llvm-6502/lib/IR/DebugInfo.cpp
2014-10-23 23:46:28 +00:00

1557 lines
45 KiB
C++

//===--- DebugInfo.cpp - Debug Information Helper Classes -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the helper classes used to build and interpret debug
// information in LLVM IR form.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/DebugInfo.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::dwarf;
//===----------------------------------------------------------------------===//
// DIDescriptor
//===----------------------------------------------------------------------===//
bool DIDescriptor::Verify() const {
return DbgNode &&
(DIDerivedType(DbgNode).Verify() ||
DICompositeType(DbgNode).Verify() || DIBasicType(DbgNode).Verify() ||
DIVariable(DbgNode).Verify() || DISubprogram(DbgNode).Verify() ||
DIGlobalVariable(DbgNode).Verify() || DIFile(DbgNode).Verify() ||
DICompileUnit(DbgNode).Verify() || DINameSpace(DbgNode).Verify() ||
DILexicalBlock(DbgNode).Verify() ||
DILexicalBlockFile(DbgNode).Verify() ||
DISubrange(DbgNode).Verify() || DIEnumerator(DbgNode).Verify() ||
DIObjCProperty(DbgNode).Verify() ||
DITemplateTypeParameter(DbgNode).Verify() ||
DITemplateValueParameter(DbgNode).Verify() ||
DIImportedEntity(DbgNode).Verify() || DIExpression(DbgNode).Verify());
}
static Value *getField(const MDNode *DbgNode, unsigned Elt) {
if (!DbgNode || Elt >= DbgNode->getNumOperands())
return nullptr;
return DbgNode->getOperand(Elt);
}
static MDNode *getNodeField(const MDNode *DbgNode, unsigned Elt) {
return dyn_cast_or_null<MDNode>(getField(DbgNode, Elt));
}
static StringRef getStringField(const MDNode *DbgNode, unsigned Elt) {
if (MDString *MDS = dyn_cast_or_null<MDString>(getField(DbgNode, Elt)))
return MDS->getString();
return StringRef();
}
StringRef DIDescriptor::getStringField(unsigned Elt) const {
return ::getStringField(DbgNode, Elt);
}
uint64_t DIDescriptor::getUInt64Field(unsigned Elt) const {
if (!DbgNode)
return 0;
if (Elt < DbgNode->getNumOperands())
if (ConstantInt *CI =
dyn_cast_or_null<ConstantInt>(DbgNode->getOperand(Elt)))
return CI->getZExtValue();
return 0;
}
int64_t DIDescriptor::getInt64Field(unsigned Elt) const {
if (!DbgNode)
return 0;
if (Elt < DbgNode->getNumOperands())
if (ConstantInt *CI =
dyn_cast_or_null<ConstantInt>(DbgNode->getOperand(Elt)))
return CI->getSExtValue();
return 0;
}
DIDescriptor DIDescriptor::getDescriptorField(unsigned Elt) const {
MDNode *Field = getNodeField(DbgNode, Elt);
return DIDescriptor(Field);
}
GlobalVariable *DIDescriptor::getGlobalVariableField(unsigned Elt) const {
if (!DbgNode)
return nullptr;
if (Elt < DbgNode->getNumOperands())
return dyn_cast_or_null<GlobalVariable>(DbgNode->getOperand(Elt));
return nullptr;
}
Constant *DIDescriptor::getConstantField(unsigned Elt) const {
if (!DbgNode)
return nullptr;
if (Elt < DbgNode->getNumOperands())
return dyn_cast_or_null<Constant>(DbgNode->getOperand(Elt));
return nullptr;
}
Function *DIDescriptor::getFunctionField(unsigned Elt) const {
if (!DbgNode)
return nullptr;
if (Elt < DbgNode->getNumOperands())
return dyn_cast_or_null<Function>(DbgNode->getOperand(Elt));
return nullptr;
}
void DIDescriptor::replaceFunctionField(unsigned Elt, Function *F) {
if (!DbgNode)
return;
if (Elt < DbgNode->getNumOperands()) {
MDNode *Node = const_cast<MDNode *>(DbgNode);
Node->replaceOperandWith(Elt, F);
}
}
static unsigned DIVariableInlinedAtIndex = 4;
MDNode *DIVariable::getInlinedAt() const {
return getNodeField(DbgNode, DIVariableInlinedAtIndex);
}
/// \brief Return the size reported by the variable's type.
unsigned DIVariable::getSizeInBits(const DITypeIdentifierMap &Map) {
DIType Ty = getType().resolve(Map);
// Follow derived types until we reach a type that
// reports back a size.
while (Ty.isDerivedType() && !Ty.getSizeInBits()) {
DIDerivedType DT(&*Ty);
Ty = DT.getTypeDerivedFrom().resolve(Map);
}
assert(Ty.getSizeInBits() && "type with size 0");
return Ty.getSizeInBits();
}
uint64_t DIExpression::getElement(unsigned Idx) const {
unsigned I = Idx + 1;
assert(I < getNumHeaderFields() &&
"non-existing complex address element requested");
return getHeaderFieldAs<int64_t>(I);
}
bool DIExpression::isVariablePiece() const {
return getNumElements() && getElement(0) == dwarf::DW_OP_piece;
}
uint64_t DIExpression::getPieceOffset() const {
assert(isVariablePiece());
return getElement(1);
}
uint64_t DIExpression::getPieceSize() const {
assert(isVariablePiece());
return getElement(2);
}
//===----------------------------------------------------------------------===//
// Predicates
//===----------------------------------------------------------------------===//
bool DIDescriptor::isSubroutineType() const {
return isCompositeType() && getTag() == dwarf::DW_TAG_subroutine_type;
}
bool DIDescriptor::isBasicType() const {
if (!DbgNode)
return false;
switch (getTag()) {
case dwarf::DW_TAG_base_type:
case dwarf::DW_TAG_unspecified_type:
return true;
default:
return false;
}
}
bool DIDescriptor::isDerivedType() const {
if (!DbgNode)
return false;
switch (getTag()) {
case dwarf::DW_TAG_typedef:
case dwarf::DW_TAG_pointer_type:
case dwarf::DW_TAG_ptr_to_member_type:
case dwarf::DW_TAG_reference_type:
case dwarf::DW_TAG_rvalue_reference_type:
case dwarf::DW_TAG_const_type:
case dwarf::DW_TAG_volatile_type:
case dwarf::DW_TAG_restrict_type:
case dwarf::DW_TAG_member:
case dwarf::DW_TAG_inheritance:
case dwarf::DW_TAG_friend:
return true;
default:
// CompositeTypes are currently modelled as DerivedTypes.
return isCompositeType();
}
}
bool DIDescriptor::isCompositeType() const {
if (!DbgNode)
return false;
switch (getTag()) {
case dwarf::DW_TAG_array_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_union_type:
case dwarf::DW_TAG_enumeration_type:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_class_type:
return true;
default:
return false;
}
}
bool DIDescriptor::isVariable() const {
if (!DbgNode)
return false;
switch (getTag()) {
case dwarf::DW_TAG_auto_variable:
case dwarf::DW_TAG_arg_variable:
return true;
default:
return false;
}
}
bool DIDescriptor::isType() const {
return isBasicType() || isCompositeType() || isDerivedType();
}
bool DIDescriptor::isSubprogram() const {
return DbgNode && getTag() == dwarf::DW_TAG_subprogram;
}
bool DIDescriptor::isGlobalVariable() const {
return DbgNode && (getTag() == dwarf::DW_TAG_variable ||
getTag() == dwarf::DW_TAG_constant);
}
bool DIDescriptor::isScope() const {
if (!DbgNode)
return false;
switch (getTag()) {
case dwarf::DW_TAG_compile_unit:
case dwarf::DW_TAG_lexical_block:
case dwarf::DW_TAG_subprogram:
case dwarf::DW_TAG_namespace:
case dwarf::DW_TAG_file_type:
return true;
default:
break;
}
return isType();
}
bool DIDescriptor::isTemplateTypeParameter() const {
return DbgNode && getTag() == dwarf::DW_TAG_template_type_parameter;
}
bool DIDescriptor::isTemplateValueParameter() const {
return DbgNode && (getTag() == dwarf::DW_TAG_template_value_parameter ||
getTag() == dwarf::DW_TAG_GNU_template_template_param ||
getTag() == dwarf::DW_TAG_GNU_template_parameter_pack);
}
bool DIDescriptor::isCompileUnit() const {
return DbgNode && getTag() == dwarf::DW_TAG_compile_unit;
}
bool DIDescriptor::isFile() const {
return DbgNode && getTag() == dwarf::DW_TAG_file_type;
}
bool DIDescriptor::isNameSpace() const {
return DbgNode && getTag() == dwarf::DW_TAG_namespace;
}
bool DIDescriptor::isLexicalBlockFile() const {
return DbgNode && getTag() == dwarf::DW_TAG_lexical_block &&
DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 2;
}
bool DIDescriptor::isLexicalBlock() const {
// FIXME: There are always exactly 4 header fields in DILexicalBlock, but
// something relies on this returning true for DILexicalBlockFile.
return DbgNode && getTag() == dwarf::DW_TAG_lexical_block &&
DbgNode->getNumOperands() == 3 &&
(getNumHeaderFields() == 2 || getNumHeaderFields() == 4);
}
bool DIDescriptor::isSubrange() const {
return DbgNode && getTag() == dwarf::DW_TAG_subrange_type;
}
bool DIDescriptor::isEnumerator() const {
return DbgNode && getTag() == dwarf::DW_TAG_enumerator;
}
bool DIDescriptor::isObjCProperty() const {
return DbgNode && getTag() == dwarf::DW_TAG_APPLE_property;
}
bool DIDescriptor::isImportedEntity() const {
return DbgNode && (getTag() == dwarf::DW_TAG_imported_module ||
getTag() == dwarf::DW_TAG_imported_declaration);
}
bool DIDescriptor::isExpression() const {
return DbgNode && (getTag() == dwarf::DW_TAG_expression);
}
//===----------------------------------------------------------------------===//
// Simple Descriptor Constructors and other Methods
//===----------------------------------------------------------------------===//
void DIDescriptor::replaceAllUsesWith(LLVMContext &VMContext, DIDescriptor D) {
assert(DbgNode && "Trying to replace an unverified type!");
// Since we use a TrackingVH for the node, its easy for clients to manufacture
// legitimate situations where they want to replaceAllUsesWith() on something
// which, due to uniquing, has merged with the source. We shield clients from
// this detail by allowing a value to be replaced with replaceAllUsesWith()
// itself.
const MDNode *DN = D;
if (DbgNode == DN) {
SmallVector<Value*, 10> Ops(DbgNode->getNumOperands());
for (size_t i = 0; i != Ops.size(); ++i)
Ops[i] = DbgNode->getOperand(i);
DN = MDNode::get(VMContext, Ops);
}
MDNode *Node = const_cast<MDNode *>(DbgNode);
const Value *V = cast_or_null<Value>(DN);
Node->replaceAllUsesWith(const_cast<Value *>(V));
MDNode::deleteTemporary(Node);
DbgNode = DN;
}
void DIDescriptor::replaceAllUsesWith(MDNode *D) {
assert(DbgNode && "Trying to replace an unverified type!");
assert(DbgNode != D && "This replacement should always happen");
MDNode *Node = const_cast<MDNode *>(DbgNode);
const MDNode *DN = D;
const Value *V = cast_or_null<Value>(DN);
Node->replaceAllUsesWith(const_cast<Value *>(V));
MDNode::deleteTemporary(Node);
}
bool DICompileUnit::Verify() const {
if (!isCompileUnit())
return false;
// Don't bother verifying the compilation directory or producer string
// as those could be empty.
if (getFilename().empty())
return false;
return DbgNode->getNumOperands() == 7 && getNumHeaderFields() == 8;
}
bool DIObjCProperty::Verify() const {
if (!isObjCProperty())
return false;
// Don't worry about the rest of the strings for now.
return DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 6;
}
/// \brief Check if a field at position Elt of a MDNode is a MDNode.
///
/// We currently allow an empty string and an integer.
/// But we don't allow a non-empty string in a MDNode field.
static bool fieldIsMDNode(const MDNode *DbgNode, unsigned Elt) {
// FIXME: This function should return true, if the field is null or the field
// is indeed a MDNode: return !Fld || isa<MDNode>(Fld).
Value *Fld = getField(DbgNode, Elt);
if (Fld && isa<MDString>(Fld) && !cast<MDString>(Fld)->getString().empty())
return false;
return true;
}
/// \brief Check if a field at position Elt of a MDNode is a MDString.
static bool fieldIsMDString(const MDNode *DbgNode, unsigned Elt) {
Value *Fld = getField(DbgNode, Elt);
return !Fld || isa<MDString>(Fld);
}
/// \brief Check if a value can be a reference to a type.
static bool isTypeRef(const Value *Val) {
return !Val ||
(isa<MDString>(Val) && !cast<MDString>(Val)->getString().empty()) ||
(isa<MDNode>(Val) && DIType(cast<MDNode>(Val)).isType());
}
/// \brief Check if referenced field might be a type.
static bool fieldIsTypeRef(const MDNode *DbgNode, unsigned Elt) {
Value *Fld = getField(DbgNode, Elt);
return isTypeRef(Fld);
}
/// \brief Check if a value can be a ScopeRef.
static bool isScopeRef(const Value *Val) {
return !Val ||
(isa<MDString>(Val) && !cast<MDString>(Val)->getString().empty()) ||
// Not checking for Val->isScope() here, because it would work
// only for lexical scopes and not all subclasses of DIScope.
isa<MDNode>(Val);
}
/// \brief Check if a field at position Elt of a MDNode can be a ScopeRef.
static bool fieldIsScopeRef(const MDNode *DbgNode, unsigned Elt) {
Value *Fld = getField(DbgNode, Elt);
return isScopeRef(Fld);
}
bool DIType::Verify() const {
if (!isType())
return false;
// Make sure Context @ field 2 is MDNode.
if (!fieldIsScopeRef(DbgNode, 2))
return false;
// FIXME: Sink this into the various subclass verifies.
uint16_t Tag = getTag();
if (!isBasicType() && Tag != dwarf::DW_TAG_const_type &&
Tag != dwarf::DW_TAG_volatile_type && Tag != dwarf::DW_TAG_pointer_type &&
Tag != dwarf::DW_TAG_ptr_to_member_type &&
Tag != dwarf::DW_TAG_reference_type &&
Tag != dwarf::DW_TAG_rvalue_reference_type &&
Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_array_type &&
Tag != dwarf::DW_TAG_enumeration_type &&
Tag != dwarf::DW_TAG_subroutine_type &&
Tag != dwarf::DW_TAG_inheritance && Tag != dwarf::DW_TAG_friend &&
getFilename().empty())
return false;
// DIType is abstract, it should be a BasicType, a DerivedType or
// a CompositeType.
if (isBasicType())
return DIBasicType(DbgNode).Verify();
else if (isCompositeType())
return DICompositeType(DbgNode).Verify();
else if (isDerivedType())
return DIDerivedType(DbgNode).Verify();
else
return false;
}
bool DIBasicType::Verify() const {
return isBasicType() && DbgNode->getNumOperands() == 3 &&
getNumHeaderFields() == 8;
}
bool DIDerivedType::Verify() const {
// Make sure DerivedFrom @ field 3 is TypeRef.
if (!fieldIsTypeRef(DbgNode, 3))
return false;
if (getTag() == dwarf::DW_TAG_ptr_to_member_type)
// Make sure ClassType @ field 4 is a TypeRef.
if (!fieldIsTypeRef(DbgNode, 4))
return false;
return isDerivedType() && DbgNode->getNumOperands() >= 4 &&
DbgNode->getNumOperands() <= 8 && getNumHeaderFields() >= 7 &&
getNumHeaderFields() <= 8;
}
bool DICompositeType::Verify() const {
if (!isCompositeType())
return false;
// Make sure DerivedFrom @ field 3 and ContainingType @ field 5 are TypeRef.
if (!fieldIsTypeRef(DbgNode, 3))
return false;
if (!fieldIsTypeRef(DbgNode, 5))
return false;
// Make sure the type identifier at field 7 is MDString, it can be null.
if (!fieldIsMDString(DbgNode, 7))
return false;
// A subroutine type can't be both & and &&.
if (isLValueReference() && isRValueReference())
return false;
return DbgNode->getNumOperands() == 8 && getNumHeaderFields() == 8;
}
bool DISubprogram::Verify() const {
if (!isSubprogram())
return false;
// Make sure context @ field 2 is a ScopeRef and type @ field 3 is a MDNode.
if (!fieldIsScopeRef(DbgNode, 2))
return false;
if (!fieldIsMDNode(DbgNode, 3))
return false;
// Containing type @ field 4.
if (!fieldIsTypeRef(DbgNode, 4))
return false;
// A subprogram can't be both & and &&.
if (isLValueReference() && isRValueReference())
return false;
// If a DISubprogram has an llvm::Function*, then scope chains from all
// instructions within the function should lead to this DISubprogram.
if (auto *F = getFunction()) {
LLVMContext &Ctxt = F->getContext();
for (auto &BB : *F) {
for (auto &I : BB) {
DebugLoc DL = I.getDebugLoc();
if (DL.isUnknown())
continue;
MDNode *Scope = nullptr;
MDNode *IA = nullptr;
// walk the inlined-at scopes
while (DL.getScopeAndInlinedAt(Scope, IA, F->getContext()), IA)
DL = DebugLoc::getFromDILocation(IA);
DL.getScopeAndInlinedAt(Scope, IA, Ctxt);
assert(!IA);
while (!DIDescriptor(Scope).isSubprogram()) {
DILexicalBlockFile D(Scope);
Scope = D.isLexicalBlockFile()
? D.getScope()
: DebugLoc::getFromDILexicalBlock(Scope).getScope(Ctxt);
}
if (!DISubprogram(Scope).describes(F))
return false;
}
}
}
return DbgNode->getNumOperands() == 9 && getNumHeaderFields() == 12;
}
bool DIGlobalVariable::Verify() const {
if (!isGlobalVariable())
return false;
if (getDisplayName().empty())
return false;
// Make sure context @ field 1 is an MDNode.
if (!fieldIsMDNode(DbgNode, 1))
return false;
// Make sure that type @ field 3 is a DITypeRef.
if (!fieldIsTypeRef(DbgNode, 3))
return false;
// Make sure StaticDataMemberDeclaration @ field 5 is MDNode.
if (!fieldIsMDNode(DbgNode, 5))
return false;
return DbgNode->getNumOperands() == 6 && getNumHeaderFields() == 7;
}
bool DIVariable::Verify() const {
if (!isVariable())
return false;
// Make sure context @ field 1 is an MDNode.
if (!fieldIsMDNode(DbgNode, 1))
return false;
// Make sure that type @ field 3 is a DITypeRef.
if (!fieldIsTypeRef(DbgNode, 3))
return false;
// Check the number of header fields, which is common between complex and
// simple variables.
if (getNumHeaderFields() != 4)
return false;
// Variable without an inline location.
if (DbgNode->getNumOperands() == 4)
return true;
// Variable with an inline location.
return getInlinedAt() != nullptr && DbgNode->getNumOperands() == 5;
}
bool DIExpression::Verify() const {
// Empty DIExpressions may be represented as a nullptr.
if (!DbgNode)
return true;
return isExpression() && DbgNode->getNumOperands() == 1;
}
bool DILocation::Verify() const {
if (!DbgNode)
return false;
return DbgNode->getNumOperands() == 4;
}
bool DINameSpace::Verify() const {
if (!isNameSpace())
return false;
return DbgNode->getNumOperands() == 3 && getNumHeaderFields() == 3;
}
MDNode *DIFile::getFileNode() const { return getNodeField(DbgNode, 1); }
bool DIFile::Verify() const {
return isFile() && DbgNode->getNumOperands() == 2;
}
bool DIEnumerator::Verify() const {
return isEnumerator() && DbgNode->getNumOperands() == 1 &&
getNumHeaderFields() == 3;
}
bool DISubrange::Verify() const {
return isSubrange() && DbgNode->getNumOperands() == 1 &&
getNumHeaderFields() == 3;
}
bool DILexicalBlock::Verify() const {
return isLexicalBlock() && DbgNode->getNumOperands() == 3 &&
getNumHeaderFields() == 4;
}
bool DILexicalBlockFile::Verify() const {
return isLexicalBlockFile() && DbgNode->getNumOperands() == 3 &&
getNumHeaderFields() == 2;
}
bool DITemplateTypeParameter::Verify() const {
return isTemplateTypeParameter() && DbgNode->getNumOperands() == 4 &&
getNumHeaderFields() == 4;
}
bool DITemplateValueParameter::Verify() const {
return isTemplateValueParameter() && DbgNode->getNumOperands() == 5 &&
getNumHeaderFields() == 4;
}
bool DIImportedEntity::Verify() const {
return isImportedEntity() && DbgNode->getNumOperands() == 3 &&
getNumHeaderFields() == 3;
}
MDNode *DIDerivedType::getObjCProperty() const {
return getNodeField(DbgNode, 4);
}
MDString *DICompositeType::getIdentifier() const {
return cast_or_null<MDString>(getField(DbgNode, 7));
}
#ifndef NDEBUG
static void VerifySubsetOf(const MDNode *LHS, const MDNode *RHS) {
for (unsigned i = 0; i != LHS->getNumOperands(); ++i) {
// Skip the 'empty' list (that's a single i32 0, rather than truly empty).
if (i == 0 && isa<ConstantInt>(LHS->getOperand(i)))
continue;
const MDNode *E = cast<MDNode>(LHS->getOperand(i));
bool found = false;
for (unsigned j = 0; !found && j != RHS->getNumOperands(); ++j)
found = E == RHS->getOperand(j);
assert(found && "Losing a member during member list replacement");
}
}
#endif
void DICompositeType::setArraysHelper(MDNode *Elements, MDNode *TParams) {
TrackingVH<MDNode> N(*this);
if (Elements) {
#ifndef NDEBUG
// Check that the new list of members contains all the old members as well.
if (const MDNode *El = cast_or_null<MDNode>(N->getOperand(4)))
VerifySubsetOf(El, Elements);
#endif
N->replaceOperandWith(4, Elements);
}
if (TParams)
N->replaceOperandWith(6, TParams);
DbgNode = N;
}
DIScopeRef DIScope::getRef() const {
if (!isCompositeType())
return DIScopeRef(*this);
DICompositeType DTy(DbgNode);
if (!DTy.getIdentifier())
return DIScopeRef(*this);
return DIScopeRef(DTy.getIdentifier());
}
void DICompositeType::setContainingType(DICompositeType ContainingType) {
TrackingVH<MDNode> N(*this);
N->replaceOperandWith(5, ContainingType.getRef());
DbgNode = N;
}
bool DIVariable::isInlinedFnArgument(const Function *CurFn) {
assert(CurFn && "Invalid function");
if (!getContext().isSubprogram())
return false;
// This variable is not inlined function argument if its scope
// does not describe current function.
return !DISubprogram(getContext()).describes(CurFn);
}
bool DISubprogram::describes(const Function *F) {
assert(F && "Invalid function");
if (F == getFunction())
return true;
StringRef Name = getLinkageName();
if (Name.empty())
Name = getName();
if (F->getName() == Name)
return true;
return false;
}
MDNode *DISubprogram::getVariablesNodes() const {
return getNodeField(DbgNode, 8);
}
DIArray DISubprogram::getVariables() const {
return DIArray(getNodeField(DbgNode, 8));
}
Value *DITemplateValueParameter::getValue() const {
return getField(DbgNode, 3);
}
DIScopeRef DIScope::getContext() const {
if (isType())
return DIType(DbgNode).getContext();
if (isSubprogram())
return DIScopeRef(DISubprogram(DbgNode).getContext());
if (isLexicalBlock())
return DIScopeRef(DILexicalBlock(DbgNode).getContext());
if (isLexicalBlockFile())
return DIScopeRef(DILexicalBlockFile(DbgNode).getContext());
if (isNameSpace())
return DIScopeRef(DINameSpace(DbgNode).getContext());
assert((isFile() || isCompileUnit()) && "Unhandled type of scope.");
return DIScopeRef(nullptr);
}
StringRef DIScope::getName() const {
if (isType())
return DIType(DbgNode).getName();
if (isSubprogram())
return DISubprogram(DbgNode).getName();
if (isNameSpace())
return DINameSpace(DbgNode).getName();
assert((isLexicalBlock() || isLexicalBlockFile() || isFile() ||
isCompileUnit()) &&
"Unhandled type of scope.");
return StringRef();
}
StringRef DIScope::getFilename() const {
if (!DbgNode)
return StringRef();
return ::getStringField(getNodeField(DbgNode, 1), 0);
}
StringRef DIScope::getDirectory() const {
if (!DbgNode)
return StringRef();
return ::getStringField(getNodeField(DbgNode, 1), 1);
}
DIArray DICompileUnit::getEnumTypes() const {
if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
return DIArray(getNodeField(DbgNode, 2));
}
DIArray DICompileUnit::getRetainedTypes() const {
if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
return DIArray(getNodeField(DbgNode, 3));
}
DIArray DICompileUnit::getSubprograms() const {
if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
return DIArray(getNodeField(DbgNode, 4));
}
DIArray DICompileUnit::getGlobalVariables() const {
if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
return DIArray(getNodeField(DbgNode, 5));
}
DIArray DICompileUnit::getImportedEntities() const {
if (!DbgNode || DbgNode->getNumOperands() < 7)
return DIArray();
return DIArray(getNodeField(DbgNode, 6));
}
void DICompileUnit::replaceSubprograms(DIArray Subprograms) {
assert(Verify() && "Expected compile unit");
if (Subprograms == getSubprograms())
return;
const_cast<MDNode *>(DbgNode)->replaceOperandWith(4, Subprograms);
}
void DICompileUnit::replaceGlobalVariables(DIArray GlobalVariables) {
assert(Verify() && "Expected compile unit");
if (GlobalVariables == getGlobalVariables())
return;
const_cast<MDNode *>(DbgNode)->replaceOperandWith(5, GlobalVariables);
}
DILocation DILocation::copyWithNewScope(LLVMContext &Ctx,
DILexicalBlockFile NewScope) {
SmallVector<Value *, 10> Elts;
assert(Verify());
for (unsigned I = 0; I < DbgNode->getNumOperands(); ++I) {
if (I != 2)
Elts.push_back(DbgNode->getOperand(I));
else
Elts.push_back(NewScope);
}
MDNode *NewDIL = MDNode::get(Ctx, Elts);
return DILocation(NewDIL);
}
unsigned DILocation::computeNewDiscriminator(LLVMContext &Ctx) {
std::pair<const char *, unsigned> Key(getFilename().data(), getLineNumber());
return ++Ctx.pImpl->DiscriminatorTable[Key];
}
DIVariable llvm::createInlinedVariable(MDNode *DV, MDNode *InlinedScope,
LLVMContext &VMContext) {
assert(DIVariable(DV).Verify() && "Expected a DIVariable");
if (!InlinedScope)
return cleanseInlinedVariable(DV, VMContext);
// Insert inlined scope.
SmallVector<Value *, 8> Elts;
for (unsigned I = 0, E = DIVariableInlinedAtIndex; I != E; ++I)
Elts.push_back(DV->getOperand(I));
Elts.push_back(InlinedScope);
DIVariable Inlined(MDNode::get(VMContext, Elts));
assert(Inlined.Verify() && "Expected to create a DIVariable");
return Inlined;
}
DIVariable llvm::cleanseInlinedVariable(MDNode *DV, LLVMContext &VMContext) {
assert(DIVariable(DV).Verify() && "Expected a DIVariable");
if (!DIVariable(DV).getInlinedAt())
return DIVariable(DV);
// Remove inlined scope.
SmallVector<Value *, 8> Elts;
for (unsigned I = 0, E = DIVariableInlinedAtIndex; I != E; ++I)
Elts.push_back(DV->getOperand(I));
DIVariable Cleansed(MDNode::get(VMContext, Elts));
assert(Cleansed.Verify() && "Expected to create a DIVariable");
return Cleansed;
}
DISubprogram llvm::getDISubprogram(const MDNode *Scope) {
DIDescriptor D(Scope);
if (D.isSubprogram())
return DISubprogram(Scope);
if (D.isLexicalBlockFile())
return getDISubprogram(DILexicalBlockFile(Scope).getContext());
if (D.isLexicalBlock())
return getDISubprogram(DILexicalBlock(Scope).getContext());
return DISubprogram();
}
DISubprogram llvm::getDISubprogram(const Function *F) {
// We look for the first instr that has a debug annotation leading back to F.
const LLVMContext &Ctx = F->getParent()->getContext();
for (auto &BB : *F) {
for (auto &Inst : BB.getInstList()) {
DebugLoc DLoc = Inst.getDebugLoc();
if (DLoc.isUnknown())
continue;
const MDNode *Scope = DLoc.getScopeNode(Ctx);
DISubprogram Subprogram = getDISubprogram(Scope);
if (Subprogram.describes(F))
return Subprogram;
}
}
return DISubprogram();
}
DICompositeType llvm::getDICompositeType(DIType T) {
if (T.isCompositeType())
return DICompositeType(T);
if (T.isDerivedType()) {
// This function is currently used by dragonegg and dragonegg does
// not generate identifier for types, so using an empty map to resolve
// DerivedFrom should be fine.
DITypeIdentifierMap EmptyMap;
return getDICompositeType(
DIDerivedType(T).getTypeDerivedFrom().resolve(EmptyMap));
}
return DICompositeType();
}
DITypeIdentifierMap
llvm::generateDITypeIdentifierMap(const NamedMDNode *CU_Nodes) {
DITypeIdentifierMap Map;
for (unsigned CUi = 0, CUe = CU_Nodes->getNumOperands(); CUi != CUe; ++CUi) {
DICompileUnit CU(CU_Nodes->getOperand(CUi));
DIArray Retain = CU.getRetainedTypes();
for (unsigned Ti = 0, Te = Retain.getNumElements(); Ti != Te; ++Ti) {
if (!Retain.getElement(Ti).isCompositeType())
continue;
DICompositeType Ty(Retain.getElement(Ti));
if (MDString *TypeId = Ty.getIdentifier()) {
// Definition has priority over declaration.
// Try to insert (TypeId, Ty) to Map.
std::pair<DITypeIdentifierMap::iterator, bool> P =
Map.insert(std::make_pair(TypeId, Ty));
// If TypeId already exists in Map and this is a definition, replace
// whatever we had (declaration or definition) with the definition.
if (!P.second && !Ty.isForwardDecl())
P.first->second = Ty;
}
}
}
return Map;
}
//===----------------------------------------------------------------------===//
// DebugInfoFinder implementations.
//===----------------------------------------------------------------------===//
void DebugInfoFinder::reset() {
CUs.clear();
SPs.clear();
GVs.clear();
TYs.clear();
Scopes.clear();
NodesSeen.clear();
TypeIdentifierMap.clear();
TypeMapInitialized = false;
}
void DebugInfoFinder::InitializeTypeMap(const Module &M) {
if (!TypeMapInitialized)
if (NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu")) {
TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes);
TypeMapInitialized = true;
}
}
void DebugInfoFinder::processModule(const Module &M) {
InitializeTypeMap(M);
if (NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu")) {
for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) {
DICompileUnit CU(CU_Nodes->getOperand(i));
addCompileUnit(CU);
DIArray GVs = CU.getGlobalVariables();
for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i) {
DIGlobalVariable DIG(GVs.getElement(i));
if (addGlobalVariable(DIG)) {
processScope(DIG.getContext());
processType(DIG.getType().resolve(TypeIdentifierMap));
}
}
DIArray SPs = CU.getSubprograms();
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i)
processSubprogram(DISubprogram(SPs.getElement(i)));
DIArray EnumTypes = CU.getEnumTypes();
for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i)
processType(DIType(EnumTypes.getElement(i)));
DIArray RetainedTypes = CU.getRetainedTypes();
for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i)
processType(DIType(RetainedTypes.getElement(i)));
DIArray Imports = CU.getImportedEntities();
for (unsigned i = 0, e = Imports.getNumElements(); i != e; ++i) {
DIImportedEntity Import = DIImportedEntity(Imports.getElement(i));
DIDescriptor Entity = Import.getEntity().resolve(TypeIdentifierMap);
if (Entity.isType())
processType(DIType(Entity));
else if (Entity.isSubprogram())
processSubprogram(DISubprogram(Entity));
else if (Entity.isNameSpace())
processScope(DINameSpace(Entity).getContext());
}
}
}
}
void DebugInfoFinder::processLocation(const Module &M, DILocation Loc) {
if (!Loc)
return;
InitializeTypeMap(M);
processScope(Loc.getScope());
processLocation(M, Loc.getOrigLocation());
}
void DebugInfoFinder::processType(DIType DT) {
if (!addType(DT))
return;
processScope(DT.getContext().resolve(TypeIdentifierMap));
if (DT.isCompositeType()) {
DICompositeType DCT(DT);
processType(DCT.getTypeDerivedFrom().resolve(TypeIdentifierMap));
if (DT.isSubroutineType()) {
DITypeArray DTA = DISubroutineType(DT).getTypeArray();
for (unsigned i = 0, e = DTA.getNumElements(); i != e; ++i)
processType(DTA.getElement(i).resolve(TypeIdentifierMap));
return;
}
DIArray DA = DCT.getElements();
for (unsigned i = 0, e = DA.getNumElements(); i != e; ++i) {
DIDescriptor D = DA.getElement(i);
if (D.isType())
processType(DIType(D));
else if (D.isSubprogram())
processSubprogram(DISubprogram(D));
}
} else if (DT.isDerivedType()) {
DIDerivedType DDT(DT);
processType(DDT.getTypeDerivedFrom().resolve(TypeIdentifierMap));
}
}
void DebugInfoFinder::processScope(DIScope Scope) {
if (Scope.isType()) {
DIType Ty(Scope);
processType(Ty);
return;
}
if (Scope.isCompileUnit()) {
addCompileUnit(DICompileUnit(Scope));
return;
}
if (Scope.isSubprogram()) {
processSubprogram(DISubprogram(Scope));
return;
}
if (!addScope(Scope))
return;
if (Scope.isLexicalBlock()) {
DILexicalBlock LB(Scope);
processScope(LB.getContext());
} else if (Scope.isLexicalBlockFile()) {
DILexicalBlockFile LBF = DILexicalBlockFile(Scope);
processScope(LBF.getScope());
} else if (Scope.isNameSpace()) {
DINameSpace NS(Scope);
processScope(NS.getContext());
}
}
void DebugInfoFinder::processSubprogram(DISubprogram SP) {
if (!addSubprogram(SP))
return;
processScope(SP.getContext().resolve(TypeIdentifierMap));
processType(SP.getType());
DIArray TParams = SP.getTemplateParams();
for (unsigned I = 0, E = TParams.getNumElements(); I != E; ++I) {
DIDescriptor Element = TParams.getElement(I);
if (Element.isTemplateTypeParameter()) {
DITemplateTypeParameter TType(Element);
processScope(TType.getContext().resolve(TypeIdentifierMap));
processType(TType.getType().resolve(TypeIdentifierMap));
} else if (Element.isTemplateValueParameter()) {
DITemplateValueParameter TVal(Element);
processScope(TVal.getContext().resolve(TypeIdentifierMap));
processType(TVal.getType().resolve(TypeIdentifierMap));
}
}
}
void DebugInfoFinder::processDeclare(const Module &M,
const DbgDeclareInst *DDI) {
MDNode *N = dyn_cast<MDNode>(DDI->getVariable());
if (!N)
return;
InitializeTypeMap(M);
DIDescriptor DV(N);
if (!DV.isVariable())
return;
if (!NodesSeen.insert(DV))
return;
processScope(DIVariable(N).getContext());
processType(DIVariable(N).getType().resolve(TypeIdentifierMap));
}
void DebugInfoFinder::processValue(const Module &M, const DbgValueInst *DVI) {
MDNode *N = dyn_cast<MDNode>(DVI->getVariable());
if (!N)
return;
InitializeTypeMap(M);
DIDescriptor DV(N);
if (!DV.isVariable())
return;
if (!NodesSeen.insert(DV))
return;
processScope(DIVariable(N).getContext());
processType(DIVariable(N).getType().resolve(TypeIdentifierMap));
}
bool DebugInfoFinder::addType(DIType DT) {
if (!DT)
return false;
if (!NodesSeen.insert(DT))
return false;
TYs.push_back(DT);
return true;
}
bool DebugInfoFinder::addCompileUnit(DICompileUnit CU) {
if (!CU)
return false;
if (!NodesSeen.insert(CU))
return false;
CUs.push_back(CU);
return true;
}
bool DebugInfoFinder::addGlobalVariable(DIGlobalVariable DIG) {
if (!DIG)
return false;
if (!NodesSeen.insert(DIG))
return false;
GVs.push_back(DIG);
return true;
}
bool DebugInfoFinder::addSubprogram(DISubprogram SP) {
if (!SP)
return false;
if (!NodesSeen.insert(SP))
return false;
SPs.push_back(SP);
return true;
}
bool DebugInfoFinder::addScope(DIScope Scope) {
if (!Scope)
return false;
// FIXME: Ocaml binding generates a scope with no content, we treat it
// as null for now.
if (Scope->getNumOperands() == 0)
return false;
if (!NodesSeen.insert(Scope))
return false;
Scopes.push_back(Scope);
return true;
}
//===----------------------------------------------------------------------===//
// DIDescriptor: dump routines for all descriptors.
//===----------------------------------------------------------------------===//
void DIDescriptor::dump() const {
print(dbgs());
dbgs() << '\n';
}
void DIDescriptor::print(raw_ostream &OS) const {
if (!DbgNode)
return;
if (const char *Tag = dwarf::TagString(getTag()))
OS << "[ " << Tag << " ]";
if (this->isSubrange()) {
DISubrange(DbgNode).printInternal(OS);
} else if (this->isCompileUnit()) {
DICompileUnit(DbgNode).printInternal(OS);
} else if (this->isFile()) {
DIFile(DbgNode).printInternal(OS);
} else if (this->isEnumerator()) {
DIEnumerator(DbgNode).printInternal(OS);
} else if (this->isBasicType()) {
DIType(DbgNode).printInternal(OS);
} else if (this->isDerivedType()) {
DIDerivedType(DbgNode).printInternal(OS);
} else if (this->isCompositeType()) {
DICompositeType(DbgNode).printInternal(OS);
} else if (this->isSubprogram()) {
DISubprogram(DbgNode).printInternal(OS);
} else if (this->isGlobalVariable()) {
DIGlobalVariable(DbgNode).printInternal(OS);
} else if (this->isVariable()) {
DIVariable(DbgNode).printInternal(OS);
} else if (this->isObjCProperty()) {
DIObjCProperty(DbgNode).printInternal(OS);
} else if (this->isNameSpace()) {
DINameSpace(DbgNode).printInternal(OS);
} else if (this->isScope()) {
DIScope(DbgNode).printInternal(OS);
} else if (this->isExpression()) {
DIExpression(DbgNode).printInternal(OS);
}
}
void DISubrange::printInternal(raw_ostream &OS) const {
int64_t Count = getCount();
if (Count != -1)
OS << " [" << getLo() << ", " << Count - 1 << ']';
else
OS << " [unbounded]";
}
void DIScope::printInternal(raw_ostream &OS) const {
OS << " [" << getDirectory() << "/" << getFilename() << ']';
}
void DICompileUnit::printInternal(raw_ostream &OS) const {
DIScope::printInternal(OS);
OS << " [";
unsigned Lang = getLanguage();
if (const char *LangStr = dwarf::LanguageString(Lang))
OS << LangStr;
else
(OS << "lang 0x").write_hex(Lang);
OS << ']';
}
void DIEnumerator::printInternal(raw_ostream &OS) const {
OS << " [" << getName() << " :: " << getEnumValue() << ']';
}
void DIType::printInternal(raw_ostream &OS) const {
if (!DbgNode)
return;
StringRef Res = getName();
if (!Res.empty())
OS << " [" << Res << "]";
// TODO: Print context?
OS << " [line " << getLineNumber() << ", size " << getSizeInBits()
<< ", align " << getAlignInBits() << ", offset " << getOffsetInBits();
if (isBasicType())
if (const char *Enc =
dwarf::AttributeEncodingString(DIBasicType(DbgNode).getEncoding()))
OS << ", enc " << Enc;
OS << "]";
if (isPrivate())
OS << " [private]";
else if (isProtected())
OS << " [protected]";
else if (isPublic())
OS << " [public]";
if (isArtificial())
OS << " [artificial]";
if (isForwardDecl())
OS << " [decl]";
else if (getTag() == dwarf::DW_TAG_structure_type ||
getTag() == dwarf::DW_TAG_union_type ||
getTag() == dwarf::DW_TAG_enumeration_type ||
getTag() == dwarf::DW_TAG_class_type)
OS << " [def]";
if (isVector())
OS << " [vector]";
if (isStaticMember())
OS << " [static]";
if (isLValueReference())
OS << " [reference]";
if (isRValueReference())
OS << " [rvalue reference]";
}
void DIDerivedType::printInternal(raw_ostream &OS) const {
DIType::printInternal(OS);
OS << " [from " << getTypeDerivedFrom().getName() << ']';
}
void DICompositeType::printInternal(raw_ostream &OS) const {
DIType::printInternal(OS);
DIArray A = getElements();
OS << " [" << A.getNumElements() << " elements]";
}
void DINameSpace::printInternal(raw_ostream &OS) const {
StringRef Name = getName();
if (!Name.empty())
OS << " [" << Name << ']';
OS << " [line " << getLineNumber() << ']';
}
void DISubprogram::printInternal(raw_ostream &OS) const {
// TODO : Print context
OS << " [line " << getLineNumber() << ']';
if (isLocalToUnit())
OS << " [local]";
if (isDefinition())
OS << " [def]";
if (getScopeLineNumber() != getLineNumber())
OS << " [scope " << getScopeLineNumber() << "]";
if (isPrivate())
OS << " [private]";
else if (isProtected())
OS << " [protected]";
else if (isPublic())
OS << " [public]";
if (isLValueReference())
OS << " [reference]";
if (isRValueReference())
OS << " [rvalue reference]";
StringRef Res = getName();
if (!Res.empty())
OS << " [" << Res << ']';
}
void DIGlobalVariable::printInternal(raw_ostream &OS) const {
StringRef Res = getName();
if (!Res.empty())
OS << " [" << Res << ']';
OS << " [line " << getLineNumber() << ']';
// TODO : Print context
if (isLocalToUnit())
OS << " [local]";
if (isDefinition())
OS << " [def]";
}
void DIVariable::printInternal(raw_ostream &OS) const {
StringRef Res = getName();
if (!Res.empty())
OS << " [" << Res << ']';
OS << " [line " << getLineNumber() << ']';
}
void DIExpression::printInternal(raw_ostream &OS) const {
for (unsigned I = 0; I < getNumElements(); ++I) {
uint64_t OpCode = getElement(I);
OS << " [" << OperationEncodingString(OpCode);
switch (OpCode) {
case DW_OP_plus: {
OS << " " << getElement(++I);
break;
}
case DW_OP_piece: {
unsigned Offset = getElement(++I);
unsigned Size = getElement(++I);
OS << " offset=" << Offset << ", size=" << Size;
break;
}
default:
// Else bail out early. This may be a line table entry.
OS << "Unknown]";
return;
}
OS << "]";
}
}
void DIObjCProperty::printInternal(raw_ostream &OS) const {
StringRef Name = getObjCPropertyName();
if (!Name.empty())
OS << " [" << Name << ']';
OS << " [line " << getLineNumber() << ", properties " << getUnsignedField(6)
<< ']';
}
static void printDebugLoc(DebugLoc DL, raw_ostream &CommentOS,
const LLVMContext &Ctx) {
if (!DL.isUnknown()) { // Print source line info.
DIScope Scope(DL.getScope(Ctx));
assert(Scope.isScope() && "Scope of a DebugLoc should be a DIScope.");
// Omit the directory, because it's likely to be long and uninteresting.
CommentOS << Scope.getFilename();
CommentOS << ':' << DL.getLine();
if (DL.getCol() != 0)
CommentOS << ':' << DL.getCol();
DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
if (!InlinedAtDL.isUnknown()) {
CommentOS << " @[ ";
printDebugLoc(InlinedAtDL, CommentOS, Ctx);
CommentOS << " ]";
}
}
}
void DIVariable::printExtendedName(raw_ostream &OS) const {
const LLVMContext &Ctx = DbgNode->getContext();
StringRef Res = getName();
if (!Res.empty())
OS << Res << "," << getLineNumber();
if (MDNode *InlinedAt = getInlinedAt()) {
DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
if (!InlinedAtDL.isUnknown()) {
OS << " @[";
printDebugLoc(InlinedAtDL, OS, Ctx);
OS << "]";
}
}
}
template <> DIRef<DIScope>::DIRef(const Value *V) : Val(V) {
assert(isScopeRef(V) && "DIScopeRef should be a MDString or MDNode");
}
template <> DIRef<DIType>::DIRef(const Value *V) : Val(V) {
assert(isTypeRef(V) && "DITypeRef should be a MDString or MDNode");
}
template <>
DIScopeRef DIDescriptor::getFieldAs<DIScopeRef>(unsigned Elt) const {
return DIScopeRef(getField(DbgNode, Elt));
}
template <> DITypeRef DIDescriptor::getFieldAs<DITypeRef>(unsigned Elt) const {
return DITypeRef(getField(DbgNode, Elt));
}
bool llvm::StripDebugInfo(Module &M) {
bool Changed = false;
// Remove all of the calls to the debugger intrinsics, and remove them from
// the module.
if (Function *Declare = M.getFunction("llvm.dbg.declare")) {
while (!Declare->use_empty()) {
CallInst *CI = cast<CallInst>(Declare->user_back());
CI->eraseFromParent();
}
Declare->eraseFromParent();
Changed = true;
}
if (Function *DbgVal = M.getFunction("llvm.dbg.value")) {
while (!DbgVal->use_empty()) {
CallInst *CI = cast<CallInst>(DbgVal->user_back());
CI->eraseFromParent();
}
DbgVal->eraseFromParent();
Changed = true;
}
for (Module::named_metadata_iterator NMI = M.named_metadata_begin(),
NME = M.named_metadata_end(); NMI != NME;) {
NamedMDNode *NMD = NMI;
++NMI;
if (NMD->getName().startswith("llvm.dbg.")) {
NMD->eraseFromParent();
Changed = true;
}
}
for (Module::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI)
for (Function::iterator FI = MI->begin(), FE = MI->end(); FI != FE;
++FI)
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE;
++BI) {
if (!BI->getDebugLoc().isUnknown()) {
Changed = true;
BI->setDebugLoc(DebugLoc());
}
}
return Changed;
}
unsigned llvm::getDebugMetadataVersionFromModule(const Module &M) {
Value *Val = M.getModuleFlag("Debug Info Version");
if (!Val)
return 0;
return cast<ConstantInt>(Val)->getZExtValue();
}
llvm::DenseMap<const llvm::Function *, llvm::DISubprogram>
llvm::makeSubprogramMap(const Module &M) {
DenseMap<const Function *, DISubprogram> R;
NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu");
if (!CU_Nodes)
return R;
for (MDNode *N : CU_Nodes->operands()) {
DICompileUnit CUNode(N);
DIArray SPs = CUNode.getSubprograms();
for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) {
DISubprogram SP(SPs.getElement(i));
if (Function *F = SP.getFunction())
R.insert(std::make_pair(F, SP));
}
}
return R;
}