mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 05:31:06 +00:00
cd3245ac45
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32698 91177308-0d34-0410-b5e6-96231b3b80d8
950 lines
38 KiB
C++
950 lines
38 KiB
C++
//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the VirtRegMap class.
|
|
//
|
|
// It also contains implementations of the the Spiller interface, which, given a
|
|
// virtual register map and a machine function, eliminates all virtual
|
|
// references by replacing them with physical register references - adding spill
|
|
// code as necessary.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "spiller"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumSpills, "Number of register spills");
|
|
STATISTIC(NumStores, "Number of stores added");
|
|
STATISTIC(NumLoads , "Number of loads added");
|
|
STATISTIC(NumReused, "Number of values reused");
|
|
STATISTIC(NumDSE , "Number of dead stores elided");
|
|
STATISTIC(NumDCE , "Number of copies elided");
|
|
|
|
namespace {
|
|
enum SpillerName { simple, local };
|
|
|
|
static cl::opt<SpillerName>
|
|
SpillerOpt("spiller",
|
|
cl::desc("Spiller to use: (default: local)"),
|
|
cl::Prefix,
|
|
cl::values(clEnumVal(simple, " simple spiller"),
|
|
clEnumVal(local, " local spiller"),
|
|
clEnumValEnd),
|
|
cl::init(local));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VirtRegMap implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
VirtRegMap::VirtRegMap(MachineFunction &mf)
|
|
: TII(*mf.getTarget().getInstrInfo()), MF(mf),
|
|
Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT) {
|
|
grow();
|
|
}
|
|
|
|
void VirtRegMap::grow() {
|
|
Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
|
|
Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
|
|
}
|
|
|
|
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
|
|
assert(MRegisterInfo::isVirtualRegister(virtReg));
|
|
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
|
|
"attempt to assign stack slot to already spilled register");
|
|
const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
|
|
int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
|
|
RC->getAlignment());
|
|
Virt2StackSlotMap[virtReg] = frameIndex;
|
|
++NumSpills;
|
|
return frameIndex;
|
|
}
|
|
|
|
void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
|
|
assert(MRegisterInfo::isVirtualRegister(virtReg));
|
|
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
|
|
"attempt to assign stack slot to already spilled register");
|
|
Virt2StackSlotMap[virtReg] = frameIndex;
|
|
}
|
|
|
|
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
|
|
unsigned OpNo, MachineInstr *NewMI) {
|
|
// Move previous memory references folded to new instruction.
|
|
MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
|
|
for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
|
|
E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
|
|
MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
|
|
MI2VirtMap.erase(I++);
|
|
}
|
|
|
|
ModRef MRInfo;
|
|
const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
|
|
if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
|
|
TID->findTiedToSrcOperand(OpNo) != -1) {
|
|
// Folded a two-address operand.
|
|
MRInfo = isModRef;
|
|
} else if (OldMI->getOperand(OpNo).isDef()) {
|
|
MRInfo = isMod;
|
|
} else {
|
|
MRInfo = isRef;
|
|
}
|
|
|
|
// add new memory reference
|
|
MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
|
|
}
|
|
|
|
void VirtRegMap::print(std::ostream &OS) const {
|
|
const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
|
|
|
|
OS << "********** REGISTER MAP **********\n";
|
|
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
|
|
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
|
|
if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
|
|
OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
|
|
|
|
}
|
|
|
|
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
|
|
e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
|
|
if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
|
|
OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
|
|
OS << '\n';
|
|
}
|
|
|
|
void VirtRegMap::dump() const {
|
|
print(DOUT);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Simple Spiller Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Spiller::~Spiller() {}
|
|
|
|
namespace {
|
|
struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
|
|
bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
|
|
};
|
|
}
|
|
|
|
bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
|
|
DOUT << "********** REWRITE MACHINE CODE **********\n";
|
|
DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const MRegisterInfo &MRI = *TM.getRegisterInfo();
|
|
bool *PhysRegsUsed = MF.getUsedPhysregs();
|
|
|
|
// LoadedRegs - Keep track of which vregs are loaded, so that we only load
|
|
// each vreg once (in the case where a spilled vreg is used by multiple
|
|
// operands). This is always smaller than the number of operands to the
|
|
// current machine instr, so it should be small.
|
|
std::vector<unsigned> LoadedRegs;
|
|
|
|
for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
|
|
MBBI != E; ++MBBI) {
|
|
DOUT << MBBI->getBasicBlock()->getName() << ":\n";
|
|
MachineBasicBlock &MBB = *MBBI;
|
|
for (MachineBasicBlock::iterator MII = MBB.begin(),
|
|
E = MBB.end(); MII != E; ++MII) {
|
|
MachineInstr &MI = *MII;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isRegister() && MO.getReg())
|
|
if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
|
|
unsigned VirtReg = MO.getReg();
|
|
unsigned PhysReg = VRM.getPhys(VirtReg);
|
|
if (VRM.hasStackSlot(VirtReg)) {
|
|
int StackSlot = VRM.getStackSlot(VirtReg);
|
|
const TargetRegisterClass* RC =
|
|
MF.getSSARegMap()->getRegClass(VirtReg);
|
|
|
|
if (MO.isUse() &&
|
|
std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
|
|
== LoadedRegs.end()) {
|
|
MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
|
|
LoadedRegs.push_back(VirtReg);
|
|
++NumLoads;
|
|
DOUT << '\t' << *prior(MII);
|
|
}
|
|
|
|
if (MO.isDef()) {
|
|
MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
|
|
++NumStores;
|
|
}
|
|
}
|
|
PhysRegsUsed[PhysReg] = true;
|
|
MI.getOperand(i).setReg(PhysReg);
|
|
} else {
|
|
PhysRegsUsed[MO.getReg()] = true;
|
|
}
|
|
}
|
|
|
|
DOUT << '\t' << MI;
|
|
LoadedRegs.clear();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local Spiller Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// LocalSpiller - This spiller does a simple pass over the machine basic
|
|
/// block to attempt to keep spills in registers as much as possible for
|
|
/// blocks that have low register pressure (the vreg may be spilled due to
|
|
/// register pressure in other blocks).
|
|
class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
|
|
const MRegisterInfo *MRI;
|
|
const TargetInstrInfo *TII;
|
|
public:
|
|
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
|
|
MRI = MF.getTarget().getRegisterInfo();
|
|
TII = MF.getTarget().getInstrInfo();
|
|
DOUT << "\n**** Local spiller rewriting function '"
|
|
<< MF.getFunction()->getName() << "':\n";
|
|
|
|
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
|
|
MBB != E; ++MBB)
|
|
RewriteMBB(*MBB, VRM);
|
|
return true;
|
|
}
|
|
private:
|
|
void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
|
|
void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
|
|
std::multimap<unsigned, int> &PhysRegs);
|
|
void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
|
|
std::multimap<unsigned, int> &PhysRegs);
|
|
void ModifyStackSlot(int Slot, std::map<int, unsigned> &SpillSlots,
|
|
std::multimap<unsigned, int> &PhysRegs);
|
|
};
|
|
}
|
|
|
|
/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
|
|
/// top down, keep track of which spills slots are available in each register.
|
|
///
|
|
/// Note that not all physregs are created equal here. In particular, some
|
|
/// physregs are reloads that we are allowed to clobber or ignore at any time.
|
|
/// Other physregs are values that the register allocated program is using that
|
|
/// we cannot CHANGE, but we can read if we like. We keep track of this on a
|
|
/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
|
|
/// entries. The predicate 'canClobberPhysReg()' checks this bit and
|
|
/// addAvailable sets it if.
|
|
namespace {
|
|
class VISIBILITY_HIDDEN AvailableSpills {
|
|
const MRegisterInfo *MRI;
|
|
const TargetInstrInfo *TII;
|
|
|
|
// SpillSlotsAvailable - This map keeps track of all of the spilled virtual
|
|
// register values that are still available, due to being loaded or stored to,
|
|
// but not invalidated yet.
|
|
std::map<int, unsigned> SpillSlotsAvailable;
|
|
|
|
// PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
|
|
// which stack slot values are currently held by a physreg. This is used to
|
|
// invalidate entries in SpillSlotsAvailable when a physreg is modified.
|
|
std::multimap<unsigned, int> PhysRegsAvailable;
|
|
|
|
void disallowClobberPhysRegOnly(unsigned PhysReg);
|
|
|
|
void ClobberPhysRegOnly(unsigned PhysReg);
|
|
public:
|
|
AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
|
|
: MRI(mri), TII(tii) {
|
|
}
|
|
|
|
/// getSpillSlotPhysReg - If the specified stack slot is available in a
|
|
/// physical register, return that PhysReg, otherwise return 0.
|
|
unsigned getSpillSlotPhysReg(int Slot) const {
|
|
std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
|
|
if (I != SpillSlotsAvailable.end())
|
|
return I->second >> 1; // Remove the CanClobber bit.
|
|
return 0;
|
|
}
|
|
|
|
const MRegisterInfo *getRegInfo() const { return MRI; }
|
|
|
|
/// addAvailable - Mark that the specified stack slot is available in the
|
|
/// specified physreg. If CanClobber is true, the physreg can be modified at
|
|
/// any time without changing the semantics of the program.
|
|
void addAvailable(int Slot, unsigned Reg, bool CanClobber = true) {
|
|
// If this stack slot is thought to be available in some other physreg,
|
|
// remove its record.
|
|
ModifyStackSlot(Slot);
|
|
|
|
PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
|
|
SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
|
|
|
|
DOUT << "Remembering SS#" << Slot << " in physreg "
|
|
<< MRI->getName(Reg) << "\n";
|
|
}
|
|
|
|
/// canClobberPhysReg - Return true if the spiller is allowed to change the
|
|
/// value of the specified stackslot register if it desires. The specified
|
|
/// stack slot must be available in a physreg for this query to make sense.
|
|
bool canClobberPhysReg(int Slot) const {
|
|
assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
|
|
return SpillSlotsAvailable.find(Slot)->second & 1;
|
|
}
|
|
|
|
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
|
|
/// stackslot register. The register is still available but is no longer
|
|
/// allowed to be modifed.
|
|
void disallowClobberPhysReg(unsigned PhysReg);
|
|
|
|
/// ClobberPhysReg - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff we thing lives in
|
|
/// it and any of its aliases.
|
|
void ClobberPhysReg(unsigned PhysReg);
|
|
|
|
/// ModifyStackSlot - This method is called when the value in a stack slot
|
|
/// changes. This removes information about which register the previous value
|
|
/// for this slot lives in (as the previous value is dead now).
|
|
void ModifyStackSlot(int Slot);
|
|
};
|
|
}
|
|
|
|
/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
|
|
/// stackslot register. The register is still available but is no longer
|
|
/// allowed to be modifed.
|
|
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
|
|
std::multimap<unsigned, int>::iterator I =
|
|
PhysRegsAvailable.lower_bound(PhysReg);
|
|
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
|
int Slot = I->second;
|
|
I++;
|
|
assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
|
|
"Bidirectional map mismatch!");
|
|
SpillSlotsAvailable[Slot] &= ~1;
|
|
DOUT << "PhysReg " << MRI->getName(PhysReg)
|
|
<< " copied, it is available for use but can no longer be modified\n";
|
|
}
|
|
}
|
|
|
|
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
|
|
/// stackslot register and its aliases. The register and its aliases may
|
|
/// still available but is no longer allowed to be modifed.
|
|
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
|
|
for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
|
|
disallowClobberPhysRegOnly(*AS);
|
|
disallowClobberPhysRegOnly(PhysReg);
|
|
}
|
|
|
|
/// ClobberPhysRegOnly - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff we thing lives in it.
|
|
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
|
|
std::multimap<unsigned, int>::iterator I =
|
|
PhysRegsAvailable.lower_bound(PhysReg);
|
|
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
|
int Slot = I->second;
|
|
PhysRegsAvailable.erase(I++);
|
|
assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
|
|
"Bidirectional map mismatch!");
|
|
SpillSlotsAvailable.erase(Slot);
|
|
DOUT << "PhysReg " << MRI->getName(PhysReg)
|
|
<< " clobbered, invalidating SS#" << Slot << "\n";
|
|
}
|
|
}
|
|
|
|
/// ClobberPhysReg - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff we thing lives in
|
|
/// it and any of its aliases.
|
|
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
|
|
for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
|
|
ClobberPhysRegOnly(*AS);
|
|
ClobberPhysRegOnly(PhysReg);
|
|
}
|
|
|
|
/// ModifyStackSlot - This method is called when the value in a stack slot
|
|
/// changes. This removes information about which register the previous value
|
|
/// for this slot lives in (as the previous value is dead now).
|
|
void AvailableSpills::ModifyStackSlot(int Slot) {
|
|
std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
|
|
if (It == SpillSlotsAvailable.end()) return;
|
|
unsigned Reg = It->second >> 1;
|
|
SpillSlotsAvailable.erase(It);
|
|
|
|
// This register may hold the value of multiple stack slots, only remove this
|
|
// stack slot from the set of values the register contains.
|
|
std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
|
|
for (; ; ++I) {
|
|
assert(I != PhysRegsAvailable.end() && I->first == Reg &&
|
|
"Map inverse broken!");
|
|
if (I->second == Slot) break;
|
|
}
|
|
PhysRegsAvailable.erase(I);
|
|
}
|
|
|
|
|
|
|
|
// ReusedOp - For each reused operand, we keep track of a bit of information, in
|
|
// case we need to rollback upon processing a new operand. See comments below.
|
|
namespace {
|
|
struct ReusedOp {
|
|
// The MachineInstr operand that reused an available value.
|
|
unsigned Operand;
|
|
|
|
// StackSlot - The spill slot of the value being reused.
|
|
unsigned StackSlot;
|
|
|
|
// PhysRegReused - The physical register the value was available in.
|
|
unsigned PhysRegReused;
|
|
|
|
// AssignedPhysReg - The physreg that was assigned for use by the reload.
|
|
unsigned AssignedPhysReg;
|
|
|
|
// VirtReg - The virtual register itself.
|
|
unsigned VirtReg;
|
|
|
|
ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
|
|
unsigned vreg)
|
|
: Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
|
|
VirtReg(vreg) {}
|
|
};
|
|
|
|
/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
|
|
/// is reused instead of reloaded.
|
|
class VISIBILITY_HIDDEN ReuseInfo {
|
|
MachineInstr &MI;
|
|
std::vector<ReusedOp> Reuses;
|
|
bool *PhysRegsClobbered;
|
|
public:
|
|
ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
|
|
PhysRegsClobbered = new bool[mri->getNumRegs()];
|
|
std::fill(PhysRegsClobbered, PhysRegsClobbered+mri->getNumRegs(), false);
|
|
}
|
|
~ReuseInfo() {
|
|
delete[] PhysRegsClobbered;
|
|
}
|
|
|
|
bool hasReuses() const {
|
|
return !Reuses.empty();
|
|
}
|
|
|
|
/// addReuse - If we choose to reuse a virtual register that is already
|
|
/// available instead of reloading it, remember that we did so.
|
|
void addReuse(unsigned OpNo, unsigned StackSlot,
|
|
unsigned PhysRegReused, unsigned AssignedPhysReg,
|
|
unsigned VirtReg) {
|
|
// If the reload is to the assigned register anyway, no undo will be
|
|
// required.
|
|
if (PhysRegReused == AssignedPhysReg) return;
|
|
|
|
// Otherwise, remember this.
|
|
Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
|
|
AssignedPhysReg, VirtReg));
|
|
}
|
|
|
|
void markClobbered(unsigned PhysReg) {
|
|
PhysRegsClobbered[PhysReg] = true;
|
|
}
|
|
|
|
bool isClobbered(unsigned PhysReg) const {
|
|
return PhysRegsClobbered[PhysReg];
|
|
}
|
|
|
|
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
|
|
/// is some other operand that is using the specified register, either pick
|
|
/// a new register to use, or evict the previous reload and use this reg.
|
|
unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
std::map<int, MachineInstr*> &MaybeDeadStores) {
|
|
if (Reuses.empty()) return PhysReg; // This is most often empty.
|
|
|
|
for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
|
|
ReusedOp &Op = Reuses[ro];
|
|
// If we find some other reuse that was supposed to use this register
|
|
// exactly for its reload, we can change this reload to use ITS reload
|
|
// register.
|
|
if (Op.PhysRegReused == PhysReg) {
|
|
// Yup, use the reload register that we didn't use before.
|
|
unsigned NewReg = Op.AssignedPhysReg;
|
|
return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores);
|
|
} else {
|
|
// Otherwise, we might also have a problem if a previously reused
|
|
// value aliases the new register. If so, codegen the previous reload
|
|
// and use this one.
|
|
unsigned PRRU = Op.PhysRegReused;
|
|
const MRegisterInfo *MRI = Spills.getRegInfo();
|
|
if (MRI->areAliases(PRRU, PhysReg)) {
|
|
// Okay, we found out that an alias of a reused register
|
|
// was used. This isn't good because it means we have
|
|
// to undo a previous reuse.
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
const TargetRegisterClass *AliasRC =
|
|
MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
|
|
|
|
// Copy Op out of the vector and remove it, we're going to insert an
|
|
// explicit load for it.
|
|
ReusedOp NewOp = Op;
|
|
Reuses.erase(Reuses.begin()+ro);
|
|
|
|
// Ok, we're going to try to reload the assigned physreg into the
|
|
// slot that we were supposed to in the first place. However, that
|
|
// register could hold a reuse. Check to see if it conflicts or
|
|
// would prefer us to use a different register.
|
|
unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
|
|
MI, Spills, MaybeDeadStores);
|
|
|
|
MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
|
|
NewOp.StackSlot, AliasRC);
|
|
Spills.ClobberPhysReg(NewPhysReg);
|
|
Spills.ClobberPhysReg(NewOp.PhysRegReused);
|
|
|
|
// Any stores to this stack slot are not dead anymore.
|
|
MaybeDeadStores.erase(NewOp.StackSlot);
|
|
|
|
MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
|
|
|
|
Spills.addAvailable(NewOp.StackSlot, NewPhysReg);
|
|
++NumLoads;
|
|
DEBUG(MachineBasicBlock::iterator MII = MI;
|
|
DOUT << '\t' << *prior(MII));
|
|
|
|
DOUT << "Reuse undone!\n";
|
|
--NumReused;
|
|
|
|
// Finally, PhysReg is now available, go ahead and use it.
|
|
return PhysReg;
|
|
}
|
|
}
|
|
}
|
|
return PhysReg;
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
/// rewriteMBB - Keep track of which spills are available even after the
|
|
/// register allocator is done with them. If possible, avoid reloading vregs.
|
|
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
|
|
|
DOUT << MBB.getBasicBlock()->getName() << ":\n";
|
|
|
|
// Spills - Keep track of which spilled values are available in physregs so
|
|
// that we can choose to reuse the physregs instead of emitting reloads.
|
|
AvailableSpills Spills(MRI, TII);
|
|
|
|
// MaybeDeadStores - When we need to write a value back into a stack slot,
|
|
// keep track of the inserted store. If the stack slot value is never read
|
|
// (because the value was used from some available register, for example), and
|
|
// subsequently stored to, the original store is dead. This map keeps track
|
|
// of inserted stores that are not used. If we see a subsequent store to the
|
|
// same stack slot, the original store is deleted.
|
|
std::map<int, MachineInstr*> MaybeDeadStores;
|
|
|
|
bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
|
|
|
|
for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
|
|
MII != E; ) {
|
|
MachineInstr &MI = *MII;
|
|
MachineBasicBlock::iterator NextMII = MII; ++NextMII;
|
|
|
|
/// ReusedOperands - Keep track of operand reuse in case we need to undo
|
|
/// reuse.
|
|
ReuseInfo ReusedOperands(MI, MRI);
|
|
|
|
// Loop over all of the implicit defs, clearing them from our available
|
|
// sets.
|
|
const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
|
|
const unsigned *ImpDef = TID->ImplicitDefs;
|
|
if (ImpDef) {
|
|
for ( ; *ImpDef; ++ImpDef) {
|
|
PhysRegsUsed[*ImpDef] = true;
|
|
ReusedOperands.markClobbered(*ImpDef);
|
|
Spills.ClobberPhysReg(*ImpDef);
|
|
}
|
|
}
|
|
|
|
// Process all of the spilled uses and all non spilled reg references.
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isRegister() || MO.getReg() == 0)
|
|
continue; // Ignore non-register operands.
|
|
|
|
if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
|
|
// Ignore physregs for spilling, but remember that it is used by this
|
|
// function.
|
|
PhysRegsUsed[MO.getReg()] = true;
|
|
ReusedOperands.markClobbered(MO.getReg());
|
|
continue;
|
|
}
|
|
|
|
assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
|
|
"Not a virtual or a physical register?");
|
|
|
|
unsigned VirtReg = MO.getReg();
|
|
if (!VRM.hasStackSlot(VirtReg)) {
|
|
// This virtual register was assigned a physreg!
|
|
unsigned Phys = VRM.getPhys(VirtReg);
|
|
PhysRegsUsed[Phys] = true;
|
|
if (MO.isDef())
|
|
ReusedOperands.markClobbered(Phys);
|
|
MI.getOperand(i).setReg(Phys);
|
|
continue;
|
|
}
|
|
|
|
// This virtual register is now known to be a spilled value.
|
|
if (!MO.isUse())
|
|
continue; // Handle defs in the loop below (handle use&def here though)
|
|
|
|
int StackSlot = VRM.getStackSlot(VirtReg);
|
|
unsigned PhysReg;
|
|
|
|
// Check to see if this stack slot is available.
|
|
if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
|
|
|
|
// This spilled operand might be part of a two-address operand. If this
|
|
// is the case, then changing it will necessarily require changing the
|
|
// def part of the instruction as well. However, in some cases, we
|
|
// aren't allowed to modify the reused register. If none of these cases
|
|
// apply, reuse it.
|
|
bool CanReuse = true;
|
|
int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
|
|
if (ti != -1 &&
|
|
MI.getOperand(ti).isReg() &&
|
|
MI.getOperand(ti).getReg() == VirtReg) {
|
|
// Okay, we have a two address operand. We can reuse this physreg as
|
|
// long as we are allowed to clobber the value and there is an earlier
|
|
// def that has already clobbered the physreg.
|
|
CanReuse = Spills.canClobberPhysReg(StackSlot) &&
|
|
!ReusedOperands.isClobbered(PhysReg);
|
|
}
|
|
|
|
if (CanReuse) {
|
|
// If this stack slot value is already available, reuse it!
|
|
DOUT << "Reusing SS#" << StackSlot << " from physreg "
|
|
<< MRI->getName(PhysReg) << " for vreg"
|
|
<< VirtReg <<" instead of reloading into physreg "
|
|
<< MRI->getName(VRM.getPhys(VirtReg)) << "\n";
|
|
MI.getOperand(i).setReg(PhysReg);
|
|
|
|
// The only technical detail we have is that we don't know that
|
|
// PhysReg won't be clobbered by a reloaded stack slot that occurs
|
|
// later in the instruction. In particular, consider 'op V1, V2'.
|
|
// If V1 is available in physreg R0, we would choose to reuse it
|
|
// here, instead of reloading it into the register the allocator
|
|
// indicated (say R1). However, V2 might have to be reloaded
|
|
// later, and it might indicate that it needs to live in R0. When
|
|
// this occurs, we need to have information available that
|
|
// indicates it is safe to use R1 for the reload instead of R0.
|
|
//
|
|
// To further complicate matters, we might conflict with an alias,
|
|
// or R0 and R1 might not be compatible with each other. In this
|
|
// case, we actually insert a reload for V1 in R1, ensuring that
|
|
// we can get at R0 or its alias.
|
|
ReusedOperands.addReuse(i, StackSlot, PhysReg,
|
|
VRM.getPhys(VirtReg), VirtReg);
|
|
if (ti != -1)
|
|
// Only mark it clobbered if this is a use&def operand.
|
|
ReusedOperands.markClobbered(PhysReg);
|
|
++NumReused;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise we have a situation where we have a two-address instruction
|
|
// whose mod/ref operand needs to be reloaded. This reload is already
|
|
// available in some register "PhysReg", but if we used PhysReg as the
|
|
// operand to our 2-addr instruction, the instruction would modify
|
|
// PhysReg. This isn't cool if something later uses PhysReg and expects
|
|
// to get its initial value.
|
|
//
|
|
// To avoid this problem, and to avoid doing a load right after a store,
|
|
// we emit a copy from PhysReg into the designated register for this
|
|
// operand.
|
|
unsigned DesignatedReg = VRM.getPhys(VirtReg);
|
|
assert(DesignatedReg && "Must map virtreg to physreg!");
|
|
|
|
// Note that, if we reused a register for a previous operand, the
|
|
// register we want to reload into might not actually be
|
|
// available. If this occurs, use the register indicated by the
|
|
// reuser.
|
|
if (ReusedOperands.hasReuses())
|
|
DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
|
|
Spills, MaybeDeadStores);
|
|
|
|
// If the mapped designated register is actually the physreg we have
|
|
// incoming, we don't need to inserted a dead copy.
|
|
if (DesignatedReg == PhysReg) {
|
|
// If this stack slot value is already available, reuse it!
|
|
DOUT << "Reusing SS#" << StackSlot << " from physreg "
|
|
<< MRI->getName(PhysReg) << " for vreg"
|
|
<< VirtReg
|
|
<< " instead of reloading into same physreg.\n";
|
|
MI.getOperand(i).setReg(PhysReg);
|
|
ReusedOperands.markClobbered(PhysReg);
|
|
++NumReused;
|
|
continue;
|
|
}
|
|
|
|
const TargetRegisterClass* RC =
|
|
MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
|
|
|
|
PhysRegsUsed[DesignatedReg] = true;
|
|
ReusedOperands.markClobbered(DesignatedReg);
|
|
MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
|
|
|
|
// This invalidates DesignatedReg.
|
|
Spills.ClobberPhysReg(DesignatedReg);
|
|
|
|
Spills.addAvailable(StackSlot, DesignatedReg);
|
|
MI.getOperand(i).setReg(DesignatedReg);
|
|
DOUT << '\t' << *prior(MII);
|
|
++NumReused;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, reload it and remember that we have it.
|
|
PhysReg = VRM.getPhys(VirtReg);
|
|
assert(PhysReg && "Must map virtreg to physreg!");
|
|
const TargetRegisterClass* RC =
|
|
MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
|
|
|
|
// Note that, if we reused a register for a previous operand, the
|
|
// register we want to reload into might not actually be
|
|
// available. If this occurs, use the register indicated by the
|
|
// reuser.
|
|
if (ReusedOperands.hasReuses())
|
|
PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
|
|
Spills, MaybeDeadStores);
|
|
|
|
PhysRegsUsed[PhysReg] = true;
|
|
ReusedOperands.markClobbered(PhysReg);
|
|
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
|
|
// This invalidates PhysReg.
|
|
Spills.ClobberPhysReg(PhysReg);
|
|
|
|
// Any stores to this stack slot are not dead anymore.
|
|
MaybeDeadStores.erase(StackSlot);
|
|
Spills.addAvailable(StackSlot, PhysReg);
|
|
++NumLoads;
|
|
MI.getOperand(i).setReg(PhysReg);
|
|
DOUT << '\t' << *prior(MII);
|
|
}
|
|
|
|
DOUT << '\t' << MI;
|
|
|
|
// If we have folded references to memory operands, make sure we clear all
|
|
// physical registers that may contain the value of the spilled virtual
|
|
// register
|
|
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
|
|
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
|
|
DOUT << "Folded vreg: " << I->second.first << " MR: "
|
|
<< I->second.second;
|
|
unsigned VirtReg = I->second.first;
|
|
VirtRegMap::ModRef MR = I->second.second;
|
|
if (!VRM.hasStackSlot(VirtReg)) {
|
|
DOUT << ": No stack slot!\n";
|
|
continue;
|
|
}
|
|
int SS = VRM.getStackSlot(VirtReg);
|
|
DOUT << " - StackSlot: " << SS << "\n";
|
|
|
|
// If this folded instruction is just a use, check to see if it's a
|
|
// straight load from the virt reg slot.
|
|
if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
|
|
int FrameIdx;
|
|
if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
|
|
if (FrameIdx == SS) {
|
|
// If this spill slot is available, turn it into a copy (or nothing)
|
|
// instead of leaving it as a load!
|
|
if (unsigned InReg = Spills.getSpillSlotPhysReg(SS)) {
|
|
DOUT << "Promoted Load To Copy: " << MI;
|
|
MachineFunction &MF = *MBB.getParent();
|
|
if (DestReg != InReg) {
|
|
MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
|
|
MF.getSSARegMap()->getRegClass(VirtReg));
|
|
// Revisit the copy so we make sure to notice the effects of the
|
|
// operation on the destreg (either needing to RA it if it's
|
|
// virtual or needing to clobber any values if it's physical).
|
|
NextMII = &MI;
|
|
--NextMII; // backtrack to the copy.
|
|
}
|
|
VRM.RemoveFromFoldedVirtMap(&MI);
|
|
MBB.erase(&MI);
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this reference is not a use, any previous store is now dead.
|
|
// Otherwise, the store to this stack slot is not dead anymore.
|
|
std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
|
|
if (MDSI != MaybeDeadStores.end()) {
|
|
if (MR & VirtRegMap::isRef) // Previous store is not dead.
|
|
MaybeDeadStores.erase(MDSI);
|
|
else {
|
|
// If we get here, the store is dead, nuke it now.
|
|
assert(VirtRegMap::isMod && "Can't be modref!");
|
|
DOUT << "Removed dead store:\t" << *MDSI->second;
|
|
MBB.erase(MDSI->second);
|
|
VRM.RemoveFromFoldedVirtMap(MDSI->second);
|
|
MaybeDeadStores.erase(MDSI);
|
|
++NumDSE;
|
|
}
|
|
}
|
|
|
|
// If the spill slot value is available, and this is a new definition of
|
|
// the value, the value is not available anymore.
|
|
if (MR & VirtRegMap::isMod) {
|
|
// Notice that the value in this stack slot has been modified.
|
|
Spills.ModifyStackSlot(SS);
|
|
|
|
// If this is *just* a mod of the value, check to see if this is just a
|
|
// store to the spill slot (i.e. the spill got merged into the copy). If
|
|
// so, realize that the vreg is available now, and add the store to the
|
|
// MaybeDeadStore info.
|
|
int StackSlot;
|
|
if (!(MR & VirtRegMap::isRef)) {
|
|
if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
|
|
assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
|
|
"Src hasn't been allocated yet?");
|
|
// Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
|
|
// this as a potentially dead store in case there is a subsequent
|
|
// store into the stack slot without a read from it.
|
|
MaybeDeadStores[StackSlot] = &MI;
|
|
|
|
// If the stack slot value was previously available in some other
|
|
// register, change it now. Otherwise, make the register available,
|
|
// in PhysReg.
|
|
Spills.addAvailable(StackSlot, SrcReg, false /*don't clobber*/);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process all of the spilled defs.
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isRegister() && MO.getReg() && MO.isDef()) {
|
|
unsigned VirtReg = MO.getReg();
|
|
|
|
if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
|
|
// Check to see if this is a noop copy. If so, eliminate the
|
|
// instruction before considering the dest reg to be changed.
|
|
unsigned Src, Dst;
|
|
if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
|
|
++NumDCE;
|
|
DOUT << "Removing now-noop copy: " << MI;
|
|
MBB.erase(&MI);
|
|
VRM.RemoveFromFoldedVirtMap(&MI);
|
|
Spills.disallowClobberPhysReg(VirtReg);
|
|
goto ProcessNextInst;
|
|
}
|
|
|
|
// If it's not a no-op copy, it clobbers the value in the destreg.
|
|
Spills.ClobberPhysReg(VirtReg);
|
|
ReusedOperands.markClobbered(VirtReg);
|
|
|
|
// Check to see if this instruction is a load from a stack slot into
|
|
// a register. If so, this provides the stack slot value in the reg.
|
|
int FrameIdx;
|
|
if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
|
|
assert(DestReg == VirtReg && "Unknown load situation!");
|
|
|
|
// Otherwise, if it wasn't available, remember that it is now!
|
|
Spills.addAvailable(FrameIdx, DestReg);
|
|
goto ProcessNextInst;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// The only vregs left are stack slot definitions.
|
|
int StackSlot = VRM.getStackSlot(VirtReg);
|
|
const TargetRegisterClass *RC =
|
|
MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
|
|
|
|
// If this def is part of a two-address operand, make sure to execute
|
|
// the store from the correct physical register.
|
|
unsigned PhysReg;
|
|
int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
|
|
if (TiedOp != -1)
|
|
PhysReg = MI.getOperand(TiedOp).getReg();
|
|
else {
|
|
PhysReg = VRM.getPhys(VirtReg);
|
|
if (ReusedOperands.isClobbered(PhysReg)) {
|
|
// Another def has taken the assigned physreg. It must have been a
|
|
// use&def which got it due to reuse. Undo the reuse!
|
|
PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
|
|
Spills, MaybeDeadStores);
|
|
}
|
|
}
|
|
|
|
PhysRegsUsed[PhysReg] = true;
|
|
ReusedOperands.markClobbered(PhysReg);
|
|
MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
|
|
DOUT << "Store:\t" << *next(MII);
|
|
MI.getOperand(i).setReg(PhysReg);
|
|
|
|
// Check to see if this is a noop copy. If so, eliminate the
|
|
// instruction before considering the dest reg to be changed.
|
|
{
|
|
unsigned Src, Dst;
|
|
if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
|
|
++NumDCE;
|
|
DOUT << "Removing now-noop copy: " << MI;
|
|
MBB.erase(&MI);
|
|
VRM.RemoveFromFoldedVirtMap(&MI);
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
|
|
// If there is a dead store to this stack slot, nuke it now.
|
|
MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
|
|
if (LastStore) {
|
|
DOUT << "Removed dead store:\t" << *LastStore;
|
|
++NumDSE;
|
|
MBB.erase(LastStore);
|
|
VRM.RemoveFromFoldedVirtMap(LastStore);
|
|
}
|
|
LastStore = next(MII);
|
|
|
|
// If the stack slot value was previously available in some other
|
|
// register, change it now. Otherwise, make the register available,
|
|
// in PhysReg.
|
|
Spills.ModifyStackSlot(StackSlot);
|
|
Spills.ClobberPhysReg(PhysReg);
|
|
Spills.addAvailable(StackSlot, PhysReg);
|
|
++NumStores;
|
|
}
|
|
}
|
|
ProcessNextInst:
|
|
MII = NextMII;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
llvm::Spiller* llvm::createSpiller() {
|
|
switch (SpillerOpt) {
|
|
default: assert(0 && "Unreachable!");
|
|
case local:
|
|
return new LocalSpiller();
|
|
case simple:
|
|
return new SimpleSpiller();
|
|
}
|
|
}
|