llvm-6502/lib/Transforms/Utils/LoopSimplify.cpp
Dan Gohman 5c89b5240c Re-apply r80926, with fixes: keep the domtree informed of new blocks
that get created during loop unswitching, and fix SplitBlockPredecessors'
LCSSA updating code to create new PHIs instead of trying to just move
existing ones.

Also, optimize Loop::verifyLoop, since it gets called a lot. Use
searches on a sorted list of blocks instead of calling the "contains"
function, as is done in other places in the Loop class, since "contains"
does a linear search. Also, don't call verifyLoop from LoopSimplify or
LCSSA, as the PassManager is already calling verifyLoop as part of
LoopInfo's verifyAnalysis.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81221 91177308-0d34-0410-b5e6-96231b3b80d8
2009-09-08 15:45:00 +00:00

651 lines
25 KiB
C++

//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs several transformations to transform natural loops into a
// simpler form, which makes subsequent analyses and transformations simpler and
// more effective.
//
// Loop pre-header insertion guarantees that there is a single, non-critical
// entry edge from outside of the loop to the loop header. This simplifies a
// number of analyses and transformations, such as LICM.
//
// Loop exit-block insertion guarantees that all exit blocks from the loop
// (blocks which are outside of the loop that have predecessors inside of the
// loop) only have predecessors from inside of the loop (and are thus dominated
// by the loop header). This simplifies transformations such as store-sinking
// that are built into LICM.
//
// This pass also guarantees that loops will have exactly one backedge.
//
// Note that the simplifycfg pass will clean up blocks which are split out but
// end up being unnecessary, so usage of this pass should not pessimize
// generated code.
//
// This pass obviously modifies the CFG, but updates loop information and
// dominator information.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loopsimplify"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DepthFirstIterator.h"
using namespace llvm;
STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
STATISTIC(NumNested , "Number of nested loops split out");
namespace {
struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
LoopSimplify() : FunctionPass(&ID) {}
// AA - If we have an alias analysis object to update, this is it, otherwise
// this is null.
AliasAnalysis *AA;
LoopInfo *LI;
DominatorTree *DT;
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
// We need loop information to identify the loops...
AU.addRequiredTransitive<LoopInfo>();
AU.addRequiredTransitive<DominatorTree>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addPreserved<AliasAnalysis>();
AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
}
/// verifyAnalysis() - Verify loop nest.
void verifyAnalysis() const {
#ifndef NDEBUG
LoopInfo *NLI = &getAnalysis<LoopInfo>();
for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I) {
// Check the special guarantees that LoopSimplify makes.
assert((*I)->isLoopSimplifyForm());
}
#endif
}
private:
bool ProcessLoop(Loop *L);
BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
BasicBlock *InsertPreheaderForLoop(Loop *L);
Loop *SeparateNestedLoop(Loop *L);
void InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
void PlaceSplitBlockCarefully(BasicBlock *NewBB,
SmallVectorImpl<BasicBlock*> &SplitPreds,
Loop *L);
};
}
char LoopSimplify::ID = 0;
static RegisterPass<LoopSimplify>
X("loopsimplify", "Canonicalize natural loops", true);
// Publically exposed interface to pass...
const PassInfo *const llvm::LoopSimplifyID = &X;
FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
/// it in any convenient order) inserting preheaders...
///
bool LoopSimplify::runOnFunction(Function &F) {
bool Changed = false;
LI = &getAnalysis<LoopInfo>();
AA = getAnalysisIfAvailable<AliasAnalysis>();
DT = &getAnalysis<DominatorTree>();
// Check to see that no blocks (other than the header) in loops have
// predecessors that are not in loops. This is not valid for natural loops,
// but can occur if the blocks are unreachable. Since they are unreachable we
// can just shamelessly destroy their terminators to make them not branch into
// the loop!
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
// This case can only occur for unreachable blocks. Blocks that are
// unreachable can't be in loops, so filter those blocks out.
if (LI->getLoopFor(BB)) continue;
bool BlockUnreachable = false;
TerminatorInst *TI = BB->getTerminator();
// Check to see if any successors of this block are non-loop-header loops
// that are not the header.
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
// If this successor is not in a loop, BB is clearly ok.
Loop *L = LI->getLoopFor(TI->getSuccessor(i));
if (!L) continue;
// If the succ is the loop header, and if L is a top-level loop, then this
// is an entrance into a loop through the header, which is also ok.
if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
continue;
// Otherwise, this is an entrance into a loop from some place invalid.
// Either the loop structure is invalid and this is not a natural loop (in
// which case the compiler is buggy somewhere else) or BB is unreachable.
BlockUnreachable = true;
break;
}
// If this block is ok, check the next one.
if (!BlockUnreachable) continue;
// Otherwise, this block is dead. To clean up the CFG and to allow later
// loop transformations to ignore this case, we delete the edges into the
// loop by replacing the terminator.
// Remove PHI entries from the successors.
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
TI->getSuccessor(i)->removePredecessor(BB);
// Add a new unreachable instruction before the old terminator.
new UnreachableInst(TI->getContext(), TI);
// Delete the dead terminator.
if (AA) AA->deleteValue(TI);
if (!TI->use_empty())
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
TI->eraseFromParent();
Changed |= true;
}
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
Changed |= ProcessLoop(*I);
return Changed;
}
/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
/// all loops have preheaders.
///
bool LoopSimplify::ProcessLoop(Loop *L) {
bool Changed = false;
ReprocessLoop:
// Canonicalize inner loops before outer loops. Inner loop canonicalization
// can provide work for the outer loop to canonicalize.
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
Changed |= ProcessLoop(*I);
assert(L->getBlocks()[0] == L->getHeader() &&
"Header isn't first block in loop?");
// Does the loop already have a preheader? If so, don't insert one.
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
Preheader = InsertPreheaderForLoop(L);
NumInserted++;
Changed = true;
}
// Next, check to make sure that all exit nodes of the loop only have
// predecessors that are inside of the loop. This check guarantees that the
// loop preheader/header will dominate the exit blocks. If the exit block has
// predecessors from outside of the loop, split the edge now.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
E = ExitBlockSet.end(); I != E; ++I) {
BasicBlock *ExitBlock = *I;
for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
PI != PE; ++PI)
// Must be exactly this loop: no subloops, parent loops, or non-loop preds
// allowed.
if (!L->contains(*PI)) {
RewriteLoopExitBlock(L, ExitBlock);
NumInserted++;
Changed = true;
break;
}
}
// If the header has more than two predecessors at this point (from the
// preheader and from multiple backedges), we must adjust the loop.
unsigned NumBackedges = L->getNumBackEdges();
if (NumBackedges != 1) {
// If this is really a nested loop, rip it out into a child loop. Don't do
// this for loops with a giant number of backedges, just factor them into a
// common backedge instead.
if (NumBackedges < 8) {
if (Loop *NL = SeparateNestedLoop(L)) {
++NumNested;
// This is a big restructuring change, reprocess the whole loop.
ProcessLoop(NL);
Changed = true;
// GCC doesn't tail recursion eliminate this.
goto ReprocessLoop;
}
}
// If we either couldn't, or didn't want to, identify nesting of the loops,
// insert a new block that all backedges target, then make it jump to the
// loop header.
InsertUniqueBackedgeBlock(L, Preheader);
NumInserted++;
Changed = true;
}
// Scan over the PHI nodes in the loop header. Since they now have only two
// incoming values (the loop is canonicalized), we may have simplified the PHI
// down to 'X = phi [X, Y]', which should be replaced with 'Y'.
PHINode *PN;
for (BasicBlock::iterator I = L->getHeader()->begin();
(PN = dyn_cast<PHINode>(I++)); )
if (Value *V = PN->hasConstantValue(DT)) {
if (AA) AA->deleteValue(PN);
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
}
// If this loop has muliple exits and the exits all go to the same
// block, attempt to merge the exits. This helps several passes, such
// as LoopRotation, which do not support loops with multiple exits.
// SimplifyCFG also does this (and this code uses the same utility
// function), however this code is loop-aware, where SimplifyCFG is
// not. That gives it the advantage of being able to hoist
// loop-invariant instructions out of the way to open up more
// opportunities, and the disadvantage of having the responsibility
// to preserve dominator information.
if (ExitBlocks.size() > 1 && L->getUniqueExitBlock()) {
SmallVector<BasicBlock*, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BasicBlock *ExitingBlock = ExitingBlocks[i];
if (!ExitingBlock->getSinglePredecessor()) continue;
BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
if (!BI || !BI->isConditional()) continue;
CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
if (!CI || CI->getParent() != ExitingBlock) continue;
// Attempt to hoist out all instructions except for the
// comparison and the branch.
bool AllInvariant = true;
for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
Instruction *Inst = I++;
if (Inst == CI)
continue;
if (!L->makeLoopInvariant(Inst, Changed, Preheader->getTerminator())) {
AllInvariant = false;
break;
}
}
if (!AllInvariant) continue;
// The block has now been cleared of all instructions except for
// a comparison and a conditional branch. SimplifyCFG may be able
// to fold it now.
if (!FoldBranchToCommonDest(BI)) continue;
// Success. The block is now dead, so remove it from the loop,
// update the dominator tree and dominance frontier, and delete it.
assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
Changed = true;
LI->removeBlock(ExitingBlock);
DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
DomTreeNode *Node = DT->getNode(ExitingBlock);
const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
Node->getChildren();
for (unsigned k = 0, g = Children.size(); k != g; ++k) {
DT->changeImmediateDominator(Children[k], Node->getIDom());
if (DF) DF->changeImmediateDominator(Children[k]->getBlock(),
Node->getIDom()->getBlock(),
DT);
}
DT->eraseNode(ExitingBlock);
if (DF) DF->removeBlock(ExitingBlock);
BI->getSuccessor(0)->removePredecessor(ExitingBlock);
BI->getSuccessor(1)->removePredecessor(ExitingBlock);
ExitingBlock->eraseFromParent();
}
}
return Changed;
}
/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
/// preheader, this method is called to insert one. This method has two phases:
/// preheader insertion and analysis updating.
///
BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
BasicBlock *Header = L->getHeader();
// Compute the set of predecessors of the loop that are not in the loop.
SmallVector<BasicBlock*, 8> OutsideBlocks;
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
PI != PE; ++PI)
if (!L->contains(*PI)) // Coming in from outside the loop?
OutsideBlocks.push_back(*PI); // Keep track of it...
// Split out the loop pre-header.
BasicBlock *NewBB =
SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
".preheader", this);
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
// code layout too horribly.
PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
return NewBB;
}
/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
/// blocks. This method is used to split exit blocks that have predecessors
/// outside of the loop.
BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
SmallVector<BasicBlock*, 8> LoopBlocks;
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
if (L->contains(*I))
LoopBlocks.push_back(*I);
assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
LoopBlocks.size(), ".loopexit",
this);
return NewBB;
}
/// AddBlockAndPredsToSet - Add the specified block, and all of its
/// predecessors, to the specified set, if it's not already in there. Stop
/// predecessor traversal when we reach StopBlock.
static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
std::set<BasicBlock*> &Blocks) {
std::vector<BasicBlock *> WorkList;
WorkList.push_back(InputBB);
do {
BasicBlock *BB = WorkList.back(); WorkList.pop_back();
if (Blocks.insert(BB).second && BB != StopBlock)
// If BB is not already processed and it is not a stop block then
// insert its predecessor in the work list
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
BasicBlock *WBB = *I;
WorkList.push_back(WBB);
}
} while(!WorkList.empty());
}
/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
/// PHI node that tells us how to partition the loops.
static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
AliasAnalysis *AA) {
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I);
++I;
if (Value *V = PN->hasConstantValue(DT)) {
// This is a degenerate PHI already, don't modify it!
PN->replaceAllUsesWith(V);
if (AA) AA->deleteValue(PN);
PN->eraseFromParent();
continue;
}
// Scan this PHI node looking for a use of the PHI node by itself.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == PN &&
L->contains(PN->getIncomingBlock(i)))
// We found something tasty to remove.
return PN;
}
return 0;
}
// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
// right after some 'outside block' block. This prevents the preheader from
// being placed inside the loop body, e.g. when the loop hasn't been rotated.
void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
SmallVectorImpl<BasicBlock*> &SplitPreds,
Loop *L) {
// Check to see if NewBB is already well placed.
Function::iterator BBI = NewBB; --BBI;
for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
if (&*BBI == SplitPreds[i])
return;
}
// If it isn't already after an outside block, move it after one. This is
// always good as it makes the uncond branch from the outside block into a
// fall-through.
// Figure out *which* outside block to put this after. Prefer an outside
// block that neighbors a BB actually in the loop.
BasicBlock *FoundBB = 0;
for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
Function::iterator BBI = SplitPreds[i];
if (++BBI != NewBB->getParent()->end() &&
L->contains(BBI)) {
FoundBB = SplitPreds[i];
break;
}
}
// If our heuristic for a *good* bb to place this after doesn't find
// anything, just pick something. It's likely better than leaving it within
// the loop.
if (!FoundBB)
FoundBB = SplitPreds[0];
NewBB->moveAfter(FoundBB);
}
/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
/// them out into a nested loop. This is important for code that looks like
/// this:
///
/// Loop:
/// ...
/// br cond, Loop, Next
/// ...
/// br cond2, Loop, Out
///
/// To identify this common case, we look at the PHI nodes in the header of the
/// loop. PHI nodes with unchanging values on one backedge correspond to values
/// that change in the "outer" loop, but not in the "inner" loop.
///
/// If we are able to separate out a loop, return the new outer loop that was
/// created.
///
Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
if (PN == 0) return 0; // No known way to partition.
// Pull out all predecessors that have varying values in the loop. This
// handles the case when a PHI node has multiple instances of itself as
// arguments.
SmallVector<BasicBlock*, 8> OuterLoopPreds;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) != PN ||
!L->contains(PN->getIncomingBlock(i)))
OuterLoopPreds.push_back(PN->getIncomingBlock(i));
BasicBlock *Header = L->getHeader();
BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
OuterLoopPreds.size(),
".outer", this);
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
// code layout too horribly.
PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
// Create the new outer loop.
Loop *NewOuter = new Loop();
// Change the parent loop to use the outer loop as its child now.
if (Loop *Parent = L->getParentLoop())
Parent->replaceChildLoopWith(L, NewOuter);
else
LI->changeTopLevelLoop(L, NewOuter);
// L is now a subloop of our outer loop.
NewOuter->addChildLoop(L);
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
NewOuter->addBlockEntry(*I);
// Now reset the header in L, which had been moved by
// SplitBlockPredecessors for the outer loop.
L->moveToHeader(Header);
// Determine which blocks should stay in L and which should be moved out to
// the Outer loop now.
std::set<BasicBlock*> BlocksInL;
for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
if (DT->dominates(Header, *PI))
AddBlockAndPredsToSet(*PI, Header, BlocksInL);
// Scan all of the loop children of L, moving them to OuterLoop if they are
// not part of the inner loop.
const std::vector<Loop*> &SubLoops = L->getSubLoops();
for (size_t I = 0; I != SubLoops.size(); )
if (BlocksInL.count(SubLoops[I]->getHeader()))
++I; // Loop remains in L
else
NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
// Now that we know which blocks are in L and which need to be moved to
// OuterLoop, move any blocks that need it.
for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
BasicBlock *BB = L->getBlocks()[i];
if (!BlocksInL.count(BB)) {
// Move this block to the parent, updating the exit blocks sets
L->removeBlockFromLoop(BB);
if ((*LI)[BB] == L)
LI->changeLoopFor(BB, NewOuter);
--i;
}
}
return NewOuter;
}
/// InsertUniqueBackedgeBlock - This method is called when the specified loop
/// has more than one backedge in it. If this occurs, revector all of these
/// backedges to target a new basic block and have that block branch to the loop
/// header. This ensures that loops have exactly one backedge.
///
void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
// Get information about the loop
BasicBlock *Header = L->getHeader();
Function *F = Header->getParent();
// Figure out which basic blocks contain back-edges to the loop header.
std::vector<BasicBlock*> BackedgeBlocks;
for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
if (*I != Preheader) BackedgeBlocks.push_back(*I);
// Create and insert the new backedge block...
BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
Header->getName()+".backedge", F);
BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
// Move the new backedge block to right after the last backedge block.
Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
// Now that the block has been inserted into the function, create PHI nodes in
// the backedge block which correspond to any PHI nodes in the header block.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
BETerminator);
NewPN->reserveOperandSpace(BackedgeBlocks.size());
if (AA) AA->copyValue(PN, NewPN);
// Loop over the PHI node, moving all entries except the one for the
// preheader over to the new PHI node.
unsigned PreheaderIdx = ~0U;
bool HasUniqueIncomingValue = true;
Value *UniqueValue = 0;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *IBB = PN->getIncomingBlock(i);
Value *IV = PN->getIncomingValue(i);
if (IBB == Preheader) {
PreheaderIdx = i;
} else {
NewPN->addIncoming(IV, IBB);
if (HasUniqueIncomingValue) {
if (UniqueValue == 0)
UniqueValue = IV;
else if (UniqueValue != IV)
HasUniqueIncomingValue = false;
}
}
}
// Delete all of the incoming values from the old PN except the preheader's
assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
if (PreheaderIdx != 0) {
PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
}
// Nuke all entries except the zero'th.
for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
PN->removeIncomingValue(e-i, false);
// Finally, add the newly constructed PHI node as the entry for the BEBlock.
PN->addIncoming(NewPN, BEBlock);
// As an optimization, if all incoming values in the new PhiNode (which is a
// subset of the incoming values of the old PHI node) have the same value,
// eliminate the PHI Node.
if (HasUniqueIncomingValue) {
NewPN->replaceAllUsesWith(UniqueValue);
if (AA) AA->deleteValue(NewPN);
BEBlock->getInstList().erase(NewPN);
}
}
// Now that all of the PHI nodes have been inserted and adjusted, modify the
// backedge blocks to just to the BEBlock instead of the header.
for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
if (TI->getSuccessor(Op) == Header)
TI->setSuccessor(Op, BEBlock);
}
//===--- Update all analyses which we must preserve now -----------------===//
// Update Loop Information - we know that this block is now in the current
// loop and all parent loops.
L->addBasicBlockToLoop(BEBlock, LI->getBase());
// Update dominator information
DT->splitBlock(BEBlock);
if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
DF->splitBlock(BEBlock);
}