2014-05-07 16:43:23 +00:00

625 lines
24 KiB
C++

//===-- llvm/Module.h - C++ class to represent a VM module ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// Module.h This file contains the declarations for the Module class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_MODULE_H
#define LLVM_IR_MODULE_H
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/system_error.h"
namespace llvm {
class FunctionType;
class GVMaterializer;
class LLVMContext;
class StructType;
template<typename T> struct DenseMapInfo;
template<typename KeyT, typename ValueT, typename KeyInfoT> class DenseMap;
template<> struct ilist_traits<Function>
: public SymbolTableListTraits<Function, Module> {
// createSentinel is used to get hold of the node that marks the end of the
// list... (same trick used here as in ilist_traits<Instruction>)
Function *createSentinel() const {
return static_cast<Function*>(&Sentinel);
}
static void destroySentinel(Function*) {}
Function *provideInitialHead() const { return createSentinel(); }
Function *ensureHead(Function*) const { return createSentinel(); }
static void noteHead(Function*, Function*) {}
private:
mutable ilist_node<Function> Sentinel;
};
template<> struct ilist_traits<GlobalVariable>
: public SymbolTableListTraits<GlobalVariable, Module> {
// createSentinel is used to create a node that marks the end of the list.
GlobalVariable *createSentinel() const {
return static_cast<GlobalVariable*>(&Sentinel);
}
static void destroySentinel(GlobalVariable*) {}
GlobalVariable *provideInitialHead() const { return createSentinel(); }
GlobalVariable *ensureHead(GlobalVariable*) const { return createSentinel(); }
static void noteHead(GlobalVariable*, GlobalVariable*) {}
private:
mutable ilist_node<GlobalVariable> Sentinel;
};
template<> struct ilist_traits<GlobalAlias>
: public SymbolTableListTraits<GlobalAlias, Module> {
// createSentinel is used to create a node that marks the end of the list.
GlobalAlias *createSentinel() const {
return static_cast<GlobalAlias*>(&Sentinel);
}
static void destroySentinel(GlobalAlias*) {}
GlobalAlias *provideInitialHead() const { return createSentinel(); }
GlobalAlias *ensureHead(GlobalAlias*) const { return createSentinel(); }
static void noteHead(GlobalAlias*, GlobalAlias*) {}
private:
mutable ilist_node<GlobalAlias> Sentinel;
};
template<> struct ilist_traits<NamedMDNode>
: public ilist_default_traits<NamedMDNode> {
// createSentinel is used to get hold of a node that marks the end of
// the list...
NamedMDNode *createSentinel() const {
return static_cast<NamedMDNode*>(&Sentinel);
}
static void destroySentinel(NamedMDNode*) {}
NamedMDNode *provideInitialHead() const { return createSentinel(); }
NamedMDNode *ensureHead(NamedMDNode*) const { return createSentinel(); }
static void noteHead(NamedMDNode*, NamedMDNode*) {}
void addNodeToList(NamedMDNode *) {}
void removeNodeFromList(NamedMDNode *) {}
private:
mutable ilist_node<NamedMDNode> Sentinel;
};
/// A Module instance is used to store all the information related to an
/// LLVM module. Modules are the top level container of all other LLVM
/// Intermediate Representation (IR) objects. Each module directly contains a
/// list of globals variables, a list of functions, a list of libraries (or
/// other modules) this module depends on, a symbol table, and various data
/// about the target's characteristics.
///
/// A module maintains a GlobalValRefMap object that is used to hold all
/// constant references to global variables in the module. When a global
/// variable is destroyed, it should have no entries in the GlobalValueRefMap.
/// @brief The main container class for the LLVM Intermediate Representation.
class Module {
/// @name Types And Enumerations
/// @{
public:
/// The type for the list of global variables.
typedef iplist<GlobalVariable> GlobalListType;
/// The type for the list of functions.
typedef iplist<Function> FunctionListType;
/// The type for the list of aliases.
typedef iplist<GlobalAlias> AliasListType;
/// The type for the list of named metadata.
typedef ilist<NamedMDNode> NamedMDListType;
/// The Global Variable iterator.
typedef GlobalListType::iterator global_iterator;
/// The Global Variable constant iterator.
typedef GlobalListType::const_iterator const_global_iterator;
/// The Function iterators.
typedef FunctionListType::iterator iterator;
/// The Function constant iterator
typedef FunctionListType::const_iterator const_iterator;
/// The Global Alias iterators.
typedef AliasListType::iterator alias_iterator;
/// The Global Alias constant iterator
typedef AliasListType::const_iterator const_alias_iterator;
/// The named metadata iterators.
typedef NamedMDListType::iterator named_metadata_iterator;
/// The named metadata constant interators.
typedef NamedMDListType::const_iterator const_named_metadata_iterator;
/// This enumeration defines the supported behaviors of module flags.
enum ModFlagBehavior {
/// Emits an error if two values disagree, otherwise the resulting value is
/// that of the operands.
Error = 1,
/// Emits a warning if two values disagree. The result value will be the
/// operand for the flag from the first module being linked.
Warning = 2,
/// Adds a requirement that another module flag be present and have a
/// specified value after linking is performed. The value must be a metadata
/// pair, where the first element of the pair is the ID of the module flag
/// to be restricted, and the second element of the pair is the value the
/// module flag should be restricted to. This behavior can be used to
/// restrict the allowable results (via triggering of an error) of linking
/// IDs with the **Override** behavior.
Require = 3,
/// Uses the specified value, regardless of the behavior or value of the
/// other module. If both modules specify **Override**, but the values
/// differ, an error will be emitted.
Override = 4,
/// Appends the two values, which are required to be metadata nodes.
Append = 5,
/// Appends the two values, which are required to be metadata
/// nodes. However, duplicate entries in the second list are dropped
/// during the append operation.
AppendUnique = 6
};
struct ModuleFlagEntry {
ModFlagBehavior Behavior;
MDString *Key;
Value *Val;
ModuleFlagEntry(ModFlagBehavior B, MDString *K, Value *V)
: Behavior(B), Key(K), Val(V) {}
};
/// @}
/// @name Member Variables
/// @{
private:
LLVMContext &Context; ///< The LLVMContext from which types and
///< constants are allocated.
GlobalListType GlobalList; ///< The Global Variables in the module
FunctionListType FunctionList; ///< The Functions in the module
AliasListType AliasList; ///< The Aliases in the module
NamedMDListType NamedMDList; ///< The named metadata in the module
std::string GlobalScopeAsm; ///< Inline Asm at global scope.
ValueSymbolTable *ValSymTab; ///< Symbol table for values
std::unique_ptr<GVMaterializer>
Materializer; ///< Used to materialize GlobalValues
std::string ModuleID; ///< Human readable identifier for the module
std::string TargetTriple; ///< Platform target triple Module compiled on
void *NamedMDSymTab; ///< NamedMDNode names.
// We need to keep the string because the C API expects us to own the string
// representation.
// Since we have it, we also use an empty string to represent a module without
// a DataLayout. If it has a DataLayout, these variables are in sync and the
// string is just a cache of getDataLayout()->getStringRepresentation().
std::string DataLayoutStr;
DataLayout DL;
friend class Constant;
/// @}
/// @name Constructors
/// @{
public:
/// The Module constructor. Note that there is no default constructor. You
/// must provide a name for the module upon construction.
explicit Module(StringRef ModuleID, LLVMContext& C);
/// The module destructor. This will dropAllReferences.
~Module();
/// @}
/// @name Module Level Accessors
/// @{
/// Get the module identifier which is, essentially, the name of the module.
/// @returns the module identifier as a string
const std::string &getModuleIdentifier() const { return ModuleID; }
/// Get the data layout string for the module's target platform. This is
/// equivalent to getDataLayout()->getStringRepresentation().
const std::string &getDataLayoutStr() const { return DataLayoutStr; }
/// Get the data layout for the module's target platform.
const DataLayout *getDataLayout() const;
/// Get the target triple which is a string describing the target host.
/// @returns a string containing the target triple.
const std::string &getTargetTriple() const { return TargetTriple; }
/// Get the global data context.
/// @returns LLVMContext - a container for LLVM's global information
LLVMContext &getContext() const { return Context; }
/// Get any module-scope inline assembly blocks.
/// @returns a string containing the module-scope inline assembly blocks.
const std::string &getModuleInlineAsm() const { return GlobalScopeAsm; }
/// @}
/// @name Module Level Mutators
/// @{
/// Set the module identifier.
void setModuleIdentifier(StringRef ID) { ModuleID = ID; }
/// Set the data layout
void setDataLayout(StringRef Desc);
void setDataLayout(const DataLayout *Other);
/// Set the target triple.
void setTargetTriple(StringRef T) { TargetTriple = T; }
/// Set the module-scope inline assembly blocks.
void setModuleInlineAsm(StringRef Asm) {
GlobalScopeAsm = Asm;
if (!GlobalScopeAsm.empty() &&
GlobalScopeAsm[GlobalScopeAsm.size()-1] != '\n')
GlobalScopeAsm += '\n';
}
/// Append to the module-scope inline assembly blocks, automatically inserting
/// a separating newline if necessary.
void appendModuleInlineAsm(StringRef Asm) {
GlobalScopeAsm += Asm;
if (!GlobalScopeAsm.empty() &&
GlobalScopeAsm[GlobalScopeAsm.size()-1] != '\n')
GlobalScopeAsm += '\n';
}
/// @}
/// @name Generic Value Accessors
/// @{
/// Return the global value in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalValue *getNamedValue(StringRef Name) const;
/// Return a unique non-zero ID for the specified metadata kind. This ID is
/// uniqued across modules in the current LLVMContext.
unsigned getMDKindID(StringRef Name) const;
/// Populate client supplied SmallVector with the name for custom metadata IDs
/// registered in this LLVMContext.
void getMDKindNames(SmallVectorImpl<StringRef> &Result) const;
typedef DenseMap<StructType*, unsigned, DenseMapInfo<StructType*> >
NumeredTypesMapTy;
/// Return the type with the specified name, or null if there is none by that
/// name.
StructType *getTypeByName(StringRef Name) const;
/// @}
/// @name Function Accessors
/// @{
/// Look up the specified function in the module symbol table. Four
/// possibilities:
/// 1. If it does not exist, add a prototype for the function and return it.
/// 2. If it exists, and has a local linkage, the existing function is
/// renamed and a new one is inserted.
/// 3. Otherwise, if the existing function has the correct prototype, return
/// the existing function.
/// 4. Finally, the function exists but has the wrong prototype: return the
/// function with a constantexpr cast to the right prototype.
Constant *getOrInsertFunction(StringRef Name, FunctionType *T,
AttributeSet AttributeList);
Constant *getOrInsertFunction(StringRef Name, FunctionType *T);
/// Look up the specified function in the module symbol table. If it does not
/// exist, add a prototype for the function and return it. This function
/// guarantees to return a constant of pointer to the specified function type
/// or a ConstantExpr BitCast of that type if the named function has a
/// different type. This version of the method takes a null terminated list of
/// function arguments, which makes it easier for clients to use.
Constant *getOrInsertFunction(StringRef Name,
AttributeSet AttributeList,
Type *RetTy, ...) END_WITH_NULL;
/// Same as above, but without the attributes.
Constant *getOrInsertFunction(StringRef Name, Type *RetTy, ...)
END_WITH_NULL;
/// Look up the specified function in the module symbol table. If it does not
/// exist, return null.
Function *getFunction(StringRef Name) const;
/// @}
/// @name Global Variable Accessors
/// @{
/// Look up the specified global variable in the module symbol table. If it
/// does not exist, return null. If AllowInternal is set to true, this
/// function will return types that have InternalLinkage. By default, these
/// types are not returned.
const GlobalVariable *getGlobalVariable(StringRef Name,
bool AllowInternal = false) const {
return const_cast<Module *>(this)->getGlobalVariable(Name, AllowInternal);
}
GlobalVariable *getGlobalVariable(StringRef Name, bool AllowInternal = false);
/// Return the global variable in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalVariable *getNamedGlobal(StringRef Name) {
return getGlobalVariable(Name, true);
}
const GlobalVariable *getNamedGlobal(StringRef Name) const {
return const_cast<Module *>(this)->getNamedGlobal(Name);
}
/// Look up the specified global in the module symbol table.
/// 1. If it does not exist, add a declaration of the global and return it.
/// 2. Else, the global exists but has the wrong type: return the function
/// with a constantexpr cast to the right type.
/// 3. Finally, if the existing global is the correct declaration, return
/// the existing global.
Constant *getOrInsertGlobal(StringRef Name, Type *Ty);
/// @}
/// @name Global Alias Accessors
/// @{
/// Return the global alias in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalAlias *getNamedAlias(StringRef Name) const;
/// @}
/// @name Named Metadata Accessors
/// @{
/// Return the first NamedMDNode in the module with the specified name. This
/// method returns null if a NamedMDNode with the specified name is not found.
NamedMDNode *getNamedMetadata(const Twine &Name) const;
/// Return the named MDNode in the module with the specified name. This method
/// returns a new NamedMDNode if a NamedMDNode with the specified name is not
/// found.
NamedMDNode *getOrInsertNamedMetadata(StringRef Name);
/// Remove the given NamedMDNode from this module and delete it.
void eraseNamedMetadata(NamedMDNode *NMD);
/// @}
/// @name Module Flags Accessors
/// @{
/// Returns the module flags in the provided vector.
void getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const;
/// Return the corresponding value if Key appears in module flags, otherwise
/// return null.
Value *getModuleFlag(StringRef Key) const;
/// Returns the NamedMDNode in the module that represents module-level flags.
/// This method returns null if there are no module-level flags.
NamedMDNode *getModuleFlagsMetadata() const;
/// Returns the NamedMDNode in the module that represents module-level flags.
/// If module-level flags aren't found, it creates the named metadata that
/// contains them.
NamedMDNode *getOrInsertModuleFlagsMetadata();
/// Add a module-level flag to the module-level flags metadata. It will create
/// the module-level flags named metadata if it doesn't already exist.
void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Value *Val);
void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val);
void addModuleFlag(MDNode *Node);
/// @}
/// @name Materialization
/// @{
/// Sets the GVMaterializer to GVM. This module must not yet have a
/// Materializer. To reset the materializer for a module that already has one,
/// call MaterializeAllPermanently first. Destroying this module will destroy
/// its materializer without materializing any more GlobalValues. Without
/// destroying the Module, there is no way to detach or destroy a materializer
/// without materializing all the GVs it controls, to avoid leaving orphan
/// unmaterialized GVs.
void setMaterializer(GVMaterializer *GVM);
/// Retrieves the GVMaterializer, if any, for this Module.
GVMaterializer *getMaterializer() const { return Materializer.get(); }
/// True if the definition of GV has yet to be materializedfrom the
/// GVMaterializer.
bool isMaterializable(const GlobalValue *GV) const;
/// Returns true if this GV was loaded from this Module's GVMaterializer and
/// the GVMaterializer knows how to dematerialize the GV.
bool isDematerializable(const GlobalValue *GV) const;
/// Make sure the GlobalValue is fully read. If the module is corrupt, this
/// returns true and fills in the optional string with information about the
/// problem. If successful, this returns false.
bool Materialize(GlobalValue *GV, std::string *ErrInfo = nullptr);
/// If the GlobalValue is read in, and if the GVMaterializer supports it,
/// release the memory for the function, and set it up to be materialized
/// lazily. If !isDematerializable(), this method is a noop.
void Dematerialize(GlobalValue *GV);
/// Make sure all GlobalValues in this Module are fully read.
error_code materializeAll();
/// Make sure all GlobalValues in this Module are fully read and clear the
/// Materializer. If the module is corrupt, this DOES NOT clear the old
/// Materializer.
error_code materializeAllPermanently();
/// @}
/// @name Direct access to the globals list, functions list, and symbol table
/// @{
/// Get the Module's list of global variables (constant).
const GlobalListType &getGlobalList() const { return GlobalList; }
/// Get the Module's list of global variables.
GlobalListType &getGlobalList() { return GlobalList; }
static iplist<GlobalVariable> Module::*getSublistAccess(GlobalVariable*) {
return &Module::GlobalList;
}
/// Get the Module's list of functions (constant).
const FunctionListType &getFunctionList() const { return FunctionList; }
/// Get the Module's list of functions.
FunctionListType &getFunctionList() { return FunctionList; }
static iplist<Function> Module::*getSublistAccess(Function*) {
return &Module::FunctionList;
}
/// Get the Module's list of aliases (constant).
const AliasListType &getAliasList() const { return AliasList; }
/// Get the Module's list of aliases.
AliasListType &getAliasList() { return AliasList; }
static iplist<GlobalAlias> Module::*getSublistAccess(GlobalAlias*) {
return &Module::AliasList;
}
/// Get the Module's list of named metadata (constant).
const NamedMDListType &getNamedMDList() const { return NamedMDList; }
/// Get the Module's list of named metadata.
NamedMDListType &getNamedMDList() { return NamedMDList; }
static ilist<NamedMDNode> Module::*getSublistAccess(NamedMDNode*) {
return &Module::NamedMDList;
}
/// Get the symbol table of global variable and function identifiers
const ValueSymbolTable &getValueSymbolTable() const { return *ValSymTab; }
/// Get the Module's symbol table of global variable and function identifiers.
ValueSymbolTable &getValueSymbolTable() { return *ValSymTab; }
/// @}
/// @name Global Variable Iteration
/// @{
global_iterator global_begin() { return GlobalList.begin(); }
const_global_iterator global_begin() const { return GlobalList.begin(); }
global_iterator global_end () { return GlobalList.end(); }
const_global_iterator global_end () const { return GlobalList.end(); }
bool global_empty() const { return GlobalList.empty(); }
iterator_range<global_iterator> globals() {
return iterator_range<global_iterator>(global_begin(), global_end());
}
iterator_range<const_global_iterator> globals() const {
return iterator_range<const_global_iterator>(global_begin(), global_end());
}
/// @}
/// @name Function Iteration
/// @{
iterator begin() { return FunctionList.begin(); }
const_iterator begin() const { return FunctionList.begin(); }
iterator end () { return FunctionList.end(); }
const_iterator end () const { return FunctionList.end(); }
size_t size() const { return FunctionList.size(); }
bool empty() const { return FunctionList.empty(); }
/// @}
/// @name Alias Iteration
/// @{
alias_iterator alias_begin() { return AliasList.begin(); }
const_alias_iterator alias_begin() const { return AliasList.begin(); }
alias_iterator alias_end () { return AliasList.end(); }
const_alias_iterator alias_end () const { return AliasList.end(); }
size_t alias_size () const { return AliasList.size(); }
bool alias_empty() const { return AliasList.empty(); }
iterator_range<alias_iterator> aliases() {
return iterator_range<alias_iterator>(alias_begin(), alias_end());
}
iterator_range<const_alias_iterator> aliases() const {
return iterator_range<const_alias_iterator>(alias_begin(), alias_end());
}
/// @}
/// @name Named Metadata Iteration
/// @{
named_metadata_iterator named_metadata_begin() { return NamedMDList.begin(); }
const_named_metadata_iterator named_metadata_begin() const {
return NamedMDList.begin();
}
named_metadata_iterator named_metadata_end() { return NamedMDList.end(); }
const_named_metadata_iterator named_metadata_end() const {
return NamedMDList.end();
}
size_t named_metadata_size() const { return NamedMDList.size(); }
bool named_metadata_empty() const { return NamedMDList.empty(); }
iterator_range<named_metadata_iterator> named_metadata() {
return iterator_range<named_metadata_iterator>(named_metadata_begin(),
named_metadata_end());
}
iterator_range<const_named_metadata_iterator> named_metadata() const {
return iterator_range<const_named_metadata_iterator>(named_metadata_begin(),
named_metadata_end());
}
/// @}
/// @name Utility functions for printing and dumping Module objects
/// @{
/// Print the module to an output stream with an optional
/// AssemblyAnnotationWriter.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const;
/// Dump the module to stderr (for debugging).
void dump() const;
/// This function causes all the subinstructions to "let go" of all references
/// that they are maintaining. This allows one to 'delete' a whole class at
/// a time, even though there may be circular references... first all
/// references are dropped, and all use counts go to zero. Then everything
/// is delete'd for real. Note that no operations are valid on an object
/// that has "dropped all references", except operator delete.
void dropAllReferences();
/// @}
/// @name Utility functions for querying Debug information.
/// @{
/// \brief Returns the Dwarf Version by checking module flags.
unsigned getDwarfVersion() const;
/// @}
};
/// An raw_ostream inserter for modules.
inline raw_ostream &operator<<(raw_ostream &O, const Module &M) {
M.print(O, nullptr);
return O;
}
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Module, LLVMModuleRef)
/* LLVMModuleProviderRef exists for historical reasons, but now just holds a
* Module.
*/
inline Module *unwrap(LLVMModuleProviderRef MP) {
return reinterpret_cast<Module*>(MP);
}
} // End llvm namespace
#endif