llvm-6502/include/llvm/Instructions.h
2004-07-29 12:17:34 +00:00

1197 lines
44 KiB
C++

//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class. This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INSTRUCTIONS_H
#define LLVM_INSTRUCTIONS_H
#include "llvm/Instruction.h"
#include "llvm/InstrTypes.h"
namespace llvm {
struct BasicBlock;
class PointerType;
//===----------------------------------------------------------------------===//
// AllocationInst Class
//===----------------------------------------------------------------------===//
/// AllocationInst - This class is the common base class of MallocInst and
/// AllocaInst.
///
class AllocationInst : public Instruction {
protected:
void init(const Type *Ty, Value *ArraySize, unsigned iTy);
AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
const std::string &Name = "", Instruction *InsertBefore = 0);
AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
const std::string &Name, BasicBlock *InsertAtEnd);
public:
/// isArrayAllocation - Return true if there is an allocation size parameter
/// to the allocation instruction that is not 1.
///
bool isArrayAllocation() const;
/// getArraySize - Get the number of element allocated, for a simple
/// allocation of a single element, this will return a constant 1 value.
///
inline const Value *getArraySize() const { return Operands[0]; }
inline Value *getArraySize() { return Operands[0]; }
/// getType - Overload to return most specific pointer type
///
inline const PointerType *getType() const {
return reinterpret_cast<const PointerType*>(Instruction::getType());
}
/// getAllocatedType - Return the type that is being allocated by the
/// instruction.
///
const Type *getAllocatedType() const;
virtual Instruction *clone() const = 0;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const AllocationInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Alloca ||
I->getOpcode() == Instruction::Malloc;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// MallocInst Class
//===----------------------------------------------------------------------===//
/// MallocInst - an instruction to allocated memory on the heap
///
class MallocInst : public AllocationInst {
MallocInst(const MallocInst &MI);
public:
explicit MallocInst(const Type *Ty, Value *ArraySize = 0,
const std::string &Name = "",
Instruction *InsertBefore = 0)
: AllocationInst(Ty, ArraySize, Malloc, Name, InsertBefore) {}
MallocInst(const Type *Ty, Value *ArraySize, const std::string &Name,
BasicBlock *InsertAtEnd)
: AllocationInst(Ty, ArraySize, Malloc, Name, InsertAtEnd) {}
virtual Instruction *clone() const {
return new MallocInst(*this);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const MallocInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Malloc);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// AllocaInst Class
//===----------------------------------------------------------------------===//
/// AllocaInst - an instruction to allocate memory on the stack
///
class AllocaInst : public AllocationInst {
AllocaInst(const AllocaInst &);
public:
explicit AllocaInst(const Type *Ty, Value *ArraySize = 0,
const std::string &Name = "",
Instruction *InsertBefore = 0)
: AllocationInst(Ty, ArraySize, Alloca, Name, InsertBefore) {}
AllocaInst(const Type *Ty, Value *ArraySize, const std::string &Name,
BasicBlock *InsertAtEnd)
: AllocationInst(Ty, ArraySize, Alloca, Name, InsertAtEnd) {}
virtual Instruction *clone() const {
return new AllocaInst(*this);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const AllocaInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Alloca);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FreeInst Class
//===----------------------------------------------------------------------===//
/// FreeInst - an instruction to deallocate memory
///
class FreeInst : public Instruction {
void init(Value *Ptr);
public:
explicit FreeInst(Value *Ptr, Instruction *InsertBefore = 0);
FreeInst(Value *Ptr, BasicBlock *InsertAfter);
virtual Instruction *clone() const { return new FreeInst(Operands[0]); }
virtual bool mayWriteToMemory() const { return true; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FreeInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Free);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// LoadInst Class
//===----------------------------------------------------------------------===//
/// LoadInst - an instruction for reading from memory
///
class LoadInst : public Instruction {
LoadInst(const LoadInst &LI) : Instruction(LI.getType(), Load) {
Volatile = LI.isVolatile();
init(LI.Operands[0]);
}
bool Volatile; // True if this is a volatile load
void init(Value *Ptr);
public:
LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBefore);
LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const std::string &Name = "", bool isVolatile = false,
Instruction *InsertBefore = 0);
LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a load from a volatile memory
/// location.
///
bool isVolatile() const { return Volatile; }
/// setVolatile - Specify whether this is a volatile load or not.
///
void setVolatile(bool V) { Volatile = V; }
virtual Instruction *clone() const { return new LoadInst(*this); }
virtual bool mayWriteToMemory() const { return isVolatile(); }
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const LoadInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Load;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// StoreInst Class
//===----------------------------------------------------------------------===//
/// StoreInst - an instruction for storing to memory
///
class StoreInst : public Instruction {
StoreInst(const StoreInst &SI) : Instruction(SI.getType(), Store) {
Volatile = SI.isVolatile();
init(SI.Operands[0], SI.Operands[1]);
}
bool Volatile; // True if this is a volatile store
void init(Value *Val, Value *Ptr);
public:
StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
Instruction *InsertBefore = 0);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a load from a volatile memory
/// location.
///
bool isVolatile() const { return Volatile; }
/// setVolatile - Specify whether this is a volatile load or not.
///
void setVolatile(bool V) { Volatile = V; }
virtual Instruction *clone() const { return new StoreInst(*this); }
virtual bool mayWriteToMemory() const { return true; }
Value *getPointerOperand() { return getOperand(1); }
const Value *getPointerOperand() const { return getOperand(1); }
static unsigned getPointerOperandIndex() { return 1U; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const StoreInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Store;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// GetElementPtrInst Class
//===----------------------------------------------------------------------===//
/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction {
GetElementPtrInst(const GetElementPtrInst &EPI)
: Instruction((static_cast<const Instruction*>(&EPI)->getType()),
GetElementPtr) {
Operands.reserve(EPI.Operands.size());
for (unsigned i = 0, E = EPI.Operands.size(); i != E; ++i)
Operands.push_back(Use(EPI.Operands[i], this));
}
void init(Value *Ptr, const std::vector<Value*> &Idx);
void init(Value *Ptr, Value *Idx0, Value *Idx1);
public:
/// Constructors - Create a getelementptr instruction with a base pointer an
/// list of indices. The first ctor can optionally insert before an existing
/// instruction, the second appends the new instruction to the specified
/// BasicBlock.
GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name = "", Instruction *InsertBefore =0);
GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, BasicBlock *InsertAtEnd);
/// Constructors - These two constructors are convenience methods because two
/// index getelementptr instructions are so common.
GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name = "", Instruction *InsertBefore =0);
GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name, BasicBlock *InsertAtEnd);
virtual Instruction *clone() const { return new GetElementPtrInst(*this); }
// getType - Overload to return most specific pointer type...
inline const PointerType *getType() const {
return reinterpret_cast<const PointerType*>(Instruction::getType());
}
/// getIndexedType - Returns the type of the element that would be loaded with
/// a load instruction with the specified parameters.
///
/// A null type is returned if the indices are invalid for the specified
/// pointer type.
///
static const Type *getIndexedType(const Type *Ptr,
const std::vector<Value*> &Indices,
bool AllowStructLeaf = false);
static const Type *getIndexedType(const Type *Ptr, Value *Idx0, Value *Idx1,
bool AllowStructLeaf = false);
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
inline unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
inline bool hasIndices() const {
return getNumOperands() > 1;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const GetElementPtrInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::GetElementPtr);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SetCondInst Class
//===----------------------------------------------------------------------===//
/// SetCondInst class - Represent a setCC operator, where CC is eq, ne, lt, gt,
/// le, or ge.
///
class SetCondInst : public BinaryOperator {
BinaryOps OpType;
public:
SetCondInst(BinaryOps Opcode, Value *LHS, Value *RHS,
const std::string &Name = "", Instruction *InsertBefore = 0);
SetCondInst(BinaryOps Opcode, Value *LHS, Value *RHS,
const std::string &Name, BasicBlock *InsertAtEnd);
/// getInverseCondition - Return the inverse of the current condition opcode.
/// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
///
BinaryOps getInverseCondition() const {
return getInverseCondition(getOpcode());
}
/// getInverseCondition - Static version that you can use without an
/// instruction available.
///
static BinaryOps getInverseCondition(BinaryOps Opcode);
/// getSwappedCondition - Return the condition opcode that would be the result
/// of exchanging the two operands of the setcc instruction without changing
/// the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
///
BinaryOps getSwappedCondition() const {
return getSwappedCondition(getOpcode());
}
/// getSwappedCondition - Static version that you can use without an
/// instruction available.
///
static BinaryOps getSwappedCondition(BinaryOps Opcode);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SetCondInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == SetEQ || I->getOpcode() == SetNE ||
I->getOpcode() == SetLE || I->getOpcode() == SetGE ||
I->getOpcode() == SetLT || I->getOpcode() == SetGT;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//
/// CastInst - This class represents a cast from Operand[0] to the type of
/// the instruction (i->getType()).
///
class CastInst : public Instruction {
CastInst(const CastInst &CI) : Instruction(CI.getType(), Cast) {
Operands.reserve(1);
Operands.push_back(Use(CI.Operands[0], this));
}
void init(Value *S) {
Operands.reserve(1);
Operands.push_back(Use(S, this));
}
public:
CastInst(Value *S, const Type *Ty, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(Ty, Cast, Name, InsertBefore) {
init(S);
}
CastInst(Value *S, const Type *Ty, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(Ty, Cast, Name, InsertAtEnd) {
init(S);
}
virtual Instruction *clone() const { return new CastInst(*this); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CastInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Cast;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CallInst Class
//===----------------------------------------------------------------------===//
/// CallInst - This class represents a function call, abstracting a target
/// machine's calling convention.
///
class CallInst : public Instruction {
CallInst(const CallInst &CI);
void init(Value *Func, const std::vector<Value*> &Params);
void init(Value *Func, Value *Actual1, Value *Actual2);
void init(Value *Func, Value *Actual);
void init(Value *Func);
public:
CallInst(Value *F, const std::vector<Value*> &Par,
const std::string &Name = "", Instruction *InsertBefore = 0);
CallInst(Value *F, const std::vector<Value*> &Par,
const std::string &Name, BasicBlock *InsertAtEnd);
// Alternate CallInst ctors w/ two actuals, w/ one actual and no
// actuals, respectively.
CallInst(Value *F, Value *Actual1, Value *Actual2,
const std::string& Name = "", Instruction *InsertBefore = 0);
CallInst(Value *F, Value *Actual1, Value *Actual2,
const std::string& Name, BasicBlock *InsertAtEnd);
CallInst(Value *F, Value *Actual, const std::string& Name = "",
Instruction *InsertBefore = 0);
CallInst(Value *F, Value *Actual, const std::string& Name,
BasicBlock *InsertAtEnd);
explicit CallInst(Value *F, const std::string &Name = "",
Instruction *InsertBefore = 0);
explicit CallInst(Value *F, const std::string &Name,
BasicBlock *InsertAtEnd);
virtual Instruction *clone() const { return new CallInst(*this); }
bool mayWriteToMemory() const { return true; }
// FIXME: These methods should be inline once we eliminate
// ConstantPointerRefs!
const Function *getCalledFunction() const;
Function *getCalledFunction();
// getCalledValue - Get a pointer to a method that is invoked by this inst.
inline const Value *getCalledValue() const { return Operands[0]; }
inline Value *getCalledValue() { return Operands[0]; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CallInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Call;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// ShiftInst Class
//===----------------------------------------------------------------------===//
/// ShiftInst - This class represents left and right shift instructions.
///
class ShiftInst : public Instruction {
ShiftInst(const ShiftInst &SI) : Instruction(SI.getType(), SI.getOpcode()) {
Operands.reserve(2);
Operands.push_back(Use(SI.Operands[0], this));
Operands.push_back(Use(SI.Operands[1], this));
}
void init(OtherOps Opcode, Value *S, Value *SA) {
assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");
Operands.reserve(2);
Operands.push_back(Use(S, this));
Operands.push_back(Use(SA, this));
}
public:
ShiftInst(OtherOps Opcode, Value *S, Value *SA, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(S->getType(), Opcode, Name, InsertBefore) {
init(Opcode, S, SA);
}
ShiftInst(OtherOps Opcode, Value *S, Value *SA, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(S->getType(), Opcode, Name, InsertAtEnd) {
init(Opcode, S, SA);
}
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
virtual Instruction *clone() const { return new ShiftInst(*this); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ShiftInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Shr) |
(I->getOpcode() == Instruction::Shl);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// SelectInst - This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction {
SelectInst(const SelectInst &SI) : Instruction(SI.getType(), SI.getOpcode()) {
Operands.reserve(3);
Operands.push_back(Use(SI.Operands[0], this));
Operands.push_back(Use(SI.Operands[1], this));
Operands.push_back(Use(SI.Operands[2], this));
}
void init(Value *C, Value *S1, Value *S2) {
Operands.reserve(3);
Operands.push_back(Use(C, this));
Operands.push_back(Use(S1, this));
Operands.push_back(Use(S2, this));
}
public:
SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(S1->getType(), Instruction::Select, Name, InsertBefore) {
init(C, S1, S2);
}
SelectInst(Value *C, Value *S1, Value *S2, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(S1->getType(), Instruction::Select, Name, InsertAtEnd) {
init(C, S1, S2);
}
Value *getCondition() const { return Operands[0]; }
Value *getTrueValue() const { return Operands[1]; }
Value *getFalseValue() const { return Operands[2]; }
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
virtual Instruction *clone() const { return new SelectInst(*this); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SelectInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Select;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// VANextInst Class
//===----------------------------------------------------------------------===//
/// VANextInst - This class represents the va_next llvm instruction, which
/// advances a vararg list passed an argument of the specified type, returning
/// the resultant list.
///
class VANextInst : public Instruction {
PATypeHolder ArgTy;
void init(Value *List) {
Operands.reserve(1);
Operands.push_back(Use(List, this));
}
VANextInst(const VANextInst &VAN)
: Instruction(VAN.getType(), VANext), ArgTy(VAN.getArgType()) {
init(VAN.Operands[0]);
}
public:
VANextInst(Value *List, const Type *Ty, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(List->getType(), VANext, Name, InsertBefore), ArgTy(Ty) {
init(List);
}
VANextInst(Value *List, const Type *Ty, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(List->getType(), VANext, Name, InsertAtEnd), ArgTy(Ty) {
init(List);
}
const Type *getArgType() const { return ArgTy; }
virtual Instruction *clone() const { return new VANextInst(*this); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const VANextInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == VANext;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// VAArgInst Class
//===----------------------------------------------------------------------===//
/// VAArgInst - This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list.
///
class VAArgInst : public Instruction {
void init(Value* List) {
Operands.reserve(1);
Operands.push_back(Use(List, this));
}
VAArgInst(const VAArgInst &VAA)
: Instruction(VAA.getType(), VAArg) {
init(VAA.Operands[0]);
}
public:
VAArgInst(Value *List, const Type *Ty, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(Ty, VAArg, Name, InsertBefore) {
init(List);
}
VAArgInst(Value *List, const Type *Ty, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(Ty, VAArg, Name, InsertAtEnd) {
init(List);
}
virtual Instruction *clone() const { return new VAArgInst(*this); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const VAArgInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == VAArg;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction {
PHINode(const PHINode &PN);
public:
PHINode(const Type *Ty, const std::string &Name = "",
Instruction *InsertBefore = 0)
: Instruction(Ty, Instruction::PHI, Name, InsertBefore) {
}
PHINode(const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(Ty, Instruction::PHI, Name, InsertAtEnd) {
}
virtual Instruction *clone() const { return new PHINode(*this); }
/// getNumIncomingValues - Return the number of incoming edges
///
unsigned getNumIncomingValues() const { return Operands.size()/2; }
/// getIncomingValue - Return incoming value #x
///
Value *getIncomingValue(unsigned i) const {
assert(i*2 < Operands.size() && "Invalid value number!");
return Operands[i*2];
}
void setIncomingValue(unsigned i, Value *V) {
assert(i*2 < Operands.size() && "Invalid value number!");
Operands[i*2] = V;
}
inline unsigned getOperandNumForIncomingValue(unsigned i) {
return i*2;
}
/// getIncomingBlock - Return incoming basic block #x
///
BasicBlock *getIncomingBlock(unsigned i) const {
assert(i*2+1 < Operands.size() && "Invalid value number!");
return reinterpret_cast<BasicBlock*>(Operands[i*2+1].get());
}
void setIncomingBlock(unsigned i, BasicBlock *BB) {
assert(i*2+1 < Operands.size() && "Invalid value number!");
Operands[i*2+1] = reinterpret_cast<Value*>(BB);
}
unsigned getOperandNumForIncomingBlock(unsigned i) {
return i*2+1;
}
/// addIncoming - Add an incoming value to the end of the PHI list
///
void addIncoming(Value *V, BasicBlock *BB) {
assert(getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!");
Operands.push_back(Use(V, this));
Operands.push_back(Use(reinterpret_cast<Value*>(BB), this));
}
/// removeIncomingValue - Remove an incoming value. This is useful if a
/// predecessor basic block is deleted. The value removed is returned.
///
/// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
/// is true), the PHI node is destroyed and any uses of it are replaced with
/// dummy values. The only time there should be zero incoming values to a PHI
/// node is when the block is dead, so this strategy is sound.
///
Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty =true){
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument to remove!");
return removeIncomingValue(Idx, DeletePHIIfEmpty);
}
/// getBasicBlockIndex - Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
///
int getBasicBlockIndex(const BasicBlock *BB) const {
for (unsigned i = 0; i < Operands.size()/2; ++i)
if (getIncomingBlock(i) == BB) return i;
return -1;
}
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
return getIncomingValue(getBasicBlockIndex(BB));
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PHINode *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::PHI;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// ReturnInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// ReturnInst - Return a value (possibly void), from a function. Execution
/// does not continue in this function any longer.
///
class ReturnInst : public TerminatorInst {
ReturnInst(const ReturnInst &RI) : TerminatorInst(Instruction::Ret) {
if (RI.Operands.size()) {
assert(RI.Operands.size() == 1 && "Return insn can only have 1 operand!");
Operands.reserve(1);
Operands.push_back(Use(RI.Operands[0], this));
}
}
void init(Value *RetVal) {
if (RetVal) {
assert(!isa<BasicBlock>(RetVal) &&
"Cannot return basic block. Probably using the incorrect ctor");
Operands.reserve(1);
Operands.push_back(Use(RetVal, this));
}
}
public:
// ReturnInst constructors:
// ReturnInst() - 'ret void' instruction
// ReturnInst(Value* X) - 'ret X' instruction
// ReturnInst( null, Inst *) - 'ret void' instruction, insert before I
// ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
// ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of BB
// ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of BB
ReturnInst(Value *RetVal = 0, Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Ret, InsertBefore) {
init(RetVal);
}
ReturnInst(Value *RetVal, BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Ret, InsertAtEnd) {
init(RetVal);
}
ReturnInst(BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Ret, InsertAtEnd) {
}
virtual Instruction *clone() const { return new ReturnInst(*this); }
inline const Value *getReturnValue() const {
return Operands.size() ? Operands[0].get() : 0;
}
inline Value *getReturnValue() {
return Operands.size() ? Operands[0].get() : 0;
}
virtual const BasicBlock *getSuccessor(unsigned idx) const {
assert(0 && "ReturnInst has no successors!");
abort();
return 0;
}
virtual void setSuccessor(unsigned idx, BasicBlock *NewSucc);
virtual unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ReturnInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Ret);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// BranchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// BranchInst - Conditional or Unconditional Branch instruction.
///
class BranchInst : public TerminatorInst {
BranchInst(const BranchInst &BI);
void init(BasicBlock *IfTrue);
void init(BasicBlock *True, BasicBlock *False, Value *Cond);
public:
// BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
// BranchInst(BB *B) - 'br B'
// BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
// BranchInst(BB* B, Inst *I) - 'br B' insert before I
// BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
// BranchInst(BB* B, BB *I) - 'br B' insert at end
// BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Br, InsertBefore) {
init(IfTrue);
}
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Br, InsertBefore) {
init(IfTrue, IfFalse, Cond);
}
BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Br, InsertAtEnd) {
init(IfTrue);
}
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Br, InsertAtEnd) {
init(IfTrue, IfFalse, Cond);
}
virtual Instruction *clone() const { return new BranchInst(*this); }
inline bool isUnconditional() const { return Operands.size() == 1; }
inline bool isConditional() const { return Operands.size() == 3; }
inline Value *getCondition() const {
assert(isConditional() && "Cannot get condition of an uncond branch!");
return Operands[2].get();
}
void setCondition(Value *V) {
assert(isConditional() && "Cannot set condition of unconditional branch!");
setOperand(2, V);
}
// setUnconditionalDest - Change the current branch to an unconditional branch
// targeting the specified block.
//
void setUnconditionalDest(BasicBlock *Dest) {
if (isConditional()) Operands.erase(Operands.begin()+1, Operands.end());
Operands[0] = reinterpret_cast<Value*>(Dest);
}
virtual const BasicBlock *getSuccessor(unsigned i) const {
assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
return (i == 0) ? cast<BasicBlock>(Operands[0].get()) :
cast<BasicBlock>(Operands[1].get());
}
inline BasicBlock *getSuccessor(unsigned idx) {
const BranchInst *BI = this;
return const_cast<BasicBlock*>(BI->getSuccessor(idx));
}
virtual void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
Operands[idx] = reinterpret_cast<Value*>(NewSucc);
}
virtual unsigned getNumSuccessors() const { return 1+isConditional(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const BranchInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Br);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SwitchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// SwitchInst - Multiway switch
///
class SwitchInst : public TerminatorInst {
// Operand[0] = Value to switch on
// Operand[1] = Default basic block destination
// Operand[2n ] = Value to match
// Operand[2n+1] = BasicBlock to go to on match
SwitchInst(const SwitchInst &RI);
void init(Value *Value, BasicBlock *Default);
public:
SwitchInst(Value *Value, BasicBlock *Default, Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Switch, InsertBefore) {
init(Value, Default);
}
SwitchInst(Value *Value, BasicBlock *Default, BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Switch, InsertAtEnd) {
init(Value, Default);
}
virtual Instruction *clone() const { return new SwitchInst(*this); }
// Accessor Methods for Switch stmt
//
inline const Value *getCondition() const { return Operands[0]; }
inline Value *getCondition() { return Operands[0]; }
inline const BasicBlock *getDefaultDest() const {
return cast<BasicBlock>(Operands[1].get());
}
inline BasicBlock *getDefaultDest() {
return cast<BasicBlock>(Operands[1].get());
}
/// getNumCases - return the number of 'cases' in this switch instruction.
/// Note that case #0 is always the default case.
unsigned getNumCases() const {
return Operands.size()/2;
}
/// getCaseValue - Return the specified case value. Note that case #0, the
/// default destination, does not have a case value.
Constant *getCaseValue(unsigned i) {
assert(i && i < getNumCases() && "Illegal case value to get!");
return getSuccessorValue(i);
}
/// getCaseValue - Return the specified case value. Note that case #0, the
/// default destination, does not have a case value.
const Constant *getCaseValue(unsigned i) const {
assert(i && i < getNumCases() && "Illegal case value to get!");
return getSuccessorValue(i);
}
/// findCaseValue - Search all of the case values for the specified constant.
/// If it is explicitly handled, return the case number of it, otherwise
/// return 0 to indicate that it is handled by the default handler.
unsigned findCaseValue(const Constant *C) const {
for (unsigned i = 1, e = getNumCases(); i != e; ++i)
if (getCaseValue(i) == C)
return i;
return 0;
}
/// addCase - Add an entry to the switch instruction...
///
void addCase(Constant *OnVal, BasicBlock *Dest);
/// removeCase - This method removes the specified successor from the switch
/// instruction. Note that this cannot be used to remove the default
/// destination (successor #0).
///
void removeCase(unsigned idx);
virtual const BasicBlock *getSuccessor(unsigned idx) const {
assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
return cast<BasicBlock>(Operands[idx*2+1].get());
}
inline BasicBlock *getSuccessor(unsigned idx) {
assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
return cast<BasicBlock>(Operands[idx*2+1].get());
}
virtual void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
Operands[idx*2+1] = reinterpret_cast<Value*>(NewSucc);
}
// getSuccessorValue - Return the value associated with the specified
// successor.
inline const Constant *getSuccessorValue(unsigned idx) const {
assert(idx < getNumSuccessors() && "Successor # out of range!");
return cast<Constant>(Operands[idx*2].get());
}
inline Constant *getSuccessorValue(unsigned idx) {
assert(idx < getNumSuccessors() && "Successor # out of range!");
return cast<Constant>(Operands[idx*2].get());
}
virtual unsigned getNumSuccessors() const { return Operands.size()/2; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SwitchInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Switch);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// InvokeInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// InvokeInst - Invoke instruction
///
class InvokeInst : public TerminatorInst {
InvokeInst(const InvokeInst &BI);
void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params);
public:
InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params, const std::string &Name = "",
Instruction *InsertBefore = 0);
InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params, const std::string &Name,
BasicBlock *InsertAtEnd);
virtual Instruction *clone() const { return new InvokeInst(*this); }
bool mayWriteToMemory() const { return true; }
/// getCalledFunction - Return the function called, or null if this is an
/// indirect function invocation...
///
/// FIXME: These should be inlined once we get rid of ConstantPointerRefs!
///
const Function *getCalledFunction() const;
Function *getCalledFunction();
// getCalledValue - Get a pointer to a function that is invoked by this inst.
inline const Value *getCalledValue() const { return Operands[0]; }
inline Value *getCalledValue() { return Operands[0]; }
// get*Dest - Return the destination basic blocks...
inline const BasicBlock *getNormalDest() const {
return cast<BasicBlock>(Operands[1].get());
}
inline BasicBlock *getNormalDest() {
return cast<BasicBlock>(Operands[1].get());
}
inline const BasicBlock *getUnwindDest() const {
return cast<BasicBlock>(Operands[2].get());
}
inline BasicBlock *getUnwindDest() {
return cast<BasicBlock>(Operands[2].get());
}
inline void setNormalDest(BasicBlock *B){
Operands[1] = reinterpret_cast<Value*>(B);
}
inline void setUnwindDest(BasicBlock *B){
Operands[2] = reinterpret_cast<Value*>(B);
}
virtual const BasicBlock *getSuccessor(unsigned i) const {
assert(i < 2 && "Successor # out of range for invoke!");
return i == 0 ? getNormalDest() : getUnwindDest();
}
inline BasicBlock *getSuccessor(unsigned i) {
assert(i < 2 && "Successor # out of range for invoke!");
return i == 0 ? getNormalDest() : getUnwindDest();
}
virtual void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < 2 && "Successor # out of range for invoke!");
Operands[idx+1] = reinterpret_cast<Value*>(NewSucc);
}
virtual unsigned getNumSuccessors() const { return 2; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const InvokeInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Invoke);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// UnwindInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// UnwindInst - Immediately exit the current function, unwinding the stack
/// until an invoke instruction is found.
///
struct UnwindInst : public TerminatorInst {
UnwindInst(Instruction *InsertBefore = 0)
: TerminatorInst(Instruction::Unwind, InsertBefore) {
}
UnwindInst(BasicBlock *InsertAtEnd)
: TerminatorInst(Instruction::Unwind, InsertAtEnd) {
}
virtual Instruction *clone() const { return new UnwindInst(); }
virtual const BasicBlock *getSuccessor(unsigned idx) const {
assert(0 && "UnwindInst has no successors!");
abort();
return 0;
}
virtual void setSuccessor(unsigned idx, BasicBlock *NewSucc);
virtual unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UnwindInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Unwind;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
} // End llvm namespace
#endif