mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 17:32:19 +00:00
Chandler Carruth
e3a8e534e1
[LCG] Re-organize the methods for mutating a call graph to make their
API requirements much more obvious. The key here is that there are two totally different use cases for mutating the graph. Prior to doing any SCC formation, it is very easy to mutate the graph. There may be users that want to do small tweaks here, and then use the already-built graph for their SCC-based operations. This method remains on the graph itself and is documented carefully as being cheap but unavailable once SCCs are formed. Once SCCs are formed, and there is some in-flight DFS building them, we have to be much more careful in how we mutate the graph. These mutation operations are sunk onto the SCCs themselves, which both simplifies things (the code was already there!) and helps make it obvious that these interfaces are only applicable within that context. The other primary constraint is that the edge being mutated is actually related to the SCC on which we call the method. This helps make it obvious that you cannot arbitrarily mutate some other SCC. I've tried to write much more complete documentation for the interesting mutation API -- intra-SCC edge removal. Currently one aspect of this documentation is a lie (the result list of SCCs) but we also don't even have tests for that API. =[ I'm going to add tests and fix it to match the documentation next. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207339 91177308-0d34-0410-b5e6-96231b3b80d8
…
Low Level Virtual Machine (LLVM) ================================ This directory and its subdirectories contain source code for the Low Level Virtual Machine, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments. LLVM is open source software. You may freely distribute it under the terms of the license agreement found in LICENSE.txt. Please see the documentation provided in docs/ for further assistance with LLVM, and in particular docs/GettingStarted.rst for getting started with LLVM and docs/README.txt for an overview of LLVM's documentation setup. If you're writing a package for LLVM, see docs/Packaging.rst for our suggestions.
Description
Languages
C++
48.7%
LLVM
38.5%
Assembly
10.2%
C
0.9%
Python
0.4%
Other
1.2%