llvm-6502/include/llvm/CodeGen/LiveInterval.h
2009-10-03 04:21:37 +00:00

801 lines
27 KiB
C++

//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live interval for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation intervals can have holes,
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
// individual range is represented as an instance of LiveRange, and the whole
// interval is represented as an instance of LiveInterval.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
#define LLVM_CODEGEN_LIVEINTERVAL_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/AlignOf.h"
#include <cassert>
#include <climits>
namespace llvm {
class MachineInstr;
class MachineRegisterInfo;
class TargetRegisterInfo;
class raw_ostream;
/// LiveIndex - An opaque wrapper around machine indexes.
class LiveIndex {
friend class VNInfo;
friend class LiveInterval;
friend class LiveIntervals;
friend struct DenseMapInfo<LiveIndex>;
public:
enum Slot { LOAD, USE, DEF, STORE, NUM };
private:
unsigned index;
static const unsigned PHI_BIT = 1 << 31;
public:
/// Construct a default LiveIndex pointing to a reserved index.
LiveIndex() : index(0) {}
/// Construct an index from the given index, pointing to the given slot.
LiveIndex(LiveIndex m, Slot s)
: index((m.index / NUM) * NUM + s) {}
/// Print this index to the given raw_ostream.
void print(raw_ostream &os) const;
/// Compare two LiveIndex objects for equality.
bool operator==(LiveIndex other) const {
return ((index & ~PHI_BIT) == (other.index & ~PHI_BIT));
}
/// Compare two LiveIndex objects for inequality.
bool operator!=(LiveIndex other) const {
return ((index & ~PHI_BIT) != (other.index & ~PHI_BIT));
}
/// Compare two LiveIndex objects. Return true if the first index
/// is strictly lower than the second.
bool operator<(LiveIndex other) const {
return ((index & ~PHI_BIT) < (other.index & ~PHI_BIT));
}
/// Compare two LiveIndex objects. Return true if the first index
/// is lower than, or equal to, the second.
bool operator<=(LiveIndex other) const {
return ((index & ~PHI_BIT) <= (other.index & ~PHI_BIT));
}
/// Compare two LiveIndex objects. Return true if the first index
/// is greater than the second.
bool operator>(LiveIndex other) const {
return ((index & ~PHI_BIT) > (other.index & ~PHI_BIT));
}
/// Compare two LiveIndex objects. Return true if the first index
/// is greater than, or equal to, the second.
bool operator>=(LiveIndex other) const {
return ((index & ~PHI_BIT) >= (other.index & ~PHI_BIT));
}
/// Returns true if this index represents a load.
bool isLoad() const {
return ((index % NUM) == LOAD);
}
/// Returns true if this index represents a use.
bool isUse() const {
return ((index % NUM) == USE);
}
/// Returns true if this index represents a def.
bool isDef() const {
return ((index % NUM) == DEF);
}
/// Returns true if this index represents a store.
bool isStore() const {
return ((index % NUM) == STORE);
}
/// Returns the slot for this LiveIndex.
Slot getSlot() const {
return static_cast<Slot>(index % NUM);
}
/// Returns true if this index represents a non-PHI use/def.
bool isNonPHIIndex() const {
return ((index & PHI_BIT) == 0);
}
/// Returns true if this index represents a PHI use/def.
bool isPHIIndex() const {
return ((index & PHI_BIT) == PHI_BIT);
}
private:
/// Construct an index from the given index, with its PHI kill marker set.
LiveIndex(bool phi, LiveIndex o) : index(o.index) {
if (phi)
index |= PHI_BIT;
else
index &= ~PHI_BIT;
}
explicit LiveIndex(unsigned idx)
: index(idx & ~PHI_BIT) {}
LiveIndex(bool phi, unsigned idx)
: index(idx & ~PHI_BIT) {
if (phi)
index |= PHI_BIT;
}
LiveIndex(bool phi, unsigned idx, Slot slot)
: index(((idx / NUM) * NUM + slot) & ~PHI_BIT) {
if (phi)
index |= PHI_BIT;
}
LiveIndex nextSlot_() const {
assert((index & PHI_BIT) == ((index + 1) & PHI_BIT) &&
"Index out of bounds.");
return LiveIndex(index + 1);
}
LiveIndex nextIndex_() const {
assert((index & PHI_BIT) == ((index + NUM) & PHI_BIT) &&
"Index out of bounds.");
return LiveIndex(index + NUM);
}
LiveIndex prevSlot_() const {
assert((index & PHI_BIT) == ((index - 1) & PHI_BIT) &&
"Index out of bounds.");
return LiveIndex(index - 1);
}
LiveIndex prevIndex_() const {
assert((index & PHI_BIT) == ((index - NUM) & PHI_BIT) &&
"Index out of bounds.");
return LiveIndex(index - NUM);
}
int distance(LiveIndex other) const {
return (other.index & ~PHI_BIT) - (index & ~PHI_BIT);
}
/// Returns an unsigned number suitable as an index into a
/// vector over all instructions.
unsigned getVecIndex() const {
return (index & ~PHI_BIT) / NUM;
}
/// Scale this index by the given factor.
LiveIndex scale(unsigned factor) const {
unsigned i = (index & ~PHI_BIT) / NUM,
o = (index % ~PHI_BIT) % NUM;
assert(index <= (~0U & ~PHI_BIT) / (factor * NUM) &&
"Rescaled interval would overflow");
return LiveIndex(i * NUM * factor, o);
}
static LiveIndex emptyKey() {
return LiveIndex(true, 0x7fffffff);
}
static LiveIndex tombstoneKey() {
return LiveIndex(true, 0x7ffffffe);
}
static unsigned getHashValue(const LiveIndex &v) {
return v.index * 37;
}
};
inline raw_ostream& operator<<(raw_ostream &os, LiveIndex mi) {
mi.print(os);
return os;
}
/// Densemap specialization for LiveIndex.
template <>
struct DenseMapInfo<LiveIndex> {
static inline LiveIndex getEmptyKey() {
return LiveIndex::emptyKey();
}
static inline LiveIndex getTombstoneKey() {
return LiveIndex::tombstoneKey();
}
static inline unsigned getHashValue(const LiveIndex &v) {
return LiveIndex::getHashValue(v);
}
static inline bool isEqual(const LiveIndex &LHS,
const LiveIndex &RHS) {
return (LHS == RHS);
}
static inline bool isPod() { return true; }
};
/// VNInfo - Value Number Information.
/// This class holds information about a machine level values, including
/// definition and use points.
///
/// Care must be taken in interpreting the def index of the value. The
/// following rules apply:
///
/// If the isDefAccurate() method returns false then def does not contain the
/// index of the defining MachineInstr, or even (necessarily) to a
/// MachineInstr at all. In general such a def index is not meaningful
/// and should not be used. The exception is that, for values originally
/// defined by PHI instructions, after PHI elimination def will contain the
/// index of the MBB in which the PHI originally existed. This can be used
/// to insert code (spills or copies) which deals with the value, which will
/// be live in to the block.
class VNInfo {
private:
enum {
HAS_PHI_KILL = 1,
REDEF_BY_EC = 1 << 1,
IS_PHI_DEF = 1 << 2,
IS_UNUSED = 1 << 3,
IS_DEF_ACCURATE = 1 << 4
};
unsigned char flags;
union {
MachineInstr *copy;
unsigned reg;
} cr;
public:
typedef SmallVector<LiveIndex, 4> KillSet;
/// The ID number of this value.
unsigned id;
/// The index of the defining instruction (if isDefAccurate() returns true).
LiveIndex def;
KillSet kills;
VNInfo()
: flags(IS_UNUSED), id(~1U) { cr.copy = 0; }
/// VNInfo constructor.
/// d is presumed to point to the actual defining instr. If it doesn't
/// setIsDefAccurate(false) should be called after construction.
VNInfo(unsigned i, LiveIndex d, MachineInstr *c)
: flags(IS_DEF_ACCURATE), id(i), def(d) { cr.copy = c; }
/// VNInfo construtor, copies values from orig, except for the value number.
VNInfo(unsigned i, const VNInfo &orig)
: flags(orig.flags), cr(orig.cr), id(i), def(orig.def), kills(orig.kills)
{ }
/// Copy from the parameter into this VNInfo.
void copyFrom(VNInfo &src) {
flags = src.flags;
cr = src.cr;
def = src.def;
kills = src.kills;
}
/// Used for copying value number info.
unsigned getFlags() const { return flags; }
void setFlags(unsigned flags) { this->flags = flags; }
/// For a register interval, if this VN was definied by a copy instr
/// getCopy() returns a pointer to it, otherwise returns 0.
/// For a stack interval the behaviour of this method is undefined.
MachineInstr* getCopy() const { return cr.copy; }
/// For a register interval, set the copy member.
/// This method should not be called on stack intervals as it may lead to
/// undefined behavior.
void setCopy(MachineInstr *c) { cr.copy = c; }
/// For a stack interval, returns the reg which this stack interval was
/// defined from.
/// For a register interval the behaviour of this method is undefined.
unsigned getReg() const { return cr.reg; }
/// For a stack interval, set the defining register.
/// This method should not be called on register intervals as it may lead
/// to undefined behaviour.
void setReg(unsigned reg) { cr.reg = reg; }
/// Returns true if one or more kills are PHI nodes.
bool hasPHIKill() const { return flags & HAS_PHI_KILL; }
/// Set the PHI kill flag on this value.
void setHasPHIKill(bool hasKill) {
if (hasKill)
flags |= HAS_PHI_KILL;
else
flags &= ~HAS_PHI_KILL;
}
/// Returns true if this value is re-defined by an early clobber somewhere
/// during the live range.
bool hasRedefByEC() const { return flags & REDEF_BY_EC; }
/// Set the "redef by early clobber" flag on this value.
void setHasRedefByEC(bool hasRedef) {
if (hasRedef)
flags |= REDEF_BY_EC;
else
flags &= ~REDEF_BY_EC;
}
/// Returns true if this value is defined by a PHI instruction (or was,
/// PHI instrucions may have been eliminated).
bool isPHIDef() const { return flags & IS_PHI_DEF; }
/// Set the "phi def" flag on this value.
void setIsPHIDef(bool phiDef) {
if (phiDef)
flags |= IS_PHI_DEF;
else
flags &= ~IS_PHI_DEF;
}
/// Returns true if this value is unused.
bool isUnused() const { return flags & IS_UNUSED; }
/// Set the "is unused" flag on this value.
void setIsUnused(bool unused) {
if (unused)
flags |= IS_UNUSED;
else
flags &= ~IS_UNUSED;
}
/// Returns true if the def is accurate.
bool isDefAccurate() const { return flags & IS_DEF_ACCURATE; }
/// Set the "is def accurate" flag on this value.
void setIsDefAccurate(bool defAccurate) {
if (defAccurate)
flags |= IS_DEF_ACCURATE;
else
flags &= ~IS_DEF_ACCURATE;
}
/// Returns true if the given index is a kill of this value.
bool isKill(LiveIndex k) const {
KillSet::const_iterator
i = std::lower_bound(kills.begin(), kills.end(), k);
return (i != kills.end() && *i == k);
}
/// addKill - Add a kill instruction index to the specified value
/// number.
void addKill(LiveIndex k) {
if (kills.empty()) {
kills.push_back(k);
} else {
KillSet::iterator
i = std::lower_bound(kills.begin(), kills.end(), k);
kills.insert(i, k);
}
}
/// Remove the specified kill index from this value's kills list.
/// Returns true if the value was present, otherwise returns false.
bool removeKill(LiveIndex k) {
KillSet::iterator i = std::lower_bound(kills.begin(), kills.end(), k);
if (i != kills.end() && *i == k) {
kills.erase(i);
return true;
}
return false;
}
/// Remove all kills in the range [s, e).
void removeKills(LiveIndex s, LiveIndex e) {
KillSet::iterator
si = std::lower_bound(kills.begin(), kills.end(), s),
se = std::upper_bound(kills.begin(), kills.end(), e);
kills.erase(si, se);
}
};
/// LiveRange structure - This represents a simple register range in the
/// program, with an inclusive start point and an exclusive end point.
/// These ranges are rendered as [start,end).
struct LiveRange {
LiveIndex start; // Start point of the interval (inclusive)
LiveIndex end; // End point of the interval (exclusive)
VNInfo *valno; // identifier for the value contained in this interval.
LiveRange(LiveIndex S, LiveIndex E, VNInfo *V)
: start(S), end(E), valno(V) {
assert(S < E && "Cannot create empty or backwards range");
}
/// contains - Return true if the index is covered by this range.
///
bool contains(LiveIndex I) const {
return start <= I && I < end;
}
/// containsRange - Return true if the given range, [S, E), is covered by
/// this range.
bool containsRange(LiveIndex S, LiveIndex E) const {
assert((S < E) && "Backwards interval?");
return (start <= S && S < end) && (start < E && E <= end);
}
bool operator<(const LiveRange &LR) const {
return start < LR.start || (start == LR.start && end < LR.end);
}
bool operator==(const LiveRange &LR) const {
return start == LR.start && end == LR.end;
}
void dump() const;
void print(raw_ostream &os) const;
private:
LiveRange(); // DO NOT IMPLEMENT
};
raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR);
inline bool operator<(LiveIndex V, const LiveRange &LR) {
return V < LR.start;
}
inline bool operator<(const LiveRange &LR, LiveIndex V) {
return LR.start < V;
}
/// LiveInterval - This class represents some number of live ranges for a
/// register or value. This class also contains a bit of register allocator
/// state.
class LiveInterval {
public:
typedef SmallVector<LiveRange,4> Ranges;
typedef SmallVector<VNInfo*,4> VNInfoList;
unsigned reg; // the register or stack slot of this interval
// if the top bits is set, it represents a stack slot.
float weight; // weight of this interval
Ranges ranges; // the ranges in which this register is live
VNInfoList valnos; // value#'s
struct InstrSlots {
enum {
LOAD = 0,
USE = 1,
DEF = 2,
STORE = 3,
NUM = 4
};
};
LiveInterval(unsigned Reg, float Weight, bool IsSS = false)
: reg(Reg), weight(Weight) {
if (IsSS)
reg = reg | (1U << (sizeof(unsigned)*CHAR_BIT-1));
}
typedef Ranges::iterator iterator;
iterator begin() { return ranges.begin(); }
iterator end() { return ranges.end(); }
typedef Ranges::const_iterator const_iterator;
const_iterator begin() const { return ranges.begin(); }
const_iterator end() const { return ranges.end(); }
typedef VNInfoList::iterator vni_iterator;
vni_iterator vni_begin() { return valnos.begin(); }
vni_iterator vni_end() { return valnos.end(); }
typedef VNInfoList::const_iterator const_vni_iterator;
const_vni_iterator vni_begin() const { return valnos.begin(); }
const_vni_iterator vni_end() const { return valnos.end(); }
/// advanceTo - Advance the specified iterator to point to the LiveRange
/// containing the specified position, or end() if the position is past the
/// end of the interval. If no LiveRange contains this position, but the
/// position is in a hole, this method returns an iterator pointing the the
/// LiveRange immediately after the hole.
iterator advanceTo(iterator I, LiveIndex Pos) {
if (Pos >= endIndex())
return end();
while (I->end <= Pos) ++I;
return I;
}
void clear() {
while (!valnos.empty()) {
VNInfo *VNI = valnos.back();
valnos.pop_back();
VNI->~VNInfo();
}
ranges.clear();
}
/// isStackSlot - Return true if this is a stack slot interval.
///
bool isStackSlot() const {
return reg & (1U << (sizeof(unsigned)*CHAR_BIT-1));
}
/// getStackSlotIndex - Return stack slot index if this is a stack slot
/// interval.
int getStackSlotIndex() const {
assert(isStackSlot() && "Interval is not a stack slot interval!");
return reg & ~(1U << (sizeof(unsigned)*CHAR_BIT-1));
}
bool hasAtLeastOneValue() const { return !valnos.empty(); }
bool containsOneValue() const { return valnos.size() == 1; }
unsigned getNumValNums() const { return (unsigned)valnos.size(); }
/// getValNumInfo - Returns pointer to the specified val#.
///
inline VNInfo *getValNumInfo(unsigned ValNo) {
return valnos[ValNo];
}
inline const VNInfo *getValNumInfo(unsigned ValNo) const {
return valnos[ValNo];
}
/// getNextValue - Create a new value number and return it. MIIdx specifies
/// the instruction that defines the value number.
VNInfo *getNextValue(LiveIndex def, MachineInstr *CopyMI,
bool isDefAccurate, BumpPtrAllocator &VNInfoAllocator){
VNInfo *VNI =
static_cast<VNInfo*>(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo),
alignof<VNInfo>()));
new (VNI) VNInfo((unsigned)valnos.size(), def, CopyMI);
VNI->setIsDefAccurate(isDefAccurate);
valnos.push_back(VNI);
return VNI;
}
/// Create a copy of the given value. The new value will be identical except
/// for the Value number.
VNInfo *createValueCopy(const VNInfo *orig,
BumpPtrAllocator &VNInfoAllocator) {
VNInfo *VNI =
static_cast<VNInfo*>(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo),
alignof<VNInfo>()));
new (VNI) VNInfo((unsigned)valnos.size(), *orig);
valnos.push_back(VNI);
return VNI;
}
/// addKills - Add a number of kills into the VNInfo kill vector. If this
/// interval is live at a kill point, then the kill is not added.
void addKills(VNInfo *VNI, const VNInfo::KillSet &kills) {
for (unsigned i = 0, e = static_cast<unsigned>(kills.size());
i != e; ++i) {
if (!liveBeforeAndAt(kills[i])) {
VNI->addKill(kills[i]);
}
}
}
/// isOnlyLROfValNo - Return true if the specified live range is the only
/// one defined by the its val#.
bool isOnlyLROfValNo(const LiveRange *LR) {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
const LiveRange *Tmp = I;
if (Tmp != LR && Tmp->valno == LR->valno)
return false;
}
return true;
}
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
/// LiveRanges with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
/// MergeInClobberRanges - For any live ranges that are not defined in the
/// current interval, but are defined in the Clobbers interval, mark them
/// used with an unknown definition value. Caller must pass in reference to
/// VNInfoAllocator since it will create a new val#.
void MergeInClobberRanges(const LiveInterval &Clobbers,
BumpPtrAllocator &VNInfoAllocator);
/// MergeInClobberRange - Same as MergeInClobberRanges except it merge in a
/// single LiveRange only.
void MergeInClobberRange(LiveIndex Start,
LiveIndex End,
BumpPtrAllocator &VNInfoAllocator);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, it will replace the value numbers of the overlaped
/// live ranges with the specified value number.
void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, but only if the overlapping LiveRanges have the
/// specified value number.
void MergeValueInAsValue(const LiveInterval &RHS,
const VNInfo *RHSValNo, VNInfo *LHSValNo);
/// Copy - Copy the specified live interval. This copies all the fields
/// except for the register of the interval.
void Copy(const LiveInterval &RHS, MachineRegisterInfo *MRI,
BumpPtrAllocator &VNInfoAllocator);
bool empty() const { return ranges.empty(); }
/// beginIndex - Return the lowest numbered slot covered by interval.
LiveIndex beginIndex() const {
if (empty())
return LiveIndex();
return ranges.front().start;
}
/// endNumber - return the maximum point of the interval of the whole,
/// exclusive.
LiveIndex endIndex() const {
if (empty())
return LiveIndex();
return ranges.back().end;
}
bool expiredAt(LiveIndex index) const {
return index >= endIndex();
}
bool liveAt(LiveIndex index) const;
// liveBeforeAndAt - Check if the interval is live at the index and the
// index just before it. If index is liveAt, check if it starts a new live
// range.If it does, then check if the previous live range ends at index-1.
bool liveBeforeAndAt(LiveIndex index) const;
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
const LiveRange *getLiveRangeContaining(LiveIndex Idx) const {
const_iterator I = FindLiveRangeContaining(Idx);
return I == end() ? 0 : &*I;
}
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
LiveRange *getLiveRangeContaining(LiveIndex Idx) {
iterator I = FindLiveRangeContaining(Idx);
return I == end() ? 0 : &*I;
}
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
const_iterator FindLiveRangeContaining(LiveIndex Idx) const;
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
iterator FindLiveRangeContaining(LiveIndex Idx);
/// findDefinedVNInfo - Find the by the specified
/// index (register interval) or defined
VNInfo *findDefinedVNInfoForRegInt(LiveIndex Idx) const;
/// findDefinedVNInfo - Find the VNInfo that's defined by the specified
/// register (stack inteval only).
VNInfo *findDefinedVNInfoForStackInt(unsigned Reg) const;
/// overlaps - Return true if the intersection of the two live intervals is
/// not empty.
bool overlaps(const LiveInterval& other) const {
return overlapsFrom(other, other.begin());
}
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
bool overlaps(LiveIndex Start, LiveIndex End) const;
/// overlapsFrom - Return true if the intersection of the two live intervals
/// is not empty. The specified iterator is a hint that we can begin
/// scanning the Other interval starting at I.
bool overlapsFrom(const LiveInterval& other, const_iterator I) const;
/// addRange - Add the specified LiveRange to this interval, merging
/// intervals as appropriate. This returns an iterator to the inserted live
/// range (which may have grown since it was inserted.
void addRange(LiveRange LR) {
addRangeFrom(LR, ranges.begin());
}
/// join - Join two live intervals (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS intervals as specified. If
/// the intervals are not joinable, this aborts.
void join(LiveInterval &Other, const int *ValNoAssignments,
const int *RHSValNoAssignments,
SmallVector<VNInfo*, 16> &NewVNInfo,
MachineRegisterInfo *MRI);
/// isInOneLiveRange - Return true if the range specified is entirely in the
/// a single LiveRange of the live interval.
bool isInOneLiveRange(LiveIndex Start, LiveIndex End);
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be a single LiveRange in its entirety.
void removeRange(LiveIndex Start, LiveIndex End,
bool RemoveDeadValNo = false);
void removeRange(LiveRange LR, bool RemoveDeadValNo = false) {
removeRange(LR.start, LR.end, RemoveDeadValNo);
}
/// removeValNo - Remove all the ranges defined by the specified value#.
/// Also remove the value# from value# list.
void removeValNo(VNInfo *ValNo);
/// scaleNumbering - Renumber VNI and ranges to provide gaps for new
/// instructions.
void scaleNumbering(unsigned factor);
/// getSize - Returns the sum of sizes of all the LiveRange's.
///
unsigned getSize() const;
/// ComputeJoinedWeight - Set the weight of a live interval after
/// Other has been merged into it.
void ComputeJoinedWeight(const LiveInterval &Other);
bool operator<(const LiveInterval& other) const {
const LiveIndex &thisIndex = beginIndex();
const LiveIndex &otherIndex = other.beginIndex();
return (thisIndex < otherIndex ||
(thisIndex == otherIndex && reg < other.reg));
}
void print(raw_ostream &OS, const TargetRegisterInfo *TRI = 0) const;
void dump() const;
private:
Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From);
void extendIntervalEndTo(Ranges::iterator I, LiveIndex NewEnd);
Ranges::iterator extendIntervalStartTo(Ranges::iterator I, LiveIndex NewStr);
LiveInterval& operator=(const LiveInterval& rhs); // DO NOT IMPLEMENT
};
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
LI.print(OS);
return OS;
}
}
#endif