llvm-6502/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
Jack Carter 97265a4889 Mips assembler: .set reorder support
Mips have delayslots for certain instructions 
like jumps and branches. These are instructions 
that follow the branch or jump and are executed
before the jump or branch is completed.

Early Mips compilers could not cope with delayslots
and left them up to the assembler. The assembler would
fill the delayslots with the appropriate instruction,
usually just a nop to allow correct runtime behavior.

The default behavior for this is set with .set reorder.
To tell the assembler that you don't want it to mess with
the delayslot one used .set noreorder.

For backwards compatibility we need to support
.set reorder and have it be the default behavior in the 
assembler.

Our support for it is to insert a NOP directly after an
instruction with a delayslot when in .set reorder mode.

Contributer: Vladimir Medic


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180584 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-25 23:31:35 +00:00

1878 lines
57 KiB
C++

//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsRegisterInfo.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
namespace {
class MipsAssemblerOptions {
public:
MipsAssemblerOptions():
aTReg(1), reorder(true), macro(true) {
}
unsigned getATRegNum() {return aTReg;}
bool setATReg(unsigned Reg);
bool isReorder() {return reorder;}
void setReorder() {reorder = true;}
void setNoreorder() {reorder = false;}
bool isMacro() {return macro;}
void setMacro() {macro = true;}
void setNomacro() {macro = false;}
private:
unsigned aTReg;
bool reorder;
bool macro;
};
}
namespace {
class MipsAsmParser : public MCTargetAsmParser {
enum FpFormatTy {
FP_FORMAT_NONE = -1,
FP_FORMAT_S,
FP_FORMAT_D,
FP_FORMAT_L,
FP_FORMAT_W
} FpFormat;
MCSubtargetInfo &STI;
MCAsmParser &Parser;
MipsAssemblerOptions Options;
#define GET_ASSEMBLER_HEADER
#include "MipsGenAsmMatcher.inc"
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm);
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool parseMathOperation(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool ParseDirective(AsmToken DirectiveID);
MipsAsmParser::OperandMatchResultTy
parseMemOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
MipsAsmParser::OperandMatchResultTy
parseCPURegs(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
MipsAsmParser::OperandMatchResultTy
parseCPU64Regs(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
MipsAsmParser::OperandMatchResultTy
parseHWRegs(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
MipsAsmParser::OperandMatchResultTy
parseHW64Regs(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
MipsAsmParser::OperandMatchResultTy
parseCCRRegs(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
bool searchSymbolAlias(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
unsigned RegisterClass);
bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &,
StringRef Mnemonic);
int tryParseRegister(bool is64BitReg);
bool tryParseRegisterOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
bool is64BitReg);
bool needsExpansion(MCInst &Inst);
void expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions,
bool isLoad,bool isImmOpnd);
bool reportParseError(StringRef ErrorMsg);
bool parseMemOffset(const MCExpr *&Res, bool isParenExpr);
bool parseRelocOperand(const MCExpr *&Res);
const MCExpr* evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr);
bool isEvaluated(const MCExpr *Expr);
bool parseDirectiveSet();
bool parseSetAtDirective();
bool parseSetNoAtDirective();
bool parseSetMacroDirective();
bool parseSetNoMacroDirective();
bool parseSetReorderDirective();
bool parseSetNoReorderDirective();
bool parseSetAssignment();
bool parseDirectiveWord(unsigned Size, SMLoc L);
MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol);
bool isMips64() const {
return (STI.getFeatureBits() & Mips::FeatureMips64) != 0;
}
bool isFP64() const {
return (STI.getFeatureBits() & Mips::FeatureFP64Bit) != 0;
}
int matchRegisterName(StringRef Symbol, bool is64BitReg);
int matchCPURegisterName(StringRef Symbol);
int matchRegisterByNumber(unsigned RegNum, unsigned RegClass);
void setFpFormat(FpFormatTy Format) {
FpFormat = Format;
}
void setDefaultFpFormat();
void setFpFormat(StringRef Format);
FpFormatTy getFpFormat() {return FpFormat;}
bool requestsDoubleOperand(StringRef Mnemonic);
unsigned getReg(int RC, int RegNo);
int getATReg();
bool processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
public:
MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
: MCTargetAsmParser(), STI(sti), Parser(parser) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
};
}
namespace {
/// MipsOperand - Instances of this class represent a parsed Mips machine
/// instruction.
class MipsOperand : public MCParsedAsmOperand {
public:
enum RegisterKind {
Kind_None,
Kind_CPURegs,
Kind_CPU64Regs,
Kind_HWRegs,
Kind_HW64Regs,
Kind_FGR32Regs,
Kind_FGR64Regs,
Kind_AFGR64Regs,
Kind_CCRRegs
};
private:
enum KindTy {
k_CondCode,
k_CoprocNum,
k_Immediate,
k_Memory,
k_PostIndexRegister,
k_Register,
k_Token
} Kind;
MipsOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
struct Token {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNum;
RegisterKind Kind;
};
struct ImmOp {
const MCExpr *Val;
};
struct MemOp {
unsigned Base;
const MCExpr *Off;
};
union {
struct Token Tok;
struct RegOp Reg;
struct ImmOp Imm;
struct MemOp Mem;
};
SMLoc StartLoc, EndLoc;
public:
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const{
// Add as immediate when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBase()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
bool isReg() const { return Kind == k_Register; }
bool isImm() const { return Kind == k_Immediate; }
bool isToken() const { return Kind == k_Token; }
bool isMem() const { return Kind == k_Memory; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.RegNum;
}
void setRegKind(RegisterKind RegKind) {
assert((Kind == k_Register) && "Invalid access!");
Reg.Kind = RegKind;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate) && "Invalid access!");
return Imm.Val;
}
unsigned getMemBase() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Base;
}
const MCExpr *getMemOff() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Off;
}
static MipsOperand *CreateToken(StringRef Str, SMLoc S) {
MipsOperand *Op = new MipsOperand(k_Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static MipsOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Register);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateMem(unsigned Base, const MCExpr *Off,
SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Memory);
Op->Mem.Base = Base;
Op->Mem.Off = Off;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
bool isCPURegsAsm() const {
return Kind == k_Register && Reg.Kind == Kind_CPURegs;
}
void addCPURegsAsmOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::CreateReg(Reg.RegNum));
}
bool isCPU64RegsAsm() const {
return Kind == k_Register && Reg.Kind == Kind_CPU64Regs;
}
void addCPU64RegsAsmOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::CreateReg(Reg.RegNum));
}
bool isHWRegsAsm() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.Kind == Kind_HWRegs;
}
void addHWRegsAsmOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::CreateReg(Reg.RegNum));
}
bool isHW64RegsAsm() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.Kind == Kind_HW64Regs;
}
void addHW64RegsAsmOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::CreateReg(Reg.RegNum));
}
void addCCRAsmOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::CreateReg(Reg.RegNum));
}
bool isCCRAsm() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.Kind == Kind_CCRRegs;
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const {
return StartLoc;
}
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const {
return EndLoc;
}
virtual void print(raw_ostream &OS) const {
llvm_unreachable("unimplemented!");
}
}; // class MipsOperand
} // namespace
namespace llvm {
extern const MCInstrDesc MipsInsts[];
}
static const MCInstrDesc &getInstDesc(unsigned Opcode) {
return MipsInsts[Opcode];
}
bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
Inst.setLoc(IDLoc);
if (MCID.hasDelaySlot() && Options.isReorder()) {
// If this instruction has a delay slot and .set reorder is active,
// emit a NOP after it.
Instructions.push_back(Inst);
MCInst NopInst;
NopInst.setOpcode(Mips::SLL);
NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
NopInst.addOperand(MCOperand::CreateImm(0));
Instructions.push_back(NopInst);
return false;
}
if (MCID.mayLoad() || MCID.mayStore()) {
// Check the offset of memory operand, if it is a symbol
// reference or immediate we may have to expand instructions.
for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
const MCOperandInfo &OpInfo = MCID.OpInfo[i];
if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY)
|| (OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
MCOperand &Op = Inst.getOperand(i);
if (Op.isImm()) {
int MemOffset = Op.getImm();
if (MemOffset < -32768 || MemOffset > 32767) {
// Offset can't exceed 16bit value.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), true);
return false;
}
} else if (Op.isExpr()) {
const MCExpr *Expr = Op.getExpr();
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *SR =
static_cast<const MCSymbolRefExpr*>(Expr);
if (SR->getKind() == MCSymbolRefExpr::VK_None) {
// Expand symbol.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
} else if (!isEvaluated(Expr)) {
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
}
}
} // for
} // if load/store
if (needsExpansion(Inst))
expandInstruction(Inst, IDLoc, Instructions);
else
Instructions.push_back(Inst);
return false;
}
bool MipsAsmParser::needsExpansion(MCInst &Inst) {
switch (Inst.getOpcode()) {
case Mips::LoadImm32Reg:
case Mips::LoadAddr32Imm:
case Mips::LoadAddr32Reg:
return true;
default:
return false;
}
}
void MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
switch (Inst.getOpcode()) {
case Mips::LoadImm32Reg:
return expandLoadImm(Inst, IDLoc, Instructions);
case Mips::LoadAddr32Imm:
return expandLoadAddressImm(Inst, IDLoc, Instructions);
case Mips::LoadAddr32Reg:
return expandLoadAddressReg(Inst, IDLoc, Instructions);
}
}
void MipsAsmParser::expandLoadImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
tmpInst.setLoc(IDLoc);
if (0 <= ImmValue && ImmValue <= 65535) {
// For 0 <= j <= 65535.
// li d,j => ori d,$zero,j
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else if (ImmValue < 0 && ImmValue >= -32768) {
// For -32768 <= j < 0.
// li d,j => addiu d,$zero,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// li d,j => lui d,hi16(j)
// ori d,d,lo16(j)
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
}
void MipsAsmParser::expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(2);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
if (-32768 <= ImmValue && ImmValue <= 65535) {
// For -32768 <= j <= 65535.
// la d,j(s) => addiu d,s,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// la d,j(s) => lui d,hi16(j)
// ori d,d,lo16(j)
// addu d,d,s
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ADDu);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
Instructions.push_back(tmpInst);
}
}
void MipsAsmParser::expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
if (-32768 <= ImmValue && ImmValue <= 65535) {
// For -32768 <= j <= 65535.
// la d,j => addiu d,$zero,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// la d,j => lui d,hi16(j)
// ori d,d,lo16(j)
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
Instructions.push_back(tmpInst);
}
}
void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions, bool isLoad, bool isImmOpnd) {
const MCSymbolRefExpr *SR;
MCInst TempInst;
unsigned ImmOffset, HiOffset, LoOffset;
const MCExpr *ExprOffset;
unsigned TmpRegNum;
unsigned AtRegNum = getReg((isMips64()) ? Mips::CPU64RegsRegClassID
: Mips::CPURegsRegClassID, getATReg());
// 1st operand is either the source or destination register.
assert(Inst.getOperand(0).isReg() && "expected register operand kind");
unsigned RegOpNum = Inst.getOperand(0).getReg();
// 2nd operand is the base register.
assert(Inst.getOperand(1).isReg() && "expected register operand kind");
unsigned BaseRegNum = Inst.getOperand(1).getReg();
// 3rd operand is either an immediate or expression.
if (isImmOpnd) {
assert(Inst.getOperand(2).isImm() && "expected immediate operand kind");
ImmOffset = Inst.getOperand(2).getImm();
LoOffset = ImmOffset & 0x0000ffff;
HiOffset = (ImmOffset & 0xffff0000) >> 16;
// If msb of LoOffset is 1(negative number) we must increment HiOffset.
if (LoOffset & 0x8000)
HiOffset++;
} else
ExprOffset = Inst.getOperand(2).getExpr();
// All instructions will have the same location.
TempInst.setLoc(IDLoc);
// 1st instruction in expansion is LUi. For load instruction we can use
// the dst register as a temporary if base and dst are different,
// but for stores we must use $at.
TmpRegNum = (isLoad && (BaseRegNum != RegOpNum)) ? RegOpNum : AtRegNum;
TempInst.setOpcode(Mips::LUi);
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
if (isImmOpnd)
TempInst.addOperand(MCOperand::CreateImm(HiOffset));
else {
if (ExprOffset->getKind() == MCExpr::SymbolRef) {
SR = static_cast<const MCSymbolRefExpr*>(ExprOffset);
const MCSymbolRefExpr *HiExpr = MCSymbolRefExpr::Create(
SR->getSymbol().getName(), MCSymbolRefExpr::VK_Mips_ABS_HI,
getContext());
TempInst.addOperand(MCOperand::CreateExpr(HiExpr));
} else {
const MCExpr *HiExpr = evaluateRelocExpr(ExprOffset, "hi");
TempInst.addOperand(MCOperand::CreateExpr(HiExpr));
}
}
// Add the instruction to the list.
Instructions.push_back(TempInst);
// Prepare TempInst for next instruction.
TempInst.clear();
// Add temp register to base.
TempInst.setOpcode(Mips::ADDu);
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
TempInst.addOperand(MCOperand::CreateReg(BaseRegNum));
Instructions.push_back(TempInst);
TempInst.clear();
// And finaly, create original instruction with low part
// of offset and new base.
TempInst.setOpcode(Inst.getOpcode());
TempInst.addOperand(MCOperand::CreateReg(RegOpNum));
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
if (isImmOpnd)
TempInst.addOperand(MCOperand::CreateImm(LoOffset));
else {
if (ExprOffset->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *LoExpr = MCSymbolRefExpr::Create(
SR->getSymbol().getName(), MCSymbolRefExpr::VK_Mips_ABS_LO,
getContext());
TempInst.addOperand(MCOperand::CreateExpr(LoExpr));
} else {
const MCExpr *LoExpr = evaluateRelocExpr(ExprOffset, "lo");
TempInst.addOperand(MCOperand::CreateExpr(LoExpr));
}
}
Instructions.push_back(TempInst);
TempInst.clear();
}
bool MipsAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
SmallVector<MCInst, 8> Instructions;
unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
default:
break;
case Match_Success: {
if (processInstruction(Inst, IDLoc, Instructions))
return true;
for (unsigned i = 0; i < Instructions.size(); i++)
Out.EmitInstruction(Instructions[i]);
return false;
}
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((MipsOperand*) Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
}
return true;
}
int MipsAsmParser::matchCPURegisterName(StringRef Name) {
int CC;
if (Name == "at")
return getATReg();
CC = StringSwitch<unsigned>(Name)
.Case("zero", 0)
.Case("a0", 4)
.Case("a1", 5)
.Case("a2", 6)
.Case("a3", 7)
.Case("v0", 2)
.Case("v1", 3)
.Case("s0", 16)
.Case("s1", 17)
.Case("s2", 18)
.Case("s3", 19)
.Case("s4", 20)
.Case("s5", 21)
.Case("s6", 22)
.Case("s7", 23)
.Case("k0", 26)
.Case("k1", 27)
.Case("sp", 29)
.Case("fp", 30)
.Case("gp", 28)
.Case("ra", 31)
.Case("t0", 8)
.Case("t1", 9)
.Case("t2", 10)
.Case("t3", 11)
.Case("t4", 12)
.Case("t5", 13)
.Case("t6", 14)
.Case("t7", 15)
.Case("t8", 24)
.Case("t9", 25)
.Default(-1);
// Although SGI documentation just cuts out t0-t3 for n32/n64,
// GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
// We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
if (isMips64() && 8 <= CC && CC <= 11)
CC += 4;
if (CC == -1 && isMips64())
CC = StringSwitch<unsigned>(Name)
.Case("a4", 8)
.Case("a5", 9)
.Case("a6", 10)
.Case("a7", 11)
.Case("kt0", 26)
.Case("kt1", 27)
.Case("s8", 30)
.Default(-1);
return CC;
}
int MipsAsmParser::matchRegisterName(StringRef Name, bool is64BitReg) {
if (Name.equals("fcc0"))
return Mips::FCC0;
int CC;
CC = matchCPURegisterName(Name);
if (CC != -1)
return matchRegisterByNumber(CC, is64BitReg ? Mips::CPU64RegsRegClassID
: Mips::CPURegsRegClassID);
if (Name[0] == 'f') {
StringRef NumString = Name.substr(1);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 31)
return -1;
FpFormatTy Format = getFpFormat();
if (Format == FP_FORMAT_S || Format == FP_FORMAT_W)
return getReg(Mips::FGR32RegClassID, IntVal);
if (Format == FP_FORMAT_D) {
if (isFP64()) {
return getReg(Mips::FGR64RegClassID, IntVal);
}
// Only even numbers available as register pairs.
if ((IntVal > 31) || (IntVal % 2 != 0))
return -1;
return getReg(Mips::AFGR64RegClassID, IntVal / 2);
}
}
return -1;
}
void MipsAsmParser::setDefaultFpFormat() {
if (isMips64() || isFP64())
FpFormat = FP_FORMAT_D;
else
FpFormat = FP_FORMAT_S;
}
bool MipsAsmParser::requestsDoubleOperand(StringRef Mnemonic){
bool IsDouble = StringSwitch<bool>(Mnemonic.lower())
.Case("ldxc1", true)
.Case("ldc1", true)
.Case("sdxc1", true)
.Case("sdc1", true)
.Default(false);
return IsDouble;
}
void MipsAsmParser::setFpFormat(StringRef Format) {
FpFormat = StringSwitch<FpFormatTy>(Format.lower())
.Case(".s", FP_FORMAT_S)
.Case(".d", FP_FORMAT_D)
.Case(".l", FP_FORMAT_L)
.Case(".w", FP_FORMAT_W)
.Default(FP_FORMAT_NONE);
}
bool MipsAssemblerOptions::setATReg(unsigned Reg) {
if (Reg > 31)
return false;
aTReg = Reg;
return true;
}
int MipsAsmParser::getATReg() {
return Options.getATRegNum();
}
unsigned MipsAsmParser::getReg(int RC, int RegNo) {
return *(getContext().getRegisterInfo().getRegClass(RC).begin() + RegNo);
}
int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) {
if (RegNum > 31)
return -1;
return getReg(RegClass, RegNum);
}
int MipsAsmParser::tryParseRegister(bool is64BitReg) {
const AsmToken &Tok = Parser.getTok();
int RegNum = -1;
if (Tok.is(AsmToken::Identifier)) {
std::string lowerCase = Tok.getString().lower();
RegNum = matchRegisterName(lowerCase, is64BitReg);
} else if (Tok.is(AsmToken::Integer))
RegNum = matchRegisterByNumber(static_cast<unsigned>(Tok.getIntVal()),
is64BitReg ? Mips::CPU64RegsRegClassID : Mips::CPURegsRegClassID);
return RegNum;
}
bool MipsAsmParser::tryParseRegisterOperand(
SmallVectorImpl<MCParsedAsmOperand*> &Operands, bool is64BitReg) {
SMLoc S = Parser.getTok().getLoc();
int RegNo = -1;
RegNo = tryParseRegister(is64BitReg);
if (RegNo == -1)
return true;
Operands.push_back(MipsOperand::CreateReg(RegNo, S,
Parser.getTok().getLoc()));
Parser.Lex(); // Eat register token.
return false;
}
bool MipsAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*>&Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Dollar: {
// Parse the register.
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat dollar token.
// Parse the register operand.
if (!tryParseRegisterOperand(Operands, isMips64())) {
if (getLexer().is(AsmToken::LParen)) {
// Check if it is indexed addressing operand.
Operands.push_back(MipsOperand::CreateToken("(", S));
Parser.Lex(); // Eat the parenthesis.
if (getLexer().isNot(AsmToken::Dollar))
return true;
Parser.Lex(); // Eat the dollar
if (tryParseRegisterOperand(Operands, isMips64()))
return true;
if (!getLexer().is(AsmToken::RParen))
return true;
S = Parser.getTok().getLoc();
Operands.push_back(MipsOperand::CreateToken(")", S));
Parser.Lex();
}
return false;
}
// Maybe it is a symbol reference.
StringRef Identifier;
if (Parser.parseIdentifier(Identifier))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().GetOrCreateSymbol("$" + Identifier);
// Otherwise create a symbol reference.
const MCExpr *Res = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None,
getContext());
Operands.push_back(MipsOperand::CreateImm(Res, S, E));
return false;
}
case AsmToken::Identifier:
// Look for the existing symbol, we should check if
// we need to assigne the propper RegisterKind.
if (searchSymbolAlias(Operands, MipsOperand::Kind_None))
return false;
// Else drop to expression parsing.
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String: {
// Quoted label names.
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return false;
}
case AsmToken::Percent: {
// It is a symbol reference or constant expression.
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc(); // Start location of the operand.
if (parseRelocOperand(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return false;
} // case AsmToken::Percent
} // switch(getLexer().getKind())
return true;
}
const MCExpr* MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr,
StringRef RelocStr) {
const MCExpr *Res;
// Check the type of the expression.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Expr)) {
// It's a constant, evaluate lo or hi value.
if (RelocStr == "lo") {
short Val = MCE->getValue();
Res = MCConstantExpr::Create(Val, getContext());
} else if (RelocStr == "hi") {
int Val = MCE->getValue();
int LoSign = Val & 0x8000;
Val = (Val & 0xffff0000) >> 16;
// Lower part is treated as a signed int, so if it is negative
// we must add 1 to the hi part to compensate.
if (LoSign)
Val++;
Res = MCConstantExpr::Create(Val, getContext());
} else {
llvm_unreachable("Invalid RelocStr value");
}
return Res;
}
if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(Expr)) {
// It's a symbol, create a symbolic expression from the symbol.
StringRef Symbol = MSRE->getSymbol().getName();
MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
Res = MCSymbolRefExpr::Create(Symbol, VK, getContext());
return Res;
}
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
const MCExpr *LExp = evaluateRelocExpr(BE->getLHS(), RelocStr);
const MCExpr *RExp = evaluateRelocExpr(BE->getRHS(), RelocStr);
Res = MCBinaryExpr::Create(BE->getOpcode(), LExp, RExp, getContext());
return Res;
}
if (const MCUnaryExpr *UN = dyn_cast<MCUnaryExpr>(Expr)) {
const MCExpr *UnExp = evaluateRelocExpr(UN->getSubExpr(), RelocStr);
Res = MCUnaryExpr::Create(UN->getOpcode(), UnExp, getContext());
return Res;
}
// Just return the original expression.
return Expr;
}
bool MipsAsmParser::isEvaluated(const MCExpr *Expr) {
switch (Expr->getKind()) {
case MCExpr::Constant:
return true;
case MCExpr::SymbolRef:
return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None);
case MCExpr::Binary:
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
if (!isEvaluated(BE->getLHS()))
return false;
return isEvaluated(BE->getRHS());
}
case MCExpr::Unary:
return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr());
default:
return false;
}
return false;
}
bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
Parser.Lex(); // Eat the % token.
const AsmToken &Tok = Parser.getTok(); // Get next token, operation.
if (Tok.isNot(AsmToken::Identifier))
return true;
std::string Str = Tok.getIdentifier().str();
Parser.Lex(); // Eat the identifier.
// Now make an expression from the rest of the operand.
const MCExpr *IdVal;
SMLoc EndLoc;
if (getLexer().getKind() == AsmToken::LParen) {
while (1) {
Parser.Lex(); // Eat the '(' token.
if (getLexer().getKind() == AsmToken::Percent) {
Parser.Lex(); // Eat the % token.
const AsmToken &nextTok = Parser.getTok();
if (nextTok.isNot(AsmToken::Identifier))
return true;
Str += "(%";
Str += nextTok.getIdentifier();
Parser.Lex(); // Eat the identifier.
if (getLexer().getKind() != AsmToken::LParen)
return true;
} else
break;
}
if (getParser().parseParenExpression(IdVal, EndLoc))
return true;
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex(); // Eat the ')' token.
} else
return true; // Parenthesis must follow the relocation operand.
Res = evaluateRelocExpr(IdVal, Str);
return false;
}
bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = tryParseRegister(isMips64());
EndLoc = Parser.getTok().getLoc();
return (RegNo == (unsigned) -1);
}
bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
SMLoc S;
bool Result = true;
while (getLexer().getKind() == AsmToken::LParen)
Parser.Lex();
switch (getLexer().getKind()) {
default:
return true;
case AsmToken::Identifier:
case AsmToken::LParen:
case AsmToken::Integer:
case AsmToken::Minus:
case AsmToken::Plus:
if (isParenExpr)
Result = getParser().parseParenExpression(Res, S);
else
Result = (getParser().parseExpression(Res));
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex();
break;
case AsmToken::Percent:
Result = parseRelocOperand(Res);
}
return Result;
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMemOperand(
SmallVectorImpl<MCParsedAsmOperand*>&Operands) {
const MCExpr *IdVal = 0;
SMLoc S;
bool isParenExpr = false;
// First operand is the offset.
S = Parser.getTok().getLoc();
if (getLexer().getKind() == AsmToken::LParen) {
Parser.Lex();
isParenExpr = true;
}
if (getLexer().getKind() != AsmToken::Dollar) {
if (parseMemOffset(IdVal, isParenExpr))
return MatchOperand_ParseFail;
const AsmToken &Tok = Parser.getTok(); // Get the next token.
if (Tok.isNot(AsmToken::LParen)) {
MipsOperand *Mnemonic = static_cast<MipsOperand*>(Operands[0]);
if (Mnemonic->getToken() == "la") {
SMLoc E = SMLoc::getFromPointer(
Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return MatchOperand_Success;
}
if (Tok.is(AsmToken::EndOfStatement)) {
SMLoc E = SMLoc::getFromPointer(
Parser.getTok().getLoc().getPointer() - 1);
// Zero register assumed, add a memory operand with ZERO as its base.
Operands.push_back(MipsOperand::CreateMem(isMips64() ? Mips::ZERO_64
: Mips::ZERO,
IdVal, S, E));
return MatchOperand_Success;
}
Error(Parser.getTok().getLoc(), "'(' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the '(' token.
}
const AsmToken &Tok1 = Parser.getTok(); // Get next token
if (Tok1.is(AsmToken::Dollar)) {
Parser.Lex(); // Eat the '$' token.
if (tryParseRegisterOperand(Operands, isMips64())) {
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return MatchOperand_ParseFail;
}
} else {
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return MatchOperand_ParseFail;
}
const AsmToken &Tok2 = Parser.getTok(); // Get next token.
if (Tok2.isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "')' expected");
return MatchOperand_ParseFail;
}
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat the ')' token.
if (IdVal == 0)
IdVal = MCConstantExpr::Create(0, getContext());
// Replace the register operand with the memory operand.
MipsOperand* op = static_cast<MipsOperand*>(Operands.back());
int RegNo = op->getReg();
// Remove the register from the operands.
Operands.pop_back();
// Add the memory operand.
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) {
int64_t Imm;
if (IdVal->EvaluateAsAbsolute(Imm))
IdVal = MCConstantExpr::Create(Imm, getContext());
else if (BE->getLHS()->getKind() != MCExpr::SymbolRef)
IdVal = MCBinaryExpr::Create(BE->getOpcode(), BE->getRHS(), BE->getLHS(),
getContext());
}
Operands.push_back(MipsOperand::CreateMem(RegNo, IdVal, S, E));
delete op;
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseCPU64Regs(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
if (!isMips64())
return MatchOperand_NoMatch;
if (getLexer().getKind() == AsmToken::Identifier) {
if (searchSymbolAlias(Operands, MipsOperand::Kind_CPU64Regs))
return MatchOperand_Success;
return MatchOperand_NoMatch;
}
// If the first token is not '$', we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat $
if (!tryParseRegisterOperand(Operands, true)) {
// Set the proper register kind.
MipsOperand* op = static_cast<MipsOperand*>(Operands.back());
op->setRegKind(MipsOperand::Kind_CPU64Regs);
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
bool MipsAsmParser::searchSymbolAlias(
SmallVectorImpl<MCParsedAsmOperand*> &Operands, unsigned RegisterKind) {
MCSymbol *Sym = getContext().LookupSymbol(Parser.getTok().getIdentifier());
if (Sym) {
SMLoc S = Parser.getTok().getLoc();
const MCExpr *Expr;
if (Sym->isVariable())
Expr = Sym->getVariableValue();
else
return false;
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
const StringRef DefSymbol = Ref->getSymbol().getName();
if (DefSymbol.startswith("$")) {
// Lookup for the register with the corresponding name.
int RegNum = matchRegisterName(DefSymbol.substr(1), isMips64());
if (RegNum > -1) {
Parser.Lex();
MipsOperand *op = MipsOperand::CreateReg(RegNum, S,
Parser.getTok().getLoc());
op->setRegKind((MipsOperand::RegisterKind) RegisterKind);
Operands.push_back(op);
return true;
}
}
} else if (Expr->getKind() == MCExpr::Constant) {
Parser.Lex();
const MCConstantExpr *Const = static_cast<const MCConstantExpr*>(Expr);
MipsOperand *op = MipsOperand::CreateImm(Const, S,
Parser.getTok().getLoc());
Operands.push_back(op);
return true;
}
}
return false;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseCPURegs(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
if (getLexer().getKind() == AsmToken::Identifier) {
if (searchSymbolAlias(Operands, MipsOperand::Kind_CPURegs))
return MatchOperand_Success;
return MatchOperand_NoMatch;
}
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat $
if (!tryParseRegisterOperand(Operands, false)) {
// Set the proper register kind.
MipsOperand* op = static_cast<MipsOperand*>(Operands.back());
op->setRegKind(MipsOperand::Kind_CPURegs);
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseHWRegs(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
if (isMips64())
return MatchOperand_NoMatch;
// If the first token is not '$' we have error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$'.
const AsmToken &Tok = Parser.getTok(); // Get the next token.
if (Tok.isNot(AsmToken::Integer))
return MatchOperand_NoMatch;
unsigned RegNum = Tok.getIntVal();
// At the moment only hwreg29 is supported.
if (RegNum != 29)
return MatchOperand_ParseFail;
MipsOperand *op = MipsOperand::CreateReg(Mips::HWR29, S,
Parser.getTok().getLoc());
op->setRegKind(MipsOperand::Kind_HWRegs);
Operands.push_back(op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseHW64Regs(
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
if (!isMips64())
return MatchOperand_NoMatch;
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat $
const AsmToken &Tok = Parser.getTok(); // Get the next token.
if (Tok.isNot(AsmToken::Integer))
return MatchOperand_NoMatch;
unsigned RegNum = Tok.getIntVal();
// At the moment only hwreg29 is supported.
if (RegNum != 29)
return MatchOperand_ParseFail;
MipsOperand *op = MipsOperand::CreateReg(Mips::HWR29_64, S,
Parser.getTok().getLoc());
op->setRegKind(MipsOperand::Kind_HW64Regs);
Operands.push_back(op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseCCRRegs(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
unsigned RegNum;
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$'
const AsmToken &Tok = Parser.getTok(); // Get next token.
if (Tok.is(AsmToken::Integer)) {
RegNum = Tok.getIntVal();
// At the moment only fcc0 is supported.
if (RegNum != 0)
return MatchOperand_ParseFail;
} else if (Tok.is(AsmToken::Identifier)) {
// At the moment only fcc0 is supported.
if (Tok.getIdentifier() != "fcc0")
return MatchOperand_ParseFail;
} else
return MatchOperand_NoMatch;
MipsOperand *op = MipsOperand::CreateReg(Mips::FCC0, S,
Parser.getTok().getLoc());
op->setRegKind(MipsOperand::Kind_CCRRegs);
Operands.push_back(op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
MCSymbolRefExpr::VariantKind VK
= StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol)
.Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI)
.Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO)
.Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL)
.Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL)
.Case("got", MCSymbolRefExpr::VK_Mips_GOT)
.Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD)
.Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM)
.Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI)
.Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO)
.Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL)
.Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI)
.Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO)
.Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP)
.Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE)
.Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST)
.Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI)
.Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO)
.Default(MCSymbolRefExpr::VK_None);
return VK;
}
static int ConvertCcString(StringRef CondString) {
int CC = StringSwitch<unsigned>(CondString)
.Case(".f", 0)
.Case(".un", 1)
.Case(".eq", 2)
.Case(".ueq", 3)
.Case(".olt", 4)
.Case(".ult", 5)
.Case(".ole", 6)
.Case(".ule", 7)
.Case(".sf", 8)
.Case(".ngle", 9)
.Case(".seq", 10)
.Case(".ngl", 11)
.Case(".lt", 12)
.Case(".nge", 13)
.Case(".le", 14)
.Case(".ngt", 15)
.Default(-1);
return CC;
}
bool MipsAsmParser::
parseMathOperation(StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
// Split the format.
size_t Start = Name.find('.'), Next = Name.rfind('.');
StringRef Format1 = Name.slice(Start, Next);
// Add the first format to the operands.
Operands.push_back(MipsOperand::CreateToken(Format1, NameLoc));
// Now for the second format.
StringRef Format2 = Name.slice(Next, StringRef::npos);
Operands.push_back(MipsOperand::CreateToken(Format2, NameLoc));
// Set the format for the first register.
setFpFormat(Format1);
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
if (getLexer().isNot(AsmToken::Comma)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Eat the comma.
// Set the format for the first register
setFpFormat(Format2);
// Parse and remember the operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::
ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
StringRef Mnemonic;
// Floating point instructions: Should the register be treated as a double?
if (requestsDoubleOperand(Name)) {
setFpFormat(FP_FORMAT_D);
Operands.push_back(MipsOperand::CreateToken(Name, NameLoc));
Mnemonic = Name;
} else {
setDefaultFpFormat();
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
Mnemonic = Name.slice(Start, Next);
Operands.push_back(MipsOperand::CreateToken(Mnemonic, NameLoc));
if (Next != StringRef::npos) {
// There is a format token in mnemonic.
size_t Dot = Name.find('.', Next + 1);
StringRef Format = Name.slice(Next, Dot);
if (Dot == StringRef::npos) // Only one '.' in a string, it's a format.
Operands.push_back(MipsOperand::CreateToken(Format, NameLoc));
else {
if (Name.startswith("c.")) {
// Floating point compare, add '.' and immediate represent for cc.
Operands.push_back(MipsOperand::CreateToken(".", NameLoc));
int Cc = ConvertCcString(Format);
if (Cc == -1) {
return Error(NameLoc, "Invalid conditional code");
}
SMLoc E = SMLoc::getFromPointer(
Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(
MipsOperand::CreateImm(MCConstantExpr::Create(Cc, getContext()),
NameLoc, E));
} else {
// trunc, ceil, floor ...
return parseMathOperation(Name, NameLoc, Operands);
}
// The rest is a format.
Format = Name.slice(Dot, StringRef::npos);
Operands.push_back(MipsOperand::CreateToken(Format, NameLoc));
}
setFpFormat(Format);
}
}
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ParseOperand(Operands, Mnemonic)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::reportParseError(StringRef ErrorMsg) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, ErrorMsg);
}
bool MipsAsmParser::parseSetNoAtDirective() {
// Line should look like: ".set noat".
// set at reg to 0.
Options.setATReg(0);
// eat noat
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetAtDirective() {
// Line can be .set at - defaults to $1
// or .set at=$reg
int AtRegNo;
getParser().Lex();
if (getLexer().is(AsmToken::EndOfStatement)) {
Options.setATReg(1);
Parser.Lex(); // Consume the EndOfStatement.
return false;
} else if (getLexer().is(AsmToken::Equal)) {
getParser().Lex(); // Eat the '='.
if (getLexer().isNot(AsmToken::Dollar)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Eat the '$'.
const AsmToken &Reg = Parser.getTok();
if (Reg.is(AsmToken::Identifier)) {
AtRegNo = matchCPURegisterName(Reg.getIdentifier());
} else if (Reg.is(AsmToken::Integer)) {
AtRegNo = Reg.getIntVal();
} else {
reportParseError("unexpected token in statement");
return false;
}
if (AtRegNo < 1 || AtRegNo > 31) {
reportParseError("unexpected token in statement");
return false;
}
if (!Options.setATReg(AtRegNo)) {
reportParseError("unexpected token in statement");
return false;
}
getParser().Lex(); // Eat the register.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
} else {
reportParseError("unexpected token in statement");
return false;
}
}
bool MipsAsmParser::parseSetReorderDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoReorderDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setNoreorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetMacroDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoMacroDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
if (Options.isReorder()) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
Options.setNomacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetAssignment() {
StringRef Name;
const MCExpr *Value;
if (Parser.parseIdentifier(Name))
reportParseError("expected identifier after .set");
if (getLexer().isNot(AsmToken::Comma))
return reportParseError("unexpected token in .set directive");
Lex(); // Eat comma
if (Parser.parseExpression(Value))
reportParseError("expected valid expression after comma");
// Check if the Name already exists as a symbol.
MCSymbol *Sym = getContext().LookupSymbol(Name);
if (Sym)
return reportParseError("symbol already defined");
Sym = getContext().GetOrCreateSymbol(Name);
Sym->setVariableValue(Value);
return false;
}
bool MipsAsmParser::parseDirectiveSet() {
// Get the next token.
const AsmToken &Tok = Parser.getTok();
if (Tok.getString() == "noat") {
return parseSetNoAtDirective();
} else if (Tok.getString() == "at") {
return parseSetAtDirective();
} else if (Tok.getString() == "reorder") {
return parseSetReorderDirective();
} else if (Tok.getString() == "noreorder") {
return parseSetNoReorderDirective();
} else if (Tok.getString() == "macro") {
return parseSetMacroDirective();
} else if (Tok.getString() == "nomacro") {
return parseSetNoMacroDirective();
} else if (Tok.getString() == "nomips16") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
} else if (Tok.getString() == "nomicromips") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
} else {
// It is just an identifier, look for an assignment.
parseSetAssignment();
return false;
}
return true;
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool MipsAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".ent") {
// Ignore this directive for now.
Parser.Lex();
return false;
}
if (IDVal == ".end") {
// Ignore this directive for now.
Parser.Lex();
return false;
}
if (IDVal == ".frame") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".set") {
return parseDirectiveSet();
}
if (IDVal == ".fmask") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".mask") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".gpword") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".word") {
parseDirectiveWord(4, DirectiveID.getLoc());
return false;
}
return true;
}
extern "C" void LLVMInitializeMipsAsmParser() {
RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget);
RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget);
RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target);
RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "MipsGenAsmMatcher.inc"