ARM::QQPRRegisterClass &&
RC != ARM::QQQQPRRegisterClass)
return false;
unsigned SubIdx = DefMI->getOperand(2).getImm();
if (LastSubIdx) {
if (LastSubIdx != SubIdx-Stride)
return false;
} else {
// Must start from arm_dsubreg_0 or arm_qsubreg_0.
if (SubIdx != (ARM::DSUBREG_0+Offset) &&
SubIdx != (ARM::QSUBREG_0+Offset))
return false;
}
SubIds.push_back(SubIdx);
LastSubIdx = SubIdx;
}
// FIXME: Update the uses of EXTRACT_SUBREG from REG_SEQUENCE is
// currently required for correctness. e.g.
// %reg1041;<def> = REG_SEQUENCE %reg1040<kill>, 5, %reg1035<kill>, 6
// %reg1042<def> = EXTRACT_SUBREG %reg1041, 6
// %reg1043<def> = EXTRACT_SUBREG %reg1041, 5
// VST1q16 %reg1025<kill>, 0, %reg1043<kill>, %reg1042<kill>,
// reg1025 and reg1043 should be replaced with reg1041:6 and reg1041:5
// respectively.
// We need to change how we model uses of REG_SEQUENCE.
for (unsigned R = 0; R < NumRegs; ++R) {
MachineOperand &MO = MI->getOperand(FirstOpnd + R);
unsigned OldReg = MO.getReg();
MachineInstr *DefMI = MRI->getVRegDef(OldReg);
assert(DefMI->isExtractSubreg());
MO.setReg(LastSrcReg);
MO.setSubReg(SubIds[R]);
if (R != 0)
MO.setIsKill(false);
// Delete the EXTRACT_SUBREG if its result is now dead.
if (MRI->use_empty(OldReg))
DefMI->eraseFromParent();
}
return true;
}
bool NEONPreAllocPass::PreAllocNEONRegisters(MachineBasicBlock &MBB) {
bool Modified = false;
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
for (; MBBI != E; ++MBBI) {
MachineInstr *MI = &*MBBI;
unsigned FirstOpnd, NumRegs, Offset, Stride;
if (!isNEONMultiRegOp(MI->getOpcode(), FirstOpnd, NumRegs, Offset, Stride))
continue;
if (llvm::ModelWithRegSequence() &&
FormsRegSequence(MI, FirstOpnd, NumRegs, Offset, Stride))
continue;
MachineBasicBlock::iterator NextI = llvm::next(MBBI);
for (unsigned R = 0; R < NumRegs; ++R) {
MachineOperand &MO = MI->getOperand(FirstOpnd + R);
assert(MO.isReg() && MO.getSubReg() == 0 && "unexpected operand");
unsigned VirtReg = MO.getReg();
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"expected a virtual register");
// For now, just assign a fixed set of adjacent registers.
// This leaves plenty of room for future improvements.
static const unsigned NEONDRegs[] = {
ARM::D0, ARM::D1, ARM::D2, ARM::D3,
ARM::D4, ARM::D5, ARM::D6, ARM::D7
};
MO.setReg(NEONDRegs[Offset + R * Stride]);
if (MO.isUse()) {
// Insert a copy from VirtReg.
TII->copyRegToReg(MBB, MBBI, MO.getReg(), VirtReg,
ARM::DPRRegisterClass, ARM::DPRRegisterClass,
DebugLoc());
if (MO.isKill()) {
MachineInstr *CopyMI = prior(MBBI);
CopyMI->findRegisterUseOperand(VirtReg)->setIsKill();
}
MO.setIsKill();
} else if (MO.isDef() && !MO.isDead()) {
// Add a copy to VirtReg.
TII->copyRegToReg(MBB, NextI, VirtReg, MO.getReg(),
ARM::DPRRegisterClass, ARM::DPRRegisterClass,
DebugLoc());
}
}
}
return Modified;
}
bool NEONPreAllocPass::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
MRI = &MF.getRegInfo();
bool Modified = false;
for (MachineFunction::iterator MFI = MF.begin(), E = MF.end(); MFI != E;
++MFI) {
MachineBasicBlock &MBB = *MFI;
Modified |= PreAllocNEONRegisters(MBB);
}
return Modified;
}
/// createNEONPreAllocPass - returns an instance of the NEON register
/// pre-allocation pass.
FunctionPass *llvm::createNEONPreAllocPass() {
return new NEONPreAllocPass();
}