llvm-6502/include/llvm/ADT/STLExtras.h
David Blaikie ee8af3e2a0 Recommit r208506: DebugInfo: Include lexical scopes in inlined subroutines.
This was reverted in r208642 due to regressions surrounding file changes
within lexical scopes causing inlining information to be lost.

The issue was in LexicalScopes::getOrCreateInlinedScope, where I was
previously testing "isLexicalBlock" which is false for
"DILexicalBlockFile" (a scope used to represent changes in the current
file name) and assuming it was then a function (breaking out of the
inlined scope path and reaching for the parent non-inlined scopes). By
inverting the condition and testing for "isSubprogram" the correct
behavior is attained.

(also found some weirdness in Clang, see r208742 when reducing this test
case - the resulting test case doesn't apply with the Clang fix, but
I've added a more realistic test case to inline-scopes.ll which does
reproduce the issue and demonstrate the fix)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208748 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-14 01:08:28 +00:00

543 lines
19 KiB
C++

//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H
#include "llvm/Support/Compiler.h"
#include <cstddef> // for std::size_t
#include <cstdlib> // for qsort
#include <functional>
#include <iterator>
#include <memory>
#include <utility> // for std::pair
namespace llvm {
//===----------------------------------------------------------------------===//
// Extra additions to <functional>
//===----------------------------------------------------------------------===//
template<class Ty>
struct identity : public std::unary_function<Ty, Ty> {
Ty &operator()(Ty &self) const {
return self;
}
const Ty &operator()(const Ty &self) const {
return self;
}
};
template<class Ty>
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty* left, const Ty* right) const {
return *left < *right;
}
};
template<class Ty>
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty* left, const Ty* right) const {
return *right < *left;
}
};
/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;
#if LLVM_HAS_VARIADIC_TEMPLATES
template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
Ret (*callback)(void *callable, Params ...params);
void *callable;
template<typename Callable>
static Ret callback_fn(void *callable, Params ...params) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Params>(params)...);
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<void *>(&callable)) {}
Ret operator()(Params ...params) const {
return callback(callable, std::forward<Params>(params)...);
}
};
#else
template<typename Ret>
class function_ref<Ret()> {
Ret (*callback)(void *callable);
void *callable;
template<typename Callable>
static Ret callback_fn(void *callable) {
return (*reinterpret_cast<Callable*>(callable))();
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<void *>(&callable)) {}
Ret operator()() const { return callback(callable); }
};
template<typename Ret, typename Param1>
class function_ref<Ret(Param1)> {
Ret (*callback)(void *callable, Param1 param1);
void *callable;
template<typename Callable>
static Ret callback_fn(void *callable, Param1 param1) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<void *>(&callable)) {}
Ret operator()(Param1 param1) {
return callback(callable, std::forward<Param1>(param1));
}
};
template<typename Ret, typename Param1, typename Param2>
class function_ref<Ret(Param1, Param2)> {
Ret (*callback)(void *callable, Param1 param1, Param2 param2);
void *callable;
template<typename Callable>
static Ret callback_fn(void *callable, Param1 param1, Param2 param2) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1),
std::forward<Param2>(param2));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<void *>(&callable)) {}
Ret operator()(Param1 param1, Param2 param2) {
return callback(callable,
std::forward<Param1>(param1),
std::forward<Param2>(param2));
}
};
template<typename Ret, typename Param1, typename Param2, typename Param3>
class function_ref<Ret(Param1, Param2, Param3)> {
Ret (*callback)(void *callable, Param1 param1, Param2 param2, Param3 param3);
void *callable;
template<typename Callable>
static Ret callback_fn(void *callable, Param1 param1, Param2 param2,
Param3 param3) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Param1>(param1),
std::forward<Param2>(param2),
std::forward<Param3>(param3));
}
public:
template<typename Callable>
function_ref(Callable &&callable)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<void *>(&callable)) {}
Ret operator()(Param1 param1, Param2 param2, Param3 param3) {
return callback(callable,
std::forward<Param1>(param1),
std::forward<Param2>(param2),
std::forward<Param3>(param3));
}
};
#endif
// deleter - Very very very simple method that is used to invoke operator
// delete on something. It is used like this:
//
// for_each(V.begin(), B.end(), deleter<Interval>);
//
template <class T>
inline void deleter(T *Ptr) {
delete Ptr;
}
//===----------------------------------------------------------------------===//
// Extra additions to <iterator>
//===----------------------------------------------------------------------===//
// mapped_iterator - This is a simple iterator adapter that causes a function to
// be dereferenced whenever operator* is invoked on the iterator.
//
template <class RootIt, class UnaryFunc>
class mapped_iterator {
RootIt current;
UnaryFunc Fn;
public:
typedef typename std::iterator_traits<RootIt>::iterator_category
iterator_category;
typedef typename std::iterator_traits<RootIt>::difference_type
difference_type;
typedef typename UnaryFunc::result_type value_type;
typedef void pointer;
//typedef typename UnaryFunc::result_type *pointer;
typedef void reference; // Can't modify value returned by fn
typedef RootIt iterator_type;
typedef mapped_iterator<RootIt, UnaryFunc> _Self;
inline const RootIt &getCurrent() const { return current; }
inline const UnaryFunc &getFunc() const { return Fn; }
inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
: current(I), Fn(F) {}
inline value_type operator*() const { // All this work to do this
return Fn(*current); // little change
}
_Self& operator++() { ++current; return *this; }
_Self& operator--() { --current; return *this; }
_Self operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
_Self operator--(int) { _Self __tmp = *this; --current; return __tmp; }
_Self operator+ (difference_type n) const {
return _Self(current + n, Fn);
}
_Self& operator+= (difference_type n) { current += n; return *this; }
_Self operator- (difference_type n) const {
return _Self(current - n, Fn);
}
_Self& operator-= (difference_type n) { current -= n; return *this; }
reference operator[](difference_type n) const { return *(*this + n); }
inline bool operator!=(const _Self &X) const { return !operator==(X); }
inline bool operator==(const _Self &X) const { return current == X.current; }
inline bool operator< (const _Self &X) const { return current < X.current; }
inline difference_type operator-(const _Self &X) const {
return current - X.current;
}
};
template <class _Iterator, class Func>
inline mapped_iterator<_Iterator, Func>
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
const mapped_iterator<_Iterator, Func>& X) {
return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
}
// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
//
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
return mapped_iterator<ItTy, FuncTy>(I, F);
}
//===----------------------------------------------------------------------===//
// Extra additions to <utility>
//===----------------------------------------------------------------------===//
/// \brief Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.first < rhs.first;
}
};
/// \brief Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.second < rhs.second;
}
};
//===----------------------------------------------------------------------===//
// Extra additions for arrays
//===----------------------------------------------------------------------===//
/// Find the length of an array.
template <class T, std::size_t N>
LLVM_CONSTEXPR inline size_t array_lengthof(T (&)[N]) {
return N;
}
/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
*reinterpret_cast<const T*>(P2)))
return -1;
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
*reinterpret_cast<const T*>(P1)))
return 1;
return 0;
}
/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
(const void*, const void*) {
return array_pod_sort_comparator<T>;
}
/// array_pod_sort - This sorts an array with the specified start and end
/// extent. This is just like std::sort, except that it calls qsort instead of
/// using an inlined template. qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat. This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy. If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
// Don't dereference start iterator of empty sequence.
if (Start == End) return;
qsort(&*Start, End-Start, sizeof(*Start),
get_array_pod_sort_comparator(*Start));
}
template <class IteratorTy>
inline void array_pod_sort(
IteratorTy Start, IteratorTy End,
int (*Compare)(
const typename std::iterator_traits<IteratorTy>::value_type *,
const typename std::iterator_traits<IteratorTy>::value_type *)) {
// Don't dereference start iterator of empty sequence.
if (Start == End) return;
qsort(&*Start, End - Start, sizeof(*Start),
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete *I;
C.clear();
}
/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete I->second;
C.clear();
}
//===----------------------------------------------------------------------===//
// Extra additions to <memory>
//===----------------------------------------------------------------------===//
#if LLVM_HAS_VARIADIC_TEMPLATES
// Implement make_unique according to N3656.
/// \brief Constructs a `new T()` with the given args and returns a
/// `unique_ptr<T>` which owns the object.
///
/// Example:
///
/// auto p = make_unique<int>();
/// auto p = make_unique<std::tuple<int, int>>(0, 1);
template <class T, class... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args &&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
/// \brief Constructs a `new T[n]` with the given args and returns a
/// `unique_ptr<T[]>` which owns the object.
///
/// \param n size of the new array.
///
/// Example:
///
/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
template <class T>
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
std::unique_ptr<T>>::type
make_unique(size_t n) {
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}
/// This function isn't used and is only here to provide better compile errors.
template <class T, class... Args>
typename std::enable_if<std::extent<T>::value != 0>::type
make_unique(Args &&...) LLVM_DELETED_FUNCTION;
#else
template <class T>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique() {
return std::unique_ptr<T>(new T());
}
template <class T, class Arg1>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1) {
return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1)));
}
template <class T, class Arg1, class Arg2>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2)));
}
template <class T, class Arg1, class Arg2, class Arg3>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3) {
return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1),
std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8, class Arg9>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
std::forward<Arg9>(arg9)));
}
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
class Arg6, class Arg7, class Arg8, class Arg9, class Arg10>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9, Arg10 &&arg10) {
return std::unique_ptr<T>(
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
std::forward<Arg9>(arg9), std::forward<Arg10>(arg10)));
}
template <class T>
typename std::enable_if<std::is_array<T>::value &&std::extent<T>::value == 0,
std::unique_ptr<T>>::type
make_unique(size_t n) {
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}
#endif
template<typename First, typename Second>
struct pair_hash {
size_t operator()(const std::pair<First, Second> &P) const {
return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
}
};
} // End llvm namespace
#endif