Duncan Sands 514ab348fd Executive summary: getTypeSize -> getTypeStoreSize / getABITypeSize.
The meaning of getTypeSize was not clear - clarifying it is important
now that we have x86 long double and arbitrary precision integers.
The issue with long double is that it requires 80 bits, and this is
not a multiple of its alignment.  This gives a primitive type for
which getTypeSize differed from getABITypeSize.  For arbitrary precision
integers it is even worse: there is the minimum number of bits needed to
hold the type (eg: 36 for an i36), the maximum number of bits that will
be overwriten when storing the type (40 bits for i36) and the ABI size
(i.e. the storage size rounded up to a multiple of the alignment; 64 bits
for i36).

This patch removes getTypeSize (not really - it is still there but
deprecated to allow for a gradual transition).  Instead there is:

(1) getTypeSizeInBits - a number of bits that suffices to hold all
values of the type.  For a primitive type, this is the minimum number
of bits.  For an i36 this is 36 bits.  For x86 long double it is 80.
This corresponds to gcc's TYPE_PRECISION.

(2) getTypeStoreSizeInBits - the maximum number of bits that is
written when storing the type (or read when reading it).  For an
i36 this is 40 bits, for an x86 long double it is 80 bits.  This
is the size alias analysis is interested in (getTypeStoreSize
returns the number of bytes).  There doesn't seem to be anything
corresponding to this in gcc.

(3) getABITypeSizeInBits - this is getTypeStoreSizeInBits rounded
up to a multiple of the alignment.  For an i36 this is 64, for an
x86 long double this is 96 or 128 depending on the OS.  This is the
spacing between consecutive elements when you form an array out of
this type (getABITypeSize returns the number of bytes).  This is
TYPE_SIZE in gcc.

Since successive elements in a SequentialType (arrays, pointers
and vectors) need to be aligned, the spacing between them will be
given by getABITypeSize.  This means that the size of an array
is the length times the getABITypeSize.  It also means that GEP
computations need to use getABITypeSize when computing offsets.
Furthermore, if an alloca allocates several elements at once then
these too need to be aligned, so the size of the alloca has to be
the number of elements multiplied by getABITypeSize.  Logically
speaking this doesn't have to be the case when allocating just
one element, but it is simpler to also use getABITypeSize in this
case.  So alloca's and mallocs should use getABITypeSize.  Finally,
since gcc's only notion of size is that given by getABITypeSize, if
you want to output assembler etc the same as gcc then getABITypeSize
is the size you want.

Since a store will overwrite no more than getTypeStoreSize bytes,
and a read will read no more than that many bytes, this is the
notion of size appropriate for alias analysis calculations.

In this patch I have corrected all type size uses except some of
those in ScalarReplAggregates, lib/Codegen, lib/Target (the hard
cases).  I will get around to auditing these too at some point,
but I could do with some help.

Finally, I made one change which I think wise but others might
consider pointless and suboptimal: in an unpacked struct the
amount of space allocated for a field is now given by the ABI
size rather than getTypeStoreSize.  I did this because every
other place that reserves memory for a type (eg: alloca) now
uses getABITypeSize, and I didn't want to make an exception
for unpacked structs, i.e. I did it to make things more uniform.
This only effects structs containing long doubles and arbitrary
precision integers.  If someone wants to pack these types more
tightly they can always use a packed struct.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43620 91177308-0d34-0410-b5e6-96231b3b80d8
2007-11-01 20:53:16 +00:00

383 lines
13 KiB
C++

//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bitcode in an efficient manner.
//
//===----------------------------------------------------------------------===//
#include "JIT.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/ModuleProvider.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Config/config.h"
using namespace llvm;
#ifdef __APPLE__
// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
// of atexit). It passes the address of linker generated symbol __dso_handle
// to the function.
// This configuration change happened at version 5330.
# include <AvailabilityMacros.h>
# if defined(MAC_OS_X_VERSION_10_4) && \
((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
(MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
__APPLE_CC__ >= 5330))
# ifndef HAVE___DSO_HANDLE
# define HAVE___DSO_HANDLE 1
# endif
# endif
#endif
#if HAVE___DSO_HANDLE
extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
#endif
static struct RegisterJIT {
RegisterJIT() { JIT::Register(); }
} JITRegistrator;
namespace llvm {
void LinkInJIT() {
}
}
JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji)
: ExecutionEngine(MP), TM(tm), TJI(tji), jitstate(MP) {
setTargetData(TM.getTargetData());
// Initialize MCE
MCE = createEmitter(*this);
// Add target data
MutexGuard locked(lock);
FunctionPassManager &PM = jitstate.getPM(locked);
PM.add(new TargetData(*TM.getTargetData()));
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) {
cerr << "Target does not support machine code emission!\n";
abort();
}
// Initialize passes.
PM.doInitialization();
}
JIT::~JIT() {
delete MCE;
delete &TM;
}
/// run - Start execution with the specified function and arguments.
///
GenericValue JIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
const FunctionType *FTy = F->getFunctionType();
const Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
"Too many arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0) == Type::Int32Ty &&
isa<PointerType>(FTy->getParamType(1)) &&
isa<PointerType>(FTy->getParamType(2))) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0) == Type::Int32Ty &&
isa<PointerType>(FTy->getParamType(1))) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0) == Type::Int32Ty) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: assert(0 && "Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
assert(0 && "Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
assert(0 && "long double not supported yet");
return rv;
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
// Okay, this is not one of our quick and easy cases. Because we don't have a
// full FFI, we have to codegen a nullary stub function that just calls the
// function we are interested in, passing in constants for all of the
// arguments. Make this function and return.
// First, create the function.
FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
Function *Stub = new Function(STy, Function::InternalLinkage, "",
F->getParent());
// Insert a basic block.
BasicBlock *StubBB = new BasicBlock("", Stub);
// Convert all of the GenericValue arguments over to constants. Note that we
// currently don't support varargs.
SmallVector<Value*, 8> Args;
for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
Constant *C = 0;
const Type *ArgTy = FTy->getParamType(i);
const GenericValue &AV = ArgValues[i];
switch (ArgTy->getTypeID()) {
default: assert(0 && "Unknown argument type for function call!");
case Type::IntegerTyID: C = ConstantInt::get(AV.IntVal); break;
case Type::FloatTyID: C = ConstantFP ::get(ArgTy, APFloat(AV.FloatVal));
break;
case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, APFloat(AV.DoubleVal));
break;
case Type::PPC_FP128TyID:
case Type::X86_FP80TyID:
case Type::FP128TyID: C = ConstantFP ::get(ArgTy, APFloat(AV.IntVal));
break;
case Type::PointerTyID:
void *ArgPtr = GVTOP(AV);
if (sizeof(void*) == 4) {
C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
} else {
C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
}
C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer
break;
}
Args.push_back(C);
}
CallInst *TheCall = new CallInst(F, Args.begin(), Args.end(), "", StubBB);
TheCall->setTailCall();
if (TheCall->getType() != Type::VoidTy)
new ReturnInst(TheCall, StubBB); // Return result of the call.
else
new ReturnInst(StubBB); // Just return void.
// Finally, return the value returned by our nullary stub function.
return runFunction(Stub, std::vector<GenericValue>());
}
/// runJITOnFunction - Run the FunctionPassManager full of
/// just-in-time compilation passes on F, hopefully filling in
/// GlobalAddress[F] with the address of F's machine code.
///
void JIT::runJITOnFunction(Function *F) {
static bool isAlreadyCodeGenerating = false;
MutexGuard locked(lock);
assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
// JIT the function
isAlreadyCodeGenerating = true;
jitstate.getPM(locked).run(*F);
isAlreadyCodeGenerating = false;
// If the function referred to a global variable that had not yet been
// emitted, it allocates memory for the global, but doesn't emit it yet. Emit
// all of these globals now.
while (!jitstate.getPendingGlobals(locked).empty()) {
const GlobalVariable *GV = jitstate.getPendingGlobals(locked).back();
jitstate.getPendingGlobals(locked).pop_back();
EmitGlobalVariable(GV);
}
}
/// getPointerToFunction - This method is used to get the address of the
/// specified function, compiling it if neccesary.
///
void *JIT::getPointerToFunction(Function *F) {
MutexGuard locked(lock);
if (void *Addr = getPointerToGlobalIfAvailable(F))
return Addr; // Check if function already code gen'd
// Make sure we read in the function if it exists in this Module.
if (F->hasNotBeenReadFromBitcode()) {
// Determine the module provider this function is provided by.
Module *M = F->getParent();
ModuleProvider *MP = 0;
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
if (Modules[i]->getModule() == M) {
MP = Modules[i];
break;
}
}
assert(MP && "Function isn't in a module we know about!");
std::string ErrorMsg;
if (MP->materializeFunction(F, &ErrorMsg)) {
cerr << "Error reading function '" << F->getName()
<< "' from bitcode file: " << ErrorMsg << "\n";
abort();
}
}
if (F->isDeclaration()) {
void *Addr = getPointerToNamedFunction(F->getName());
addGlobalMapping(F, Addr);
return Addr;
}
runJITOnFunction(F);
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
return Addr;
}
/// getOrEmitGlobalVariable - Return the address of the specified global
/// variable, possibly emitting it to memory if needed. This is used by the
/// Emitter.
void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
MutexGuard locked(lock);
void *Ptr = getPointerToGlobalIfAvailable(GV);
if (Ptr) return Ptr;
// If the global is external, just remember the address.
if (GV->isDeclaration()) {
#if HAVE___DSO_HANDLE
if (GV->getName() == "__dso_handle")
return (void*)&__dso_handle;
#endif
Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
if (Ptr == 0) {
cerr << "Could not resolve external global address: "
<< GV->getName() << "\n";
abort();
}
} else {
// If the global hasn't been emitted to memory yet, allocate space. We will
// actually initialize the global after current function has finished
// compilation.
const Type *GlobalType = GV->getType()->getElementType();
size_t S = getTargetData()->getABITypeSize(GlobalType);
size_t A = getTargetData()->getPrefTypeAlignment(GlobalType);
if (A <= 8) {
Ptr = malloc(S);
} else {
// Allocate S+A bytes of memory, then use an aligned pointer within that
// space.
Ptr = malloc(S+A);
unsigned MisAligned = ((intptr_t)Ptr & (A-1));
Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
}
jitstate.getPendingGlobals(locked).push_back(GV);
}
addGlobalMapping(GV, Ptr);
return Ptr;
}
/// recompileAndRelinkFunction - This method is used to force a function
/// which has already been compiled, to be compiled again, possibly
/// after it has been modified. Then the entry to the old copy is overwritten
/// with a branch to the new copy. If there was no old copy, this acts
/// just like JIT::getPointerToFunction().
///
void *JIT::recompileAndRelinkFunction(Function *F) {
void *OldAddr = getPointerToGlobalIfAvailable(F);
// If it's not already compiled there is no reason to patch it up.
if (OldAddr == 0) { return getPointerToFunction(F); }
// Delete the old function mapping.
addGlobalMapping(F, 0);
// Recodegen the function
runJITOnFunction(F);
// Update state, forward the old function to the new function.
void *Addr = getPointerToGlobalIfAvailable(F);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
TJI.replaceMachineCodeForFunction(OldAddr, Addr);
return Addr;
}